Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 49, 2019 - Issue 6
363
Views
7
CrossRef citations to date
0
Altmetric
Molecular Toxicology

Liver-specific knockout of histone methyltransferase G9a impairs liver maturation and dysregulates inflammatory, cytoprotective, and drug-processing genes

, &
Pages 740-752 | Received 05 Apr 2018, Accepted 13 Jun 2018, Published online: 23 Jul 2018

References

  • Antignano F, Burrows K, Hughes MR, et al. (2014). Methyltransferase G9A regulates T cell differentiation during murine intestinal inflammation. J Clinical Invest 124:1945–55.
  • Artal-Martinez de Narvajas A, Gomez TS, Zhang JS, et al. (2013). Epigenetic regulation of autophagy by the methyltransferase G9a. Mol Cell Biol 33:3983–93.
  • Banfi B, Clark RA, Steger K, et al. (2003). Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278:3510–3.
  • Bhattacharjee A, Joiner WJ, Wu M, et al. (2003). Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J Neurosci 23:11681–91.
  • Brissot P, Ropert M, Le Lan C, et al. (2012). Non-transferrin bound iron: a key role in iron overload and iron toxicity. Biochimica et biophysica Acta 1820:403–10.
  • Chase KA, Sharma RP. (2013). Nicotine induces chromatin remodelling through decreases in the methyltransferases GLP, G9a, Setdb1 and levels of H3K9me2. Int J Neuropsychopharmacol 16:1129–38.
  • Chen L, Guan H, Gu C, et al. (2016). miR-383 inhibits hepatocellular carcinoma cell proliferation via targeting APRIL. Tumour biol J Int Soc Oncodevelop Biol Med 37:2497–507.
  • Chen X, El Gazzar M, Yoza BK, et al. (2009). The NF-kappaB factor RelB and histone H3 lysine methyltransferase G9a directly interact to generate epigenetic silencing in endotoxin tolerance. J Biol Chem 284:27857–65.
  • Chervona Y, Arita A, Costa M. (2012). Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics 4:619–27.
  • Chiang JY. (2009). Bile acids: regulation of synthesis. J Lipid Res 50:1955–66.
  • Chiang JY. (2013). Bile acid metabolism and signaling. Compr Physiol 3:1191–212.
  • Coward WR, Brand OJ, Pasini A, et al. (2018). Interplay between EZH2 and G9a Regulates CXCL10 Gene Repression in Idiopathic Pulmonary Fibrosis. Amer J Resp Cell Mol Biol 58:449–60.
  • De Smaele E, Zazzeroni F, Papa S, et al. (2001). Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414:308–13.
  • Ding J, Li T, Wang X, et al. (2013). The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to sustain cancer cell survival and proliferation. Cell Metab 18:896–907.
  • Duan Z, Zarebski A, Montoya-Durango D, et al. (2005). Gfi1 coordinates epigenetic repression of p21Cip/WAF1 by recruitment of histone lysine methyltransferase G9a and histone deacetylase 1. Mol cell Biol 25:10338–51.
  • Ellman GL. (1959). Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–7.
  • Epsztejn-Litman S, Feldman N, Abu-Remaileh M, et al. (2008). De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol. Biol 15:1176–83.
  • Esfandiari F, Medici V, Wong DH, et al. (2010). Epigenetic regulation of hepatic endoplasmic reticulum stress pathways in the ethanol-fed cystathionine beta synthase-deficient mouse. Hepatology 51:932–41.
  • Esteve PO, Chin HG, Smallwood A, et al. (2006). Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev 20:3089–103.
  • Ferry L, Fournier A, Tsusaka T, et al. (2017). Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to Replicating DNA and Regulates DNA Methylation. Molecular Cell 67:550–65 e5.
  • Gomez-Varela D, Schmidt M, Schoellerman J, et al. (2012). PMCA2 via PSD-95 controls calcium signaling by alpha7-containing nicotinic acetylcholine receptors on aspiny interneurons. J Neurosci 32:6894–905.
  • Grinberg M, Stober RM, Edlund K, et al. (2014). Toxicogenomics directory of chemically exposed human hepatocytes. Arch Toxicol 88:2261–87.
  • Guyton KZ, Xu Q, Holbrook NJ. (1996). Induction of the mammalian stress response gene GADD153 by oxidative stress: role of AP-1 element. Biochem J 314:547–54.
  • Harley IT, Stankiewicz TE, Giles DA, et al. (2014). IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology 59:1830–9.
  • He Z, Cen D, Luo X, et al. (2013). Downregulation of miR-383 promotes glioma cell invasion by targeting insulin-like growth factor 1 receptor. Med Oncol 30:557.
  • Heese K. (2013). G proteins, p60TRP, and neurodegenerative diseases. Mol Neurobiol 47:1103–11.
  • Holmes C, Stanford WL. (2007). Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells 25:1339–47.
  • Howard A, Barley NF, Legon S, et al. (1994). Plasma-membrane calcium-pump isoforms in human and rat liver. Biochem J 303:275–9.
  • Huang J, Dorsey J, Chuikov S, et al. (2010). G9a and Glp methylate lysine 373 in the tumor suppressor p53. J Biol Chem 285:9636–41.
  • Hyoda K, Hosoi T, Horie N, et al. (2006). PI3K-Akt inactivation induced CHOP expression in endoplasmic reticulum-stressed cells. Biochem Biophys Res Commun 340:286–90.
  • Ikeda H, Serria MS, Kakizaki I, et al. (2002). Activation of mouse Pi-class glutathione S-transferase gene by Nrf2(NF-E2-related factor 2) and androgen. Biochem J 364:563–70.
  • Jain A, Lamark T, Sjottem E, et al. (2010). p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285:22576–91.
  • Jiang DK, Ma XP, Yu H, et al. (2015). Genetic variants in five novel loci including CFB and CD40 predispose to chronic hepatitis B. Hepatology 62:118–28.
  • Jianwei Z, Qi L, Quanquan X, et al. (2018). TMPRSS4 Upregulates TWIST1 Expression through STAT3 Activation to Induce Prostate Cancer Cell Migration. Pathol Oncol Res 24:251–7.
  • Jin J, Shen X, Chen L, et al. (2016). TMPRSS4 promotes invasiveness of human gastric cancer cells through activation of NF-κB/MMP-9 signaling . Biomed Pharmacother 77:30–6.
  • Kim JK, Esteve PO, Jacobsen SE, et al. (2009). UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells. Nucleic Acids Res 37:493–505.
  • Kim Y, Kim YS, Kim DE, et al. (2013). BIX-01294 induces autophagy-associated cell death via EHMT2/G9a dysfunction and intracellular reactive oxygen species production. Autophagy 9:2126–39.
  • Kim YJ, Kim HY, Lee JH, et al. (2013). A genome-wide association study identified new variants associated with the risk of chronic hepatitis B. Human Mol Gene 22:4233–8.
  • Komatsu M, Kurokawa H, Waguri S, et al. (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–23.
  • Kubicek S, Gilbert JC, Fomina-Yadlin D, et al. (2012). Chromatin-targeting small molecules cause class-specific transcriptional changes in pancreatic endocrine cells. Proc Nat Acad Sci USA 109:5364–9.
  • Lau A, Wang XJ, Zhao F, et al. (2010). A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol cell Biol 30:3275–85.
  • Lee C, Ding X, Riddick DS. (2013). Downregulation of mouse hepatic CYP3A protein by 3-methylcholanthrene does not require cytochrome P450-dependent metabolism. Drug Metab Dispos 41:1782–6.
  • Lee YH, Sauer B, Johnson PF, et al. (1997). Disruption of the c/ebp alpha gene in adult mouse liver. Mol cell Biol 17:6014–22.
  • Lehnertz B, Northrop JP, Antignano F, et al. (2010). Activating and inhibitory functions for the histone lysine methyltransferase G9a in T helper cell differentiation and function. J Exp Med 207:915–22.
  • Lenstra DC, Al Temimi AHK, Mecinovic J. (2018). Inhibition of histone lysine methyltransferases G9a and GLP by ejection of structural Zn(II). Bioorg Med Chem Lett 28:1234–8.
  • Lu H, Cui J, Gunewardena S, et al. (2012). Hepatic ontogeny and tissue distribution of mRNAs of epigenetic modifiers in mice using RNA-sequencing. Epigenetics 7:914–29.
  • Lu H, Cui W, Klaassen CD. (2011). Nrf2 protects against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced oxidative injury and steatohepatitis. Toxicol App Pharmacol 256:122–35.
  • Maier PJ, Zemoura K, Acuna MA, et al. (2014). Ischemia-like oxygen and glucose deprivation mediates down-regulation of cell surface γ-aminobutyric acidB receptors via the endoplasmic reticulum (ER) stress-induced transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CHOP). J Biol Chem 289:12896–907.
  • Mann DA. (2014). Epigenetics in liver disease. Hepatology 60:1418–25.
  • Maruyama Y, Sou YS, Kageyama S, et al. (2014). LC3B is indispensable for selective autophagy of p62 but not basal autophagy. Biochem Biophys Res Comm 446:309–15.
  • Maze I, Covington HE, 3rd, Dietz DM, et al. (2010). Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Sci 327:213–6.
  • McMillan DR, Kayes-Wandover KM, Richardson JA, et al. (2002). Very large G protein-coupled receptor-1, the largest known cell surface protein, is highly expressed in the developing central nervous system. J Biol Chem 277:785–92.
  • Miao F, Wu X, Zhang L, et al. (2008). Histone methylation patterns are cell-type specific in human monocytes and lymphocytes and well maintained at core genes. J Immunol 180:2264–9.
  • Millar NS. (2009). RIC-3: a nicotinic acetylcholine receptor chaperone. Br J Pharmacol 153:S177–S83.
  • Min HJ, Lee Y, Zhao XF, et al. (2014). TMPRSS4 upregulates uPA gene expression through JNK signaling activation to induce cancer cell invasion. Cell Signal 26:398–408.
  • Mozzetta C, Pontis J, Fritsch L, et al. (2014). The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing. Mol Cell 53:277–89.
  • Nakaso K, Yano H, Fukuhara Y, et al. (2003). PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells. FEBS Letters 546:181–4.
  • Nishio H, Walsh MJ. (2004). CCAAT displacement protein/cut homolog recruits G9a histone lysine methyltransferase to repress transcription. Proc Nat Acad Sci USA 101:11257–62.
  • Papait R, Serio S, Pagiatakis C, et al. (2017). Histone Methyltransferase G9a Is Required for Cardiomyocyte Homeostasis and Hypertrophy. Circulation 136:1233–46.
  • Park E, Park SY, Dobkin C, et al. (2014). Development of a novel cysteine sulfinic Acid decarboxylase knockout mouse: dietary taurine reduces neonatal mortality. J Amino Acids 2014:346809.
  • Pellicoro A, Ramachandran P, Iredale JP, et al. (2014). Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 14:181–94.
  • Pellicoro A, van den Heuvel FA, Geuken M, et al. (2007). Human and rat bile acid-CoA:amino acid N-acyltransferase are liver-specific peroxisomal enzymes: implications for intracellular bile salt transport. Hepatology 45:340–8.
  • Pless O, Kowenz-Leutz E, Knoblich M, et al. (2008). G9a-mediated lysine methylation alters the function of CCAAT/enhancer-binding protein-beta. J Biol Chem 283:26357–63.
  • Poeter M, Brandherm I, Rossaint J, et al. (2014). Annexin A8 controls leukocyte recruitment to activated endothelial cells via cell surface delivery of CD63. Nat Comm 5:3738.
  • Pogribny IP, Rusyn I. (2013). Environmental toxicants, epigenetics, and cancer. Adv Exp Med Biol 754:215–32.
  • Poulard C, Bittencourt D, Wu DY, et al. (2017). A post-translational modification switch controls coactivator function of histone methyltransferases G9a and GLP. EMBO Rep 18:1442–59.
  • Remick DG, Bolgos G, Copeland S, et al. (2005). Role of interleukin-6 in mortality from and physiologic response to sepsis. Infect Immun 73:2751–7.
  • Rice JC, Briggs SD, Ueberheide B, et al. (2003). Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Molecular Cell 12:1591–8.
  • Robinson JT, Thorvaldsdottir H, Winckler W, et al. (2011). Integrative genomics viewer. Nat Biotechnol 29:24–6.
  • Ron D, Habener JF. (1992). CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev 6:439–53.
  • Schaefer A, Sampath SC, Intrator A, et al. (2009). Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron 64:678–91.
  • Shankar SR, Bahirvani AG, Rao VK, et al. (2013). G9a, a multipotent regulator of gene expression. Epigenetics 8:16–22.
  • Stein RA. (2012). Epigenetics and environmental exposures. J Epidemiol Community Health 66:8–13.
  • Stoecker K, Weigelt K, Ebert S, et al. (2009). Induction of STAP-1 promotes neurotoxic activation of microglia. Biochem Biophys Res Comm 379:121–6.
  • Subbanna S, Nagre NN, Shivakumar M, et al. (2014). Ethanol induced acetylation of histone at G9a exon1 and G9a-mediated histone H3 dimethylation leads to neurodegeneration in neonatal mice. Neuroscience 258:422–32.
  • Sun H, Maze I, Dietz DM, et al. (2012). Morphine epigenomically regulates behavior through alterations in histone H3 lysine 9 dimethylation in the nucleus accumbens. J Neurosci 32:17454–64.
  • Suzuki T, Motohashi H, Yamamoto M. (2013). Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci34:340–6.
  • Szabo G, Csak T. (2012). Inflammasomes in liver diseases. J Hepatol 57:642–54.
  • Tachibana M, Nozaki M, Takeda N, et al. (2007). Functional dynamics of H3K9 methylation during meiotic prophase progression. EMBO J 26:3346–59.
  • Tachibana M, Sugimoto K, Nozaki M, et al. (2002). G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes & Development 16:1779–91.
  • Takahashi A, Imai Y, Yamakoshi K, et al. (2012). DNA damage signaling triggers degradation of histone methyltransferases through APC/C(Cdh1) in senescent cells. Molecular Cell 45:123–31.
  • Tan Z, Qian X, Jiang R, et al. (2013). IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol 191:1835–44.
  • Teng P, Jiao Y, Hao M, et al. (2018). microRNA-383 suppresses the PI3K-AKT-MTOR signaling pathway to inhibit development of cervical cancer via down-regulating PARP2. J cell Biochem 119:5243–52.
  • Tew KD, Townsend DM. (2011). Regulatory functions of glutathione S-transferase P1-1 unrelated to detoxification. Drug Metabol Rev 43:179–93.
  • Ubeda M, Wang XZ, Zinszner H, et al. (1996). Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element. Mol cell Biol 16:1479–89.
  • Ueda J, Ho JC, Lee KL, et al. (2014). The Hypoxia-Inducible Epigenetic Regulators Jmjd1a and G9a Provide a Mechanistic Link between Angiogenesis and Tumor Growth. Mol cell Biol 34:3702–20.
  • Vachirayonsti T, Ho KW, Yang D, et al. (2015). Suppression of the pregnane X receptor during endoplasmic reticulum stress is achieved by down-regulating hepatocyte nuclear factor-4alpha and up-regulating liver-enriched inhibitory protein. Toxicol Sci 144:382–92.
  • Wang L, Xu S, Lee JE, et al. (2013). Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis. EMBO J 32:45–59.
  • Wei L, Chiu DK, Tsang FH, et al. (2017). Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3. J Hepatol 67:758–69.
  • Wen B, Wu H, Shinkai Y, et al. (2009). Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet 41:246–50.
  • Xue W, Huang J, Chen H, et al. (2018). Histone methyltransferase G9a modulates hepatic insulin signaling via regulating HMGA1. Biochimica et biophysica Acta 1864:338–46.
  • Yang Q, Zhu Q, Lu X, et al. (2017). G9a coordinates with the RPA complex to promote DNA damage repair and cell survival. Proc Natl Acad Sci USA 114:E6054–E63.
  • Yokoyama M, Chiba T, Zen Y, et al. (2017). Histone lysine methyltransferase G9a is a novel epigenetic target for the treatment of hepatocellular carcinoma. Oncotarget 8:21315–26.
  • Yoshimi A, Goyama S, Watanabe-Okochi N, et al. (2011). Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins. Blood 117:3617–28.
  • Zhang Q, Lei X, Lu H. (2014). Alterations of Epigenetic Signatures in Hepatocyte Nuclear Factor 4α deficient mouse liver determined by improved ChIP-qPCR and (h)MeDIP-qPCR assays. PLoS One 9:e84925.
  • Zhao J, Zhang Z, Luan Y, et al. (2014). Pathological functions of interleukin-22 in chronic liver inflammation and fibrosis with hepatitis B virus infection by promoting T helper 17 cell recruitment. Hepatology 59:1331–42.
  • Zong ZH, Du ZX, Li N, et al. (2012). Implication of Nrf2 and ATF4 in differential induction of CHOP by proteasome inhibition in thyroid cancer cells. Biochim Biophys Acta 1823:1395–404.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.