Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 50, 2020 - Issue 1
234
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Phenylalanine 4-monooxygenase: the “sulfoxidation polymorphism”

& ORCID Icon
Pages 51-63 | Received 14 May 2019, Accepted 23 Jun 2019, Published online: 12 Jul 2019

References

  • Adachi A, Sarayama Y, Shimizu H, et al. (2005). Thiodiglycolic acid as a possible causative agent of fixed drug eruption provoked only after continuous administration of S-carboxymethyl-l-cysteine: case report and review of reported cases. Br J Dermatol 153:226–8.
  • Adler-Abramovich L, Vaks L, Carny O, et al. (2012). Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria. Nat Chem Biol 8:701–6.
  • Anderson LW, Collins JM, Klecker RW, et al. (2005). Metabolic profile of XK469 (2(R)-[4-(7-chloro-2-quinoxalinyl)oxyphenoxy]-propionic acid; NSC698215) in patients and in vitro: low potential for active or toxic metabolites or for drug–drug interactions. Cancer Chemother Pharmacol 56:351–7.
  • Antypa A, Rebello C, Biernacka A, et al. (2010). Post-translational activation of human phenylalanine 4-monooxygenase from an endobiotic to a xenobiotic enzyme by reactive oxygen and reactive nitrogen species. Xenobiotica 40:319–30.
  • Axelsson S, Jönsson S, Nordgren L. (1975). Cerebrospinal fluid levels of chlorpromazine and it metabolites in schizophrenia. Arch Psychiatr Nervenkr (1970) 221:167–70.
  • Ayesh R, Mitchell SC, Waring RH, et al. (1987). Sodium aurothiomalate toxicity and sulphoxidation capacity in rheumatoid arthritic patients. Br J Rheumatol 26:197–201.
  • Ayesh R, Mitchell SC, Waring RH, Smith RL. (1988). Taste sensitivity to phenylthiourea: lack of correlation with the debrisoquine and carboxymethylcysteine oxidation polymorphisms. Br J Clin Pharmacol 25:664.
  • Barnsley EA. (1964). The metabolism of S-methyl-l-cysteine in the rat. Biochim Biophys Acta 90:24–36.
  • Barnsley EA, Eskin NAM, James SP, Waring RH. (1969). The acetylation of S-alkylcysteines by the rat. Biochem Pharmacol 18:2393–401.
  • Barrett GC. (1990). Structural chemistry. In: Patai S, ed. The chemistry of sulphenic acids and their derivatives. Chichester: John Wiley & Sons, 1–22.
  • Bartholomé K, Lutz P, Bickel H. (1975). Determination of phenylalanine hydroxylase activity in patients with phenylketonuria and hyperphenylalaninemia. Ped Res 9:899–903.
  • Beedham C. (2002). Molybdenum hydroxylases. In: Ioannides C, ed. Enzyme systems that metabolise drugs and other xenobiotics. Chichester: John Wiley & Sons, 147–87.
  • Berk. (1973). Monograph on S-carboxymethyl-l-cysteine. Guildford, Surrey, UK: Berk Pharmaceutical Limited, 19–20.
  • Bernheim F, Bernheim MLC. (1935). The purification of the enzymes which oxidise certain amino acids. J Biol Chem 109:131–40.
  • Bernheim F, Bernheim MLC. (1939a). The effect of titanium on the oxidation of sulfhydryl groups by various tissues. J Biol Chem 127:695–703.
  • Bernheim F, Bernheim MLC. (1939b). Note on the action of manganese and some other metals on the oxidation of certain substances by the liver. J Biol Chem 128:79–82.
  • Blau N, van Spronsen FJ, Levy HL. (2010). Phenylketonuria. Lancet 376:1417–27.
  • Blood ER, Lewis HB. (1941). The metabolism of sulfur. XXIX. S-Carboxymethylcysteine. J Biol Chem 139:407–12.
  • BNF. (2007). British national formulary. 53rd ed. London: BMJ Group/Pharmaceutical Press, 173.
  • Boonyapiwat B, Forbes B, Mitchell SC, Steventon GB. (2008). Phenylalanine 4-monooxygenase and the S-oxidation of S-carboxymethyl-l-cysteine by human cytosolic fractions. Drug Metab Drug Interact 23:261–82.
  • Boonyapiwat B, Forbes B, Steventon GB. (2004). Phenylalanine hydroxylase: possible involvement in the S-oxidation of S-carboxymethyl-l-cysteine. Anal Biochem 335:91–5.
  • Boonyapiwat B, Mitchell SC, Steventon GB. (2011). Recombinant heteromeric phenylalanine monooxygenase and the oxygenation of carbon and sulfur substrates. J Pharm Pharmacol 63:558–64.
  • Boonyapiwat B, Panagopoulos P, Jones H, et al. (2005). Phenylalanine 4-monooxygenase and the s-oxidation of S-carboxymethyl-l-cysteine in HepG2 cells. Drug Metabol Drug Interact 21:1–18.
  • Boonyapiwat B, Panaretou B, Forbes B, et al. (2009). Human phenylalanine monooxygenase and thioether metabolism. J Pharm Pharmacol 61:63–7.
  • Brand E, Block RJ, Kassell B, Cahill GF. (1936). Carboxymethylcysteine metabolism, its implication on therapy in cystinuria and on methionine-cysteine relationship. Proc Soc Exp Biol Med 35:501–6.
  • Brandolini L, Allegretti M, Berdini V, et al. (2003). Carbocysteine lysine salt monohydrate (SCMC-LYS) is a selective scavenger of reactive oxygen intermediates (ROIs). Eur Cytokine Netw 14:20–6.
  • Brockmoller J, Simane ZJ, Roots J. (1988). HPLC-analysis of S-carboxymethylcysteine and its sulphoxide metabolites. Drug Metabol Drug Interact 6:447–58.
  • Bruland N, Wübbeler JH, Steinbüchel A. (2009). 3-Mercaptopropionate dioxygenase, a cysteine dioxygenase homologue, catalyses the initial step of 3-mercaptopropionate catabolism in the 3,3-thiodipropionic acid-degrading bacterium Variovorax paradoxus. J Biol Chem 284:660–72.
  • Cannon JR, Greenamyre JT. (2011). The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 124:225–50.
  • Carr L. (2009). Chpt. 16: metabolic and degenerative disorders of childhood. In: Warner TT, Hammans SR, eds. Practical guide to neurogenetics. Philadelphia: Saunders/Elsevier, 276–309.
  • Castells S, Shirali S. (1971). Daily rhythmic changes in hepatic phenylalanine hydroxylase activity: role of dietary phenylalanine. Life Sci 10:233–9.
  • Chai SC, Bruyere JR, Maroney MJ. (2006). Probes of the catalytic site of cysteine dioxygenase. J Biol Chem 281:15774–9.
  • Charpentier P. (1953). US Patent 2,645,640. Phenothiazine derivatives (14 July 1953) assigned to Société des Usines Chimiques Rhône-Poulenc, Vitry-sur-Seine, Paris, France. 5 pp.
  • Clare NT. (1947). A photosensitized keratitis in young cattle following the use of phenothiazine as an anthelmintic. II. The metabolism of phenothiazine in ruminants. Aust Vet J 23:330–44.
  • Cleary M, Trefz F, Muntau AC, et al. (2013). Fluctuations in phenylalanine concentrations in phenylketonuria: a review of possible relationships with outcomes. Mol Genet Metab 110:418–23.
  • Coulson WF, Hughes CM. (1971). Heterotropic co-operative effects between amino acid substrates of phenylalanine hydroxylase. Biochem J 123:22.
  • Coulson WF, Wardle E, Jepson JB. (1968). Phenylalanine hydroxylase activity towards two substrates simultaneously: enhancement of inhibition by phenylalanine, tryptophan and their derivatives. Biochim Biophys Acta – Enzymol 167:99–109.
  • Daly J, Guroff G. (1968). Production of m-methyltyrosine and p-hydroxymethylphenylalanine from p-methylphenylalanine by phenylalanine hydroxylase. Arch Biochem Biophys 125:136–41.
  • Davies MH, Ngong JM, Pean A, et al. (1995). Sulphoxidation and sulphation capacity in patients with primary biliary cirrhosis. J Hepatol 22:551–60.
  • Davison C, Rozman RS, Smith PK. (1961). Metabolism of bis-beta-chloroethyl sulfide (sulfur mustard gas). Biochem Pharmacol 7:65–74.
  • Dickens F. (1933). CLII. Interaction of halogenacetates and SH compounds. The reaction of halogenacetic acids with glutathione and cysteine. The mechanism of iodoacetate poisoning of glyoxalase. Biochem J 27:1141–51.
  • Disanto AR, Wagner JG. (1972). Pharmacokinetics of highly ionized drugs. II. Methylene blue-absorption, metabolism, and excretion in man and dog after oral administration. J Pharm Sci 61:1086–90.
  • Dominy JE Jr, Hwang J, Stipanuk MH. (2007). Overexpression of cysteine dioxygenase reduces intracellular cysteine and glutathione pools in HepG2/C3A cells. Am J Physiol Endocrinol Metab 293:E62–E69.
  • Edmands WMB, Gooderham NJ, Holmes E, Mitchell SC. (2013). S-Methyl-l-cysteine sulphoxide: the Cinderella phytochemical? Toxicol Res 2:11–22.
  • Emery P, Bradley H, Arthur V, Tunn E, et al. (1992). Genetic factors influencing the outcome of early arthritis – the role of sulphoxidation status. Br J Rheumatol 31:449–51.
  • Emery P, Bradley H, Gough A, et al. (1992). Increased prevalence of poor sulphoxidation in patients with rheumatoid arthritis: effect of changes in the acute phase response and second-line drug treatment. Ann Rheum Dis 51:318–20.
  • Emery P, Panayi GS, Huston G, et al. (1984). d-Penicillamine induced toxicity in rheumatoid arthritis: the role of sulphoxidation status and HLA-DR3. J Rheumatol 11:626–32.
  • Ewetz L, Sorbo B. (1966). Characteristic of the cysteinesulfinate-forming enzyme system in rat liver. Biochim Biophys Acta 128:296–305.
  • Figura M, Kuśmierska K, Bucior E, et al. (2018). Serum amino acid profile in patients with Parkinson’s disease. PLoS ONE 13:e0191670.
  • Flury F, Wieland H. (1921). Über Kampfgasveriftungen. VII. Die pharmakologische Wirkung des Dichloräthylsulfids. Zeit Ges Expt Med 13:367–483.
  • Fox JG, Boulton-Jones JM, Madhok R, Waring RH. (1994). Does poor hepatic sulphoxidation predispose to idiopathic membranous nephropathy? Clin Nephrol 42:65–6.
  • Friedman PA, Fisher DB, Kang ES, Kaufman S. (1973). Detection of hepatic phenylalanine 4-hydroxylase in classical phenylketonuria. Proc Natl Acad Sci USA 70:552–6.
  • Friedman PA, Kaufman S, Kang ES. (1972). Nature of the molecular defect in phenylketonuria and hyperphenylalaninaemia. Nature 240:157–9.
  • Gazit E. (2016). Metabolite amyloids: a new paradigm for inborn error of metabolism disorders. J Inherit Metab Dis 39:483–8.
  • Gordon C, Bradley H, Waring RH, Emery P. (1992). Abnormal sulphur oxidation in systemic lupus erythematosus. Lancet 339:25–6.
  • Goreish AH, Bednar S, Jones H, et al. (2004). Phenylalanine 4-monooxygenase and the S-oxidation of S-carboxymethyl-l-cysteine. Drug Metabol Drug Interact 20:159–74.
  • Gottschalk LA, Dinovo E, Biener R, Nandi BR. (1978). Plasma concentrations of thioridazine metabolites and ECG abnormalities. J Pharm Sci 67:155–7.
  • Green DE, Forrest IS. (1966). In vivo metabolism of chlorpromazine. Can Psychiatr Assoc J 11:299–302.
  • Gregory WL, James OFW, Turner I, et al. (1993). Re-evaluation of the metabolism of carbocisteine in a British white population. Pharmacogenetics 3:270–4.
  • Guroff G, Kondo K, Daly J. (1966). The production of meta-chlorotyrosine from para-chlorophenylalanine by phenylalanine hydroxylase. Biochem Biophys Res Commun 25:622–8.
  • Haley CS, Idle JR, Mitchell SC, et al. (1984). Heteroatom polymorphic drug oxidation – sulphoxidation. Br J Clin Pharmacol 18:285–6.
  • Haley CS, Waring RH, Mitchell SC, et al. (1985). Lack of congruence of S-carboxymethyl-l-cysteine sulphoxidation and debrisoquine 4-hydroxylation in a Caucasian population. Xenobiotica 15:445–50.
  • Hasimun P, Sukandar EY, Adnyana IK, Tjahjono DH. (2011). Synergistic effect of curcuminoid and S-methyl cysteine in regulation of cholesterol homeostasis. Int J Pharmacol 7:268–72.
  • Hirayama M, Tsunoda M, Yamamoto M, et al. (2016). Serum tyrosine-to-phenylalanine ratio is low in Parkinson’s disease. J Parkinsons Dis 6:423–31.
  • Hofmann U, Eichelbaum M, Seefried S, Meese CO. (1991). Identification of thiodiglycolic acid, thiodiglycolic acid sulfoxide, and (3-carboxymethylthio)lactic acid as major human biotransformation products of S-carboxymethyl-l-cysteine. Drug Metab Dispos 19:222–6.
  • Hogg DR. (1990). Chemistry of sulphenic acids and esters. In: Patai S, ed. The chemistry of sulphenic acids and their derivatives. Chichester: John Wiley & Sons, 361–402.
  • Hooper C, Calvert J. (2008). The role of S-carboxymethylcysteine (carbocisteine) in the management of chronic obstructive pulmonary disease. Int J COPD 3:659–69.
  • James SP, Jeffery DA, Waring RH, Wood PB. (1968). Some metabolites of 1-bromobutane in the rabbit and the rat. Biochem J 109:727–36.
  • James SP, Needham D. (1973). Some metabolites of S-pentyl-l-cysteine in the rabbit and other species. Xenobiotica 3:207–18.
  • Jones AR, Walsh DA. (1980). The fate of S-propylcysteine in the rat. Xenobiotica 10:827–34.
  • Joseph CA, Maroney MJ. (2007). Cysteine dioxygenase: structure and function. Chem Commun 3338–49.
  • Joullié M, Laurre M, Maillard G, Muller P. (1961). Medicament soufre, utilisable en particulier en oto-rhino-laryngologie et an pneumologie. French Patent (Fr. Demande) FR M226 to Recherches et Propagande Scientifiques (February 27, 1961).
  • Kalia LV, Lang AE. (2015). Parkinson’s disease. Lancet 386:896–912.
  • Kaufman S, Fisher DB. (1974). Pterin-requiring aromatic amino acid hydroxylases. H. The development and diurnal variation of phenylalanine hydroxylase. In: Hayaishi O, ed. Molecular mechanisms of oxygen activation. New York: Academic Press, 326–7.
  • Kaufman S, Mason K. (1982a). Specificity of amino acids as activators and substrates for phenylalanine hydroxylase. J Biol Chem 257:14667–78.
  • Kaufman S, Mason K. (1982b). Novel amino acid substrates and activators for rat liver phenylalanine hydroxylase. In: Nozaki M, Yamamoto S, Ishimura Y, et al., eds. Oxygenases and oxygen metabolism: a symposium in honor of Osamu Hayaishi. New York: Academic Press, 305–20.
  • Kaufman S. (1961). The enzymic conversion of 4-fluorophenylalanine to tyrosine. Biochim Biophys Acta 51:619–21.
  • Kaufman S. (1962). Phenylalanine hydroxylase: TPNH + H++phenylalanine + O2 → TPN++H2O + tyrosine. Methods Enzymol 5:809–16.
  • Khan S, Mitchell SC, Steventon GB. (2004). Lack of congruence between cysteine dioxygenase activity and S-carboxymethyl-l-cysteine S-oxidation activity in rat cytosol. J Pharm Pharmacol 56:993–1000.
  • Kumar D, Thiel W, de Visser SP. (2011). Theoretical study on the mechanism of the oxygen activation process in cysteine dioxygenase enzymes. J Am Chem Soc 133:3869–82.
  • Kupfer A, Gerber F, Hanser E, et al. (1991). Phenocopy of extensive carbocysteine metabolism by acetyl cysteine co-administration in poor metaboliser subjects. Experientia 47:A29.
  • Kupfer A, Idle JR. (1990). False positives with current carbocisteine protocol for sulphoxidation phenotyping. Lancet 335:1107.
  • Langston JW, Ballard P, Tetrud JW, Irwin I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analogue synthesis. Science 219:979–80.
  • Leung JH. (2008). Cysteine dioxygenase: the importance of key residues and insight into the mechanism of the meter center [master’s thesis]. Paper 148. University of Massachusetts, Amherst, USA. 44 pp. Available from: http://scholarworks.umass.edu/theses/148 [last accessed 4 Apr 2019].
  • Lipton MA, Gordon R, Guroff G, Udenfriend S. (1967). p-Chlorophenylalanine-induced chemical manifestations of phenylketonuria in rats. Science 156:248–50.
  • Lombardini JB, Singer TP, Boyer PD. (1969). Cystein oxygenase. II. Studies on the mechanism of the reaction with 18oxygen. J Biol Chem 244:1172–5.
  • Lopéz-Muñoz F, Alamo C, Cuenca F, et al. (2005). History of the discovery and clinical introduction of chlorpromazine. Ann Clin Psychiatry 17:113–35.
  • Luan H, Liu L-F, Meng N, et al. (2015a). LC-MS-Based urinary metabolite signatures in idiopathic Parkinson’s disease. J Proteome Res 14:467–78.
  • Luan H, Liu L-F, Tang Z, et al. (2015b). Comprehensive urinary metabolomics profiling and identification of potential noninvasive marker for idiopathic Parkinson’s disease. Sci Rep 14:13888.
  • Macciò A, Madeddu C, Panzone F, Mantovani G. (2009). Carbocysteine: clinical experience and new perspectives in the treatment of chronic inflammatory diseases. Expert Opin Pharmacother 10:693–703.
  • Madhok R, Capell HA, Waring RH. (1987). Does sulphoxidation state predict gold toxicity in rheumatoid arthritis? Br Med J (Clin Res Ed) 294:483.
  • Madhok R, Zoma A, Torley HI, et al. (1990). The relationship of sulphoxidation status to efficiency and toxicity of penicillamine in the treatment of rheumatoid arthritis. Arthritis Rheum 33:574–7.
  • McFadden SA. (1996). Phenotypic variation in xenobiotic metabolism and adverse environmental exposure: focus on sulfur-dependent detoxification pathways. Toxicology 111:43–65.
  • Medes G. (1939). Metabolism of sulphur: oxidation of the sulphur-containing amino-acids by enzymes from the liver of the albino rat. Biochem J 33:1559–69.
  • Meese CO, Fischer C, Kupfer A, et al. (1991). Identification of the “major” polymorphic carbocysteine metabolite as S-(carboxymethylthio)-l-cysteine. Biochem Pharmacol 42:R13–6.
  • Meese CO, Specht D, Hofmann U, et al. (1989). An ex vivo carbon-13 NMR study on the metabolism of S-carboxymethyl-l-cysteine in man – a reinvestigation. Eur J Clin Pharmacol 36:A151.
  • Meyer JW, Woggon B, Baumann P, Meyer UA. (1990). Clinical implications of slow sulphoxidation of thioridazine in a poor metabolizer of the debrisoquine type. Eur J Clin Pharmacol 39:613–4.
  • Michaelis L, Schubert MP. (1934). The reaction of iodoacetic acid on mercaptans and amines. J Biol Chem 106:331–41.
  • Mitchell SC. (1983). Interindividual variation in oxidation at xenobiotic sulphur centres. In: Mitchell SC, Waring RH, eds. Sulphur in Xenobiotics. Proceedings of the Symposium held at Birmingham University; 1983 Sep 22; Birmingham: Birmingham University Press, 107–30.
  • Mitchell SC, Smith RL, Waring RH, Aldington GF. (1984a). The metabolism of S-methyl-l-cysteine in man. Xenobiotica 14:767–79.
  • Mitchell SC, Steventon GB. (2006a). Carbocysteine therapy in older people with chronic obstructive pulmonary disease. J Am Geriatr Soc 54:1792–3.
  • Mitchell SC, Steventon GB. (2006b). Drug metabolism and toxicity: hijacking enzymes of intermediary metabolism. Curr Top Toxicol 3:57–63.
  • Mitchell SC, Steventon GB. (2012). S-Carboxymethyl-l-cysteine. Drug Metab Rev 44:129–47.
  • Mitchell SC, Waring RH. (1985). The early history of xenobiotic sulfoxidation. Drug Metab Rev 16:255–84.
  • Mitchell SC, Waring RH. (1989a). The deficiency of sulfoxidation of S-carboxymethyl-l-cysteine. Pharmacol Ther 43:237–49.
  • Mitchell SC, Waring RH. (1989b). S-Oxygenases, III: human pharmacogenetics. In: Damani LA, ed. Sulphur-containing drugs and related organic compounds. Chemistry, biochemistry and toxicology. Vol. 2A. Chichester: Ellis Horwood Ltd., 101–19.
  • Mitchell SC, Waring RH, Haley CS, et al. (1984b). Genetic aspects of polymodally distributed sulphoxidation of S-carboxymethyl-l-cysteine in man. Br J Clin Pharmacol 18:507–21.
  • Mitchell SC, Waring RH, Haley CS, et al. (1984c). Heteroatom polymorphic drug oxidation – sulphoxidation. 9th European Workshop on Drug Metabolism. Abstr A.43; 1984 Jun 11–15; Pont-á-Mousson.
  • Mitchell SC, Waring RH, Land D, Thorpe WV. (1987). Odorous urine following asparagus ingestion in man. Experientia 43:382–3.
  • Mitchell SC, Waring RH, Steventon GB. (1992). Variation in the S-oxidation of cysteine derivatives. In: Kalow W, ed. Pharmacogenetics of drug metabolism. Oxford: Pergamon Press, 367–82.
  • Mitchell SC, Waring RH, Wilson VL, et al. (1986). Sulphoxidation of S-carboxymethyl-l-cysteine in the Rhesus monkey (Macaca mulatta), cynomologus monkey (Macaca fascicularis), African green monkey (Cercopithecus aethiops) and the marmoset (Callithrix jacchus). Comp Biochem Pharmacol 84B:143–4.
  • Murphy EA, Madhok R, Capell HA, et al. (1993). Sulphoxidation status in rheumatoid arthritis. Ann Rheum Dis 52:168.
  • PAH-BIOPKU. (2019). PAHvdb: phenylalanine hydroxylase gene locus-specific database. Available from: www.biopku.org/home/pah.asp [last accessed 22 Feb 2019].
  • Panagopoulos P, Mitchell SC, Steventon GB. (2015). S-carboxymethyl-l-cysteine and it (R/S)-S-oxides in beagle dog plasma and hepatic cytosol. Xenobiotica 45:1047–53.
  • Patel NG, Iliadou C, Boonyapiwat B, et al. (2008). Enzyme kinetic and molecular modelling studies of sulphur-containing substrates of phenylalanine 4-monooxygenase. J Enzyme Inhib Med Chem 23:958–63.
  • Phillips RS, Parniak MA, Kaufman S. (1984). The interaction of aromatic amino acids with rat liver phenylalanine hydroxylase. J Biol Chem 259:271–7.
  • Populaire P, Terlain B, Pascal S, et al. (1969). Résorption, excrétion et biotransformation chez le chien et chez le lapin, biotransformation chez l’homme de l’acide (méthyl-10-phénothiazinyl-2) acétique (acide métiazinique – 16091 RP). Arzneim Forsch 19:1214–21.
  • Rajagopalan KV. (1980). Xanthine oxidase and aldehyde oxidase. In: Jakoby WB, ed. Enzymatic basis of detoxication. Vol. 1. London: Academic Press, 295–309.
  • Ramírez J, Kim TW, Liu W, et al. (2014). A pharmacogenetic study of aldehyde oxidase I in patients treated with XK469. Pharmacogenet Genomics 24:129–32.
  • Rawlings L, Turton L, Mitchell SC, Steventon GB. (2019). Drug S-oxidation and phenylalanine hydroxylase: a biomarker for neurodegenerative susceptibility in Parkinson’s disease and amyotrophic lateral sclerosis. Drug Metab Pers Med [Epub ahead of print]. doi: 10.1515/dmpt-2018-0038
  • Rogers KM, Barnsley EA. (1977). The metabolism of S-carboxyalkylcysteines in man. Xenobiotica 7:409–14.
  • Sakalis G, Chan TL, Gershon S, Park S. (1973). The possible role of metabolites in therapeutic response to chlorpromazine treatment. Psychopharmacologia 32:279–84.
  • Sakurai Y, Nakahara T, Takahashi R. (1975). Prediction of response to chlorpromazine treatment in schizophrenics. Psychopharmacologia 44:195–203.
  • Salzman NP, Moran NC, Brodie BB. (1955). Identification and pharmacological properties of a major metabolite of chlorpromazine. Nature 176:1122–3.
  • Scriver CR, Kaufman S. (2001). Hyperphenylalaninemias: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly WS, et al., eds. The metabolic and molecular bases of inherited diseases. 8th ed. New York: McGraw-Hill, 1667–72.
  • Seideman P, Ayesh R. (1994). Reduced sulphoxidation capacity in d-penicillamine induced myasthenia gravis. Clin Rheumatol 13:435–7.
  • Siegmund HU, Kaufman S. (1991). Hydroxylation of 4-methylphenylalanine by rat liver phenylalanine hydroxylase. J Biol Chem 266:2903–10.
  • Sirimanne SR. (1988). Synthesis and enzymatic studies of novel analogs of phenylalanine hydroxylase and dopamine beta hydroxylase [Ph.D. dissertation]. Atlanta (GA): School of Chemistry, Georgia Institute of Technology.
  • Sklan NM, Barnsley EA. (1968). The metabolism of S-methyl-l-cysteine. Biochem J 107:217–23.
  • Soerbo B, Ewetz L. (1965). The enzymatic oxidation of cysteine to cysteinesulfinate in rat liver. Biochem Biophys Res Commun 18:359–63.
  • Somani SM, Babu SR. (1989). Toxicodynamics of sulphur mustard. Int J Clin Pharmacol Ther Toxicol 27:419–35.
  • Staffeldt B, Brockmoller J, Roots I. (1990). Evaluation of possible polymorphisms in sulfoxidation of carbocystein analysed by HPLC-methods. Eur J Pharmacol 183:627–8.
  • Staffeldt B, Brockmoller J, Roots I. (1991). Determination of S-carboxymethyl-l-cysteine and some of its metabolites in urine and serum by high-performance liquid chromatography using fluorescent pre-column labelling. J Chromatogr Biomed Appl 571:133–47.
  • Stekol JA. (1938). Studies on the mercapturic acid synthesis in animals. IX. The conversion of benzoyl chloride and S-benzyl-cysteine into benzylmercapturic acid in the organism of the dog, rabbit, and rat. J Biol Chem 124:129–33.
  • Steventon GB. (1996). Sulfur-carbon compounds. In: Mitchell SC, ed. Biological interactions of sulfur compounds. London: Taylor & Francis, 77–112.
  • Steventon GB. (1999). Diurnal variation in the metabolism of S-carboxymethyl-l-cysteine in humans. Drug Metab Dispos 27:1092–7.
  • Steventon GB. (1999a). Diurnal variation in S-oxidation of S-carboxymethyl-l-cysteine in man. Biochem Soc Trans 27:A121.
  • Steventon GB, Goreish AH, Bednar S, et al. (2004). Phenylalanine hydroxylase and the S-oxidation of l-methionine in the rat. J Inherit Metab Dis. 27:31.
  • Steventon GB, Heafield MT, Sturman S, et al. (1990). Xenobiotic metabolism in Alzheimer’s disease. Neurology 40:1095–8.
  • Steventon GB, Heafield MTE, Waring RH, Williams AC. (1989). Xenobiotic metabolism in Parkinson’s disease. Neurology 39:883–7.
  • Steventon GB, Khan S, Mitchell SC. (2018). Comparison of the sulfur-oxygenation of cysteine and S-carboxymethyl-l-cysteine in human hepatic cytosol and the role of cysteine dioxygenase. J Pharm Pharmacol 70:1069–77.
  • Steventon GB, Mitchell SC. (2006a). Efficacy of S-carboxymethyl-l-cysteine for otitis media with effusions. Ear Nose Throat J 85:296–7.
  • Steventon GB, Mitchell SC. (2006b). Non-classical drug metabolising enzymes. Lett Drug Design Discov 3:405–12.
  • Steventon GB, Mitchell SC. (2006c). Thiodiglycolic acid and dermatological reactions following S-carboxymethyl-l-cysteine administration. Br J Dermatol 154:386–7.
  • Steventon GB, Mitchell SC. (2009a). Mouse recombinant phenylalanine monooxygenase and the S-oxygenation of thioether substrates. Biochem Mol Toxicol 23:119–24.
  • Steventon GB, Mitchell SC. (2009b). Measurement of phenylalanine monooxygenase (PAH) activities. Curr Protoc Toxicol 41:4.29.1–11.
  • Steventon GB, Mitchell SC. (2009c). Phenylalanine 4-monooxygenase and the role of endobiotic metabolism enzymes in xenobiotic biotransformation. Expert Opin Drug Metab Toxicol 5:1–9.
  • Steventon GB, Mitchell SC. (2018). Phenylalanine hydroxylase: a biomarker of disease susceptibility in Parkinson’s disease and Amyotrophic lateral sclerosis. Med Hypoth 118/121:29–33/88.
  • Steventon GB, Mitchell SC. (2019). The S-oxidation of S-carboxymethyl-l-cysteine in hepatic cytosolic fractions from BTBR and phenylketonuria enu1 and enu2 mice. Xenobiotica 49:495–502.
  • Steventon GB, Mitchell SC, Angulo S, Barbas C. (2012). An investigation into possible xenobiotic-endobiotic interrelationships involving the amino acid drug S-carboxymethyl-l-cysteine and plasma amino acids in humans. Amino Acids 42:1967–73.
  • Steventon GB, Mitchell SC, Pérez B, et al. (2009). The activity of wild type and mutant phenylalanine hydroxylase with respect to the C-oxidation of phenylalanine and the S-oxidation of S-carboxymethyl-l-cysteine. Mol Genet Metab 96:27–31.
  • Steventon GB, Sturman S, Waring RH, Williams AC. (2001). A review of xenobiotic metabolism enzymes in Parkinson’s and motor neurone disease. Drug Metab Drug Interact 18:79–98.
  • Steventon GB, Waring RH, Williams AC. (1990). Pesticide toxicity and motor neuron disease. J Neurol Neurosurg Psychiatry 53:621–2.
  • Steventon GB, Waring RH, Williams AC. (2003). An investigation into the inter-relationships of sulphur xeno-biotransformation pathways in Parkinson’s and motor neurone diseases. Drug Metab Drug Interact 19:223–40.
  • Steventon GB, Williams AC, Waring RH, et al. (1988). Xenobiotic metabolism in motorneuron disease. Lancet II 332:644–7.
  • Stipanuk MH, Simmons CR, Karplus PA, Dominy JE. (2011). Thiol dioxygenases: unique families of cupin proteins. Amino Acids 41:91–102.
  • Stipanuk MH, Ueki I, Dominy JE, Jr, et al. (2009). Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 37:55–63.
  • Stokka AJ, Flatmark T. (2002). 3-(2-Thienyl)-l-alanine as a competitive substrate analogue and activator of human phenylalanine hydroxylase. In: Milstien S, Kapatos G, Levine RA, Shane B, eds. Chemistry and biology of pteridines and folates. Proceedings of the 12th International Symposium on Pteridines and Folates; 2001 Jun 17–22; National Institutes of Health, Bethesda, Maryland. London: Kluwer Academic Publishers, 109–13.
  • Tarver H, Schmidt CLA. (1939). The conversion of methionine to cysteine: experiments with radioactive sulfur. J Biol Chem 130:67–80.
  • Taylor G, Houston JB, Shaffer J, Mawer G. (1983). Pharmacokinetics of promethazine and its sulphoxide metabolite after intravenous and oral administration to man. Br J Clin Pharmacol 15:287–93.
  • Taylor KL, Ziegler DM. (1987). Studies on substrate specificity of the hog liver flavin-containing monooxygenase. Anionic organic sulfur compounds. Biochem Pharmacol 36:141–6.
  • Tchesnokov EP, Fellner M, Siakkou E, et al. (2015). The cysteine dioxygenase homologue from Pseudomonas aeruginosa is a 3-mercaptoproponate dioxygenase. J Biol Chem 290:24424–37.
  • Thomas S, Senthilkumar GP, Sivaraman K, et al. (2015). Effect of S-methyl-l-cysteine on oxidative stress, inflammation and insulin resistance in male Wistar rats fed with high fructose diet. Iran J Med Sci 40:45–50.
  • Tipton KF. (1995). Might environmental factors contribute to neurodegenerative diseases? Biochem Soc Trans 23:429–35.
  • Turnbull LB, Teng L, Kinzie JM, et al. (1978). Excretion and biotransformation of carboxymethyl-cysteine in rat, dog, monkey and man. Xenobiotica 8:621–8.
  • Underhill FP, Closson OE. (1905). The physiological behaviour of methylene blue and methylene azure: a contribution to the study of the oxidation and reduction processes in the animal organism. Am J Physiol 13:358–71.
  • Vandenbossche E, Lucas C, Mistry L, et al. (2016). Phenylalanine monooxygenase and the sulfur oxygenation of S-carboxymethyl-l-cysteine in mice. Xenobiotica 46:379–84.
  • Wapnir RA, Moak GS. (1979). β2 beta-2-Thienyl-dl-alanine as an inhibitor of phenylalanine hydroxylase and phenylalanine intestinal transport. Biochem J 177:347–52.
  • Waring RH. (1978). The metabolism of S-carboxymethylcysteine in rodents, marmosets and humans. Xenobiotica 8:265–70.
  • Waring RH. (1980). Variation in human metabolism of S-carboxymethylcysteine. Eur J Drug Metab Pharmacokinet 5:49–52.
  • Waring RH. (1989). Mucolytic agents: cysteine derivatives. In: Damani LA, ed. Sulphur-containing drugs and related organic compounds. Chemistry, biochemistry and toxicology. Vol. 3A. Chichester: Ellis Horwood Ltd., 87–108.
  • Waring RH, Harris RM, Steventon GB, Mitchell SC. (2003). Degradation to sulphate of S-methyl-l-cysteine sulphoxide and S-carboxymethyl-l-cysteine sulphoxide in man. Drug Metabol Drug Interact 19:241–55.
  • Waring RH, Mitchell SC, Idle JR, Smith RL. (1981). Genetically determined impaired drug sulphoxidation. Lancet 317:778.
  • Waring RH, Mitchell SC, O’Gorman J, Fraser M. (1986). Cytosolic sulphoxidation of S-carboxymethyl-l-cysteine in mammals. Biochem Pharmacol 35:2999–3002.
  • Waring RH, Mitchell SC, Shah RR, et al. (1982). Polymorphic sulphoxidation of S-carboxymethyl-l-cysteine in man. Biochem Pharmacol 31:3151–4.
  • Wassef R, Haenold R, Hansel A, et al. (2007). Methionine sulfoxide reductase A and a dietary supplement S-methyl-l-cysteine prevent Parkinson’s-like symptoms. J Neurosci 27:12808–16.
  • Watson RGP, Olomu A, Clements D, et al. (1988). A proposed mechanism for chlorpromazine jaundice – defective hepatic sulphoxidation combined with rapid hydroxylation. J Hepatol 7:72–8.
  • Wenning L, Stöveken N, Wubbeler JH, Steinbüchel A. (2016). Substrate and cofactor range differences of two cysteine dioxygenases from Ralstonia eutropha H16. Appl Environ Microbiol 82:910–21.
  • West NR, Rosenblum MP, Sprince H, et al. (1974). Assay procedures for thioridazine, trifluoperazine, and their sulfoxides and determination of urinary excretion of these compounds in mental patients. J Pharmaceut Sci 63:417–20.
  • Wiles DH, Kolakowska T, McNeilly AS, et al. (1976). Clinical significance of plasma chlorpromazine levels. I. Plasma levels of the drug, some of its metabolites and prolactin during acute treatment. Psychol Med 6:407–15.
  • Williams A, Steventon G, Sturman S, Waring R. (1991). Xenobiotic enzyme profiles and Parkinson’s disease. Neurology 41: 29–32.
  • Williams AC, Steventon GB, Sturman S, Waring RH. (1991). Hereditary variation in liver enzymes involved with detoxification and neurodegenerative disease. J Inher Metab Dis 14:431–5.
  • Williams RT. (1959). Detoxication mechanisms: the metabolism and detoxication of drugs, toxic substances and other organic compounds. London: Chapman and Hall, 666–7.
  • Yamaguchi K, Hosokawa Y. (1987). Cysteine dioxygenase. In: Jakoby WB, Griffiths OW, eds. Sulfur and sulfur amino acids: methods in enzymology. Vol. 143. London: Academic Press, 395–403.
  • Yasuda H, Yamaya M, Sasaki T, et al. (2006). Carbocisteine inhibits rhinovirus infection in human tracheal epithelial cells. Eur Respir J 28:51–8.
  • Zeliger HI. (2013). Exposure to lipophilic chemicals as a cause of neurological impairments, neurodevelopmental disorders and neurodegenerative diseases. Interdiscip Toxicol 6:103–10.
  • Ziegler DM. (1980). Microsomal flavin-containing monooxygenase: oxygenation of nucleophilic nitrogen and sulfur compounds. In: Jakoby WB, ed. Enzymatic basis of detoxication. Vol. 1. London: Academic Press, 201–27.
  • Ziegler DM. (1982). Functional groups bearing sulfur. In: Jakoby WB, Bend JR, Caldwell J, eds. Metabolic basis of detoxication: metabolism of functional groups. London: Academic Press, 171–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.