Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 49, 2019 - Issue 8
150
Views
9
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Phase I and phase II metabolism simulation of antitumor-active 2-hydroxyacridinone with electrochemistry coupled on-line with mass spectrometry

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 922-934 | Received 19 Jul 2018, Accepted 13 Sep 2018, Published online: 04 Jan 2019

References

  • Acheson RM. (1973). Acridines. In: Acheson RM, ed. The chemistry of heterocyclic compounds. New York: Interscience Publishers, Inc., p. 141.
  • Augustin E, Moś-Rompa A, Skwarska A, et al. (2006). Induction of G2/M phase arrest and apoptosis of human leukemia cells by potent antitumor triazoloacridinone C-1305. Biochem Pharmacol 72:1668–79.
  • Baillie TA, Cayen MN, Fouda H, et al. (2002). Drug metabolites in safety testing. Toxicol Appl Pharmacol 182:188–96.
  • Baumann A, Lohmann W, Rose T, et al. (2010). Electrochemistry-mass spectrometry unveils the formation of reactive triclocarban metabolites. Drug Metab Dispos 38:2130–8.
  • Bolton JL, Trush MA, Penning TM, et al. (2000). Role of quinones in toxicology. Chem Res Toxicol 13:135–60.
  • Brandon EF, Raap CD, Meijerman I, et al. (2003). An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol 189:233–46.
  • Bussy U, Boisseau R, Thobie-Gautier C, Boujtita M. (2015). Electrochemistry-mass spectrometry to study reactive drug metabolites and CYP450 simulations. Trends Anal Chem 70:67–73.
  • Bussy U, Boujtita M. (2014). Advances in the electrochemical simulation of oxidation reactions mediated by cytochrome P450. Chem Res Toxicol 27:1652–68.
  • Cholody WM, Horowska B, Paradziej-Lukowicz J, et al. (1996). Structure-activity relationship for antineoplastic imidazoacridinones: synthesis and antileukemic activity in vivo. J Med Chem 39:1028–32.
  • Cholody WM, Martelli S, Lukowicz J, Konopa J. (1990a). 5-[(Aminoalkyl)amino]imidazo[4,5,1-de]acridin-6-ones as a novel class of antineoplastic agents. Synthesis and biological activity. J Med Chem 33:49–52.
  • Cholody WM, Martelli S, Konopa J. (1990b). 8-Substitued 5-[(aminoalkyl)amino]-6H-v-triazolo[4,5,1-de]acridin-6-ones as potential antineoplastic agents. Synthesis and biological activity. J Med Chem 33:2852–56.
  • Dziegielewski J, Slusarski B, Konitz A, et al. (2002). Intercalation of imidazoacridinones to DNA and its relevance to cytotoxic and antitumor activity. Biochem Pharmacol 63:1653–62.
  • Dziegielewski J, Konopa J. (1996). Interstrand crosslinking of DNA induced in tumor cells by a new group of antitumor imidazoacridinones. Proc Am Assoc Cancer Res 37:410.
  • Dziegielewski J, Konopa J. (1998). Characterisation of covalent binding to DNA of antitumor imidazoacridinone C-1311, after metabolic activation. Ann Oncol Suppl 1:137.
  • Evans DC, Watt AP, Nicoll-Griffith DA, Baillie TA. (2004). Drug-protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem Res Toxicol 17:3–16.
  • Faber H, Jahn S, Kunnemeyer J, et al. (2011). Electrochemistry/liquid chromatography/mass spectrometry as a tool in metabolism studies. Angew Chem Int Ed Engl 50:A52–8.
  • Guengerich FP. (2007). Oxidative, reductive and hydrolytic metabolism of drugs. In: Zhang D, Zhu M, Humphreys WG, eds. Drug metabolism in drug design and development. New York: John Willey & Sons, Inc., p. 265.
  • Harding MM, Grummitt AR. (2003). 9-hydroxyellipticine and derivatives as chemotherapy agents. Mini Rev Med Chem 3:67–76.
  • Inoue K, Fukuda K, Yoshimura T, Kusano K. (2015). Comparison of the reactivity of trapping reagents toward electrophiles: cysteine derivatives can be bifunctional trapping reagents. Chem Res Toxicol 28:1546–55.
  • Jennings GS, Strauss M. (1999). Immortalization of hepatocytes through targeted deregulation of the cell cycle. In: Al-Rubeai M, ed. Cell engineering. The Netherlands: Kluwer Academic Publishers, p. 259.
  • Jollow DJ, Mitchell JR, Potter WZ, et al. (1973). Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther 187:195–202.
  • Jurva U, Wikstrom HV, Weidolf L, Bruins AP. (2003). Comparison between electrochemistry/mass spectrometry and cytochrome P450 catalyzed oxidation reactions. Rapid Commun Mass Spectrom 17:800–10.
  • Kalgutkar AS, Soglia JR. (2005). Minimising the potential for metabolic activation in drug discovery. Expert Opin Drug Metab Toxicol 1:91–142.
  • Koba M, Konopa J. (2007). Interactions of antitumor triazoloacridinones with DNA. Acta Biochim Pol 54:297–306.
  • Kusnierczyk H, Cholody WM, Paradziej-Lukowicz J, et al. (1994). Experimental antitumor activity and toxicity of the selected triazolo- and imidazoacridinones. Arch Immunol Ther Exper (Warsz) 42:415–23.
  • Larson AM. (2007). Acetaminophen hepatotoxicity. Clin Liver Dis 11:525–48.
  • Lemke K, Wojciechowski M, Laine W, et al. (2005). Induction of unique structural changes in guanine-rich DNA regions by the triazoloacridone C-1305, a topoisomerase II inhibitor with antitumor activities. Nucleic Acids Res 33:6034–47.
  • Lohmann W, Karst U. (2008). Biomimetic modeling of oxidative drug metabolism : strategies, advantages and limitations. Anal Bioanal Chem 391:79–96.
  • Lohmann W, Baumann A, Karst U. (2010). Electrochemistry and LC-MS for metabolite generation and identification: tools, technologies and trends. LCGC Europe 23:8–16.
  • Marks TA, Venditti JM. (1976). Potentiation of actinomycin D or adriamycin antitumor activity with DNA. Cancer Res 36:496–504.
  • Martignoni M, Groothuis GM, de Kanter R. (2006). Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2:875–94.
  • Mazerska Z, Dziegielewski J, Konopa J. (2001). Enzymatic activation of a new antitumour drug, 5-diethylaminoethylamino-8-hydroxyimidazoacridinone, C-1311, observed after its intercalation into DNA. Biochem Pharmacol 61:685–94.
  • Mazerska Z, Zamponi S, Marassi R, et al. (1997). Electrochemical oxidation of antitumor imidazoacridinone derivatives and the reference 2-hydroxyacridinone. J Electroanal Chem 427:71–8.
  • Mazerska Z, Zamponi S, Marassi R, et al. (2002). The products of electro- and photochemical oxidation of 2-hydroxyacridinone, the reference compound of antitumor imidazoacridinone derivatives. J Electroanal Chem 521:144–54.
  • Nouri-Nigjeh E, Bischoff R, Bruins AP, Permentier HP. (2011). Electrochemistry in the mimicry of oxidative drug metabolism by cytochrome P450s. Curr Drug Metab 12:359–71.
  • Orhan H, Vermeulen NPE. (2011). Conventional and novel approaches in generating and characterization of reactive intermediates from drugs/drug candidates. Curr Drug Metab 12:383–94.
  • Park BK, Boobis A, Clarke S, et al. (2011). Managing the challenge of chemically reactive metabolites in drug development. Nat Rev Drug Discov 10:292–306.
  • Permentier HP, Bruins AP, Bischoff R. (2008). Electrochemistry-mass spectrometry in drug metabolism and protein research. Mini Rev Med Chem 8:45–56.
  • Pinto N, Dolan ME. (2011). Clinically relevant genetic variations in drug metabolizing enzymes. Curr Drug Metab 12:487–97.
  • Prakash C, Sharma R, Gleave M, Nedderman A. (2008). In vitro screening techniques for reactive metabolites for minimizing bioactivation potential in drug discovery. Curr Drug Metab 9:952–64.
  • Sichilongo KF, Famuyiwa SO, R, Kibechu R. (2011). Pre-electrospray ionisation manifold methylation and post-electrospray ionisation manifold cleavage/ion cluster formation observed during electrospray ionisation of chloramphenicol in solutions of methanol and acetonitrile for liquid chromatography-mass spectrometry employing a commercial quadrupole ion trap mass analyser. Eur J Mass Spectrom (Chichester) 17:255–64.
  • Skladanowski A, Plisov SY, Konopa J, Larsen AK. (1996). Inhibition of DNA topoisomerase II by imidazoacridinones, new antineoplastic agents with strong activity against solid tumors. Mol Pharmacol 49:772–80.
  • Srivastava A, Maggs JL, Antoine DJ, et al. (2010). Role of reactive metabolites in drug-induced hepatotoxicity. Handb Exp Pharmacol 196:165–94.
  • Volk KJ, Yost RA, Brajter-Toth A. (1992). Electrochemistry on line with mass spectrometry insight into biological redox reactions. Anal Chem 64:21A–6A.
  • Wang L, Chai Y, Tu P, et al. (2011). Formation of [M + 15](+) ions from aromatic aldehydes by use of methanol: in-source aldolization reaction in electrospray ionization mass spectrometry. J Mass Spectrom 46:1203–10.
  • Zanger UM, Schwab M. (2013). Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Therapeut 138:103–41.
  • Zhou S, Chan E, Duan W, et al. (2005). Drug bioactivation, covalent binding to target proteins and toxicity relevance. Drug Metab Rev 37:41–213.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.