Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 49, 2019 - Issue 4
331
Views
11
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Metabolism of deltamethrin and cis- and trans-permethrin by rat and human liver microsomes, liver cytosol and plasma preparations

ORCID Icon, , , , , & ORCID Icon show all
Pages 388-396 | Received 31 Jan 2018, Accepted 07 Mar 2018, Published online: 19 Apr 2018

References

  • Anand SS, Bruckner JV, Haines WT, et al. (2006a). Characterization of deltamethrin metabolism by rat plasma and liver microsomes. Toxicol Appl Pharmacol 212:156–66.
  • Anand SS, Kim K-B, Padilla S, et al. (2006b). Ontogeny of hepatic and plasma metabolism of deltamethrin in vitro: role in age-dependent acute neurotoxicity. Drug Metab Dispos 34:389–97.
  • Bhat BK. (1995). Breeding methodologies applicable to pyrethrum. In: Casida JE and Quistad GB, eds. Pyrethrum flowers: production, chemistry, toxicology, and uses. New York: Oxford University Press, 67–94.
  • Boberg M, Vrana M, Mehrotra A, et al. (2017). Age-dependent absolute abundance of hepatic carboxylesterases (CES1 and CES2) by LC-MS/MS proteomics: application to PBPK modeling of oseltamivir in vivo pharmacokinetics in infants. Drug Metab Dispos 45:216–23.
  • Cantalamessa F. (1993). Acute toxicity of two pyrethroids, permethrin, and cypermethrin in neonatal and adult rats. Arch Toxicol 67:510–13.
  • Crow JA, Borazjani A, Potter PM, Ross MK. (2007). Hydrolysis of pyrethroids by human and rat tissues: examination of intestinal, liver and serum carboxylesterases. Toxicol Appl Pharmacol 221:1–12.
  • Elliott M. (1995). Chemicals in insect control. In: Casida JE and Quistad GB, eds. Pyrethrum flowers: production, chemistry, toxicology, and uses. New York: Oxford University Press, 3–31.
  • Gammon D, Chandrasekaran A, Elnaggar SF. (2012). Comparative metabolism and toxicology of pyrethroids in mammals. In: Marrs TC, ed. Issues in toxicology no 12, mammalian toxicology of insecticides. Cambridge: Royal Society of Chemistry, 137–83.
  • Godin SJ, Crow JA, Scollon EJ, et al. (2007). Identification of the rat and human cytochrome P450 isoforms and a rat serum esterase that metabolize the pyrethroid insecticides deltamethrin and esfenvalerate. Drug Metab Dispos 35:1664–71.
  • Godin SJ, DeVito MJ, Hughes MF, et al. (2010). Physiologically based pharmacokinetic modeling of deltamethrin: development of a rat and human diffusion-limited model. Toxicol Sci 115:330–43.
  • Godin SJ, Scollon EJ, Hughes MF, et al. (2006). Species differences in the in vitro metabolism of deltamethrin and esfenvalerate: differential oxidative and hydrolytic metabolism by humans and rats. Drug Metab Dispos 34:1764–71.
  • Hines RN, Simpson PM, McCarver DG. (2016). Age-dependent human hepatic carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) postnatal ontogeny. Drug Metab Dispos 44:959–66.
  • Houston JB, Galetin A. (2008). Methods for predicting in vivo pharmacokinetics using data from in vitro assays. Curr Drug Metab 9:940–51.
  • Kaneko H. (2011). Pyrethroids: mammalian metabolism and toxicity. J Agric Food Chem 59:2786–91.
  • Kim K-B, Anand SS, Kim HJ, et al. (2010). Age, dose, and time-dependency of plasma and tissue distribution of deltamethrin in immature rats. Toxicol Sci 115:354–68.
  • Lawrence LJ, Casida JE. (1982). Pyrethroid toxicology: mouse intracerebral structure-toxicity relationships. Pest Biochem Physiol 18:9–14.
  • Li B, Sedlacek M, Manoharan I, et al. (2005). Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochem Pharmacol 70:1673–84.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–75.
  • Mikata K, Isobe N, Kaneko H. (2012). Biotransformation and enzymatic reactions of synthetic pyrethroids in mammals. Top Curr Chem 314:113–35.
  • Nakamura Y, Sugihara K, Sone T, et al. (2007). The in vitro metabolism of a pyrethroid insecticide, permethrin, and its hydrolysis products in rats. Toxicology 235:176–84.
  • Nishi K, Huang H, Kamita SG, et al. (2006). Characterization of pyrethroid hydrolysis by the human liver carboxylesterases hCE-1 and hCE-2. Arch Biochem Biophys 445:115–23.
  • Omura T, Sato R. (1964). The carbon monoxide-binding pigment of liver microsomes. 1. Evidence for its hemoprotein nature. J Biol Chem 239:2370–8.
  • Rickard J, Brodie ME. (1985). Correlation of blood and brain levels of the neurotoxic pyrethroid deltamethrin with the onset of symptoms in rats. Pest Biochem Physiol 23:143–56.
  • Ross MK, Borazjani A, Edwards CC, Potter PM. (2006). Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases. Biochem Pharmacol 71:657–69.
  • Ross J, Plummer SM, Rode A, et al. (2010). Human constitutive androstane receptor (CAR) and pregnane X receptor (PXR) support the hypertrophic but not the hyperplastic response to the murine nongenotoxic hepatocarcinogens phenobarbital and chlordane in vivo. Toxicol Sci 116:452–66.
  • Scollon EJ, Starr JM, Godin SJ, et al. (2009). In vitro metabolism of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome P450 isoforms. Drug Metab Dispos 37:221–8.
  • Sheets LP, Doherty JD, Law MW, et al. (1994). Age-dependent differences in the susceptibility of rats to deltamethrin. Toxicol Appl Pharmacol 126:186–90.
  • Soderlund DM. (2012). Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Arch Toxicol 86:165–81.
  • Soderlund DM, Clark JM, Sheets LP, et al. (2002). Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171:3–59.
  • Tornero-Velez R, Davis J, Scollon EJ, et al. (2012). A pharmacokinetic model of cis- and trans-permethrin disposition in rats and humans with aggregate exposure application. Toxicol Sci 130:33–47.
  • Tsuji R, Yamada T, Kawamura S. (2012). Mammal toxicology of synthetic pyrethroids. Top Curr Chem 314:83–111.
  • Yang D, Pearce RE, Wang X, et al. (2009a). Human carboxylesterases HCE1 and HCE2: ontogenic expression, inter-individual variability and differential hydrolysis of oseltamivir, aspirin, deltamethrin and permethrin. Biochem Pharmacol 77:238–47.
  • Yang D, Wang X, Chen Y-T, et al. (2009b). Pyrethroid insecticides: isoform-dependent hydrolysis, induction of cytochrome P450 3A4 and evidence on the involvement of the pregnane X receptor. Toxicol Appl Pharmacol 237:49–58.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.