Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 49, 2019 - Issue 8
95
Views
6
CrossRef citations to date
0
Altmetric
Pharmacogenetics

Functionally relevant genetic variants of glutathione S-transferase GSTM5 in cynomolgus and rhesus macaques

, , & ORCID Icon
Pages 995-1000 | Received 09 Aug 2018, Accepted 12 Sep 2018, Published online: 06 Dec 2018

References

  • Bolt HM, Thier R. (2006). Relevance of the deletion polymorphisms of the glutathione S-transferases GSTT1 and GSTM1 in pharmacology and toxicology. Curr Drug Metab 7:613–28.
  • Chern MK, Wu TC, Hsieh CH, et al. (2000). Tyr115, gln165 and trp209 contribute to the 1, 2-epoxy-3-(p-nitrophenoxy)propane-conjugating activity of glutathione S-transferase cGSTM1-1. J Mol Biol 300:1257–69.
  • Dirr H, Reinemer P, Huber R. (1994). X-ray crystal structures of cytosolic glutathione S-transferases. Implications for protein architecture, substrate recognition and catalytic function. Eur J Biochem 220:645–61.
  • Hansson LO, Bolton-Grob R, Widersten M, Mannervik B. (1999). Structural determinants in domain II of human glutathione transferase M2-2 govern the characteristic activities with aminochrome, 2-cyano-1,3-dimethyl-1-nitrosoguanidine, and 1,2-dichloro-4-nitrobenzene. Protein Sci 8:2742–50.
  • Hayes JD, Flanagan JU, Jowsey IR. (2005). Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88.
  • Ivarsson Y, Mackey AJ, Edalat M, et al. (2003). Identification of residues in glutathione transferase capable of driving functional diversification in evolution. A novel approach to protein redesign. J Biol Chem 278:8733–8.
  • Ladero JM, Martínez C, García-Martin E, et al. (2005). Polymorphisms of the glutathione S-transferases mu-1 (GSTM1) and theta-1 (GSTT1) and the risk of advanced alcoholic liver disease. Scand J Gastroenterol 40:348–53.
  • Lucena MI, Andrade RJ, Martínez C, et al. (2008). Glutathione S-transferase m1 and t1 null genotypes increase susceptibility to idiosyncratic drug-induced liver injury. Hepatology 48:588–96.
  • Okubo M, Murayama N, Shimizu M, et al. (2013). The CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with reduced CYP3A4 protein level and function in human liver. J Toxicol Sci 38:349–54.
  • Raghunathan S, Chandross RJ, Kretsinger RH, et al. (1994). Crystal structure of human class mu glutathione transferase GSTM2-2. Effects of lattice packing on conformational heterogeneity. J Mol Biol 238:815–32.
  • Shokeer A, Larsson AK, Mannervik B. (2005). Residue 234 in glutathione transferase T1-1 plays a pivotal role in the catalytic activity and the selectivity against alternative substrates. Biochem J 388:387–92.
  • Uehara S, Murayama N, Nakanishi Y, et al. (2011). Immunochemical detection of cytochrome P450 enzymes in liver microsomes of 27 cynomolgus monkeys. J Pharmacol Exp Ther 339:654–61.
  • Uehara S, Murayama N, Yamazaki H, Uno Y. (2012). CYP2C76 non-synonymous variants in cynomolgus and rhesus macaques. Drug Metab Pharmacokinet 27:344–8.
  • Uno Y, Fujino H, Kito G, et al. (2006). CYP2C76, a novel cytochrome P450 in cynomolgus monkey, is a major CYP2C in liver, metabolizing tolbutamide and testosterone. Mol Pharmacol 70:477–86.
  • Uno Y, Matsushita A, Murayama N, Yamazaki H. (2014a). Genetic polymorphism of cynomolgus and rhesus macaque CYP2C9. Drug Metab Pharmacokinet 30:130–2.
  • Uno Y, Matsushita A, Osada N, et al. (2010). Genetic variants of CYP3A4 and CYP3A5 in cynomolgus and rhesus macaques. Drug Metab Dispos 38:209–14.
  • Uno Y, Matsushita A, Shukuya M, et al. (2014b). CYP2C19 polymorphisms account for inter-individual variability of drug metabolism in cynomolgus macaques. Biochem Pharmacol 91:242–8.
  • Uno Y, Murayama N, Kunori M, Yamazaki H. (2013b). Characterization of microsomal glutathione S-transferases MGST1, MGST2, and MGST3 in cynomolgus macaque. Drug Metab Dispos 41:1621–5.
  • Uno Y, Murayama N, Kunori M, Yamazaki H. (2013a). Systematic identification and characterization of glutathione S-transferases in cynomolgus macaque. Biochem Pharmacol 86:679–90.
  • Uno Y, Osada N. (2011). CpG site degeneration triggered by the loss of functional constraint created a highly polymorphic macaque drug-metabolizing gene, CYP1A2. BMC Evol Biol 11:283.
  • Uno Y, Sakuraba H, Uehara S, et al. (2009). A null allele impairs function of CYP2C76 gene in cynomolgus monkeys: a possible genetic tool for generation of a better animal model in drug metabolism. Drug Metab Dispos 37:14–7.
  • Uno Y, Shimizu M, Yamazaki H. (2013c). Molecular and functional characterization of flavin-containing monooxygenases in cynomolgus macaque. Biochem Pharmacol 85:1837–47.
  • Uno Y, Uehara S, Kohara S, et al. (2014c). Polymorphisms of CYP2D17 in cynomolgus and rhesus macaques: an evidence of the genetic basis for the variability of CYP2D-dependent drug metabolism. Drug Metab Dispos 42:1407–10.
  • Uno Y, Uehara S, Kohara S, et al. (2015). CYP2D44 polymorphisms in cynomolgus and rhesus macaques. Mol Biol Rep 42:1149–55.
  • Uno Y, Uehara S, Yamazaki H. (2011). Discovery of genetic variants in CYP1D1: an implication for functional integrity of CYP1D1 in cynomolgus macaques and rhesus macaques. Drug Metab Pharmacokinet 26:627–31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.