Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 50, 2020 - Issue 9
744
Views
5
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

In vitro–in vivo extrapolation of metabolic clearance using human liver microsomes: factors showing variability and their normalization

, , &
Pages 1064-1075 | Received 28 Dec 2019, Accepted 02 Mar 2020, Published online: 12 Mar 2020

References

  • Austin RP, Barton P, Cockroft SL, et al. (2002). The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties. Drug Metab Dispos 30:1497–503.
  • Balson KR, Morgan DJ, Richmond BH, et al. (1996). Pharmacokinetics of midazolam in Vietnamese subjects. J Gastroenterol Hepatol 11:1177–80.
  • Bancke LL, Dworak HA, Rodvold KA, et al. (2015). Pharmacokinetics, pharmacodynamics, and safety of USL261, a midazolam formulation optimized for intranasal delivery, in a randomized study with healthy volunteers. Epilepsia 56:1723–31.
  • Barter ZE, Bayliss MK, Beaune PH, et al. (2007). Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Curr Drug Metab 8:33–45.
  • Barter ZE, Chowdry JE, Harlow JR, et al. (2008). Covariation of human microsomal protein per gram of liver with age: absence of influence of operator and sample storage may justify interlaboratory data pooling. Drug Metab Dispos 36:2405–9.
  • Beaumont K, Gardner I, Chapman K, et al. (2011). Toward an integrated human clearance prediction strategy that minimizes animal use. J Pharm Sci 100:4518–35.
  • Bowman CM, Benet LZ. (2019). In vitro-in vivo extrapolation and hepatic clearance-dependent underprediction. J Pharm Sci 108:2500–4.
  • Boxenbaum H. (1980). Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: extrapolation of data to benzodiazepines and phenytoin. J Pharmacokinet Biopharm 8:165–76.
  • Breimer LT, Burm AG, Danhof M, et al. (1991). Pharmacokinetic-pharmacodynamic modelling of the interaction between flumazenil and midazolam in volunteers by aperiodic EEG analysis. Clin Pharmacokinet 20:497–508.
  • Busby WF, Jr., Ackermann JM, Crespi CL. (1999). Effect of methanol, ethanol, dimethyl sulfoxide, and acetonitrile on in vitro activities of cDNA-expressed human cytochromes P-450. Drug Metab Dispos 27:246–9.
  • Chen Y, Liu L, Nguyen K, Fretland AJ. (2011). Utility of intersystem extrapolation factors in early reaction phenotyping and the quantitative extrapolation of human liver microsomal intrinsic clearance using recombinant cytochromes P450. Drug Metab Dispos 39:373–82.
  • Chiba M, Ishii Y, Sugiyama Y. (2009). Prediction of hepatic clearance in human from in vitro data for successful drug development. AAPS J 11:262–76.
  • Clausen TG, Wolff J, Hansen PB, et al. (1988). Pharmacokinetics of midazolam and alpha-hydroxy-midazolam following rectal and intravenous administration. Br J Clin Pharmacol 25:457–63.
  • Davies B, Morris T. (1993). Physiological parameters in laboratory animals and humans. Pharm Res 10:1093–5.
  • De Wildt SN, Kearns GL, Leeder JS, Van Den Anker JN. (1999). Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet 37:485–505.
  • Debbas NM, Jackson SH, Shah K, et al. (1986). The bioavailability and pharmacokinetics of slow release nifedipine during chronic dosing in volunteers. Br J Clin Pharmacol 21:385–8.
  • Eeckhoudt SL, Desager JP, Robert AR, et al. (2001). Midazolam and cortisol metabolism before and after CYP3A induction in humans. Int J Clin Pharmacol Ther 39:293–9.
  • Emoto C, Iwasaki K. (2007). Approach to predict the contribution of cytochrome P450 enzymes to drug metabolism in the early drug-discovery stage: the effect of the expression of cytochrome b(5) with recombinant P450 enzymes. Xenobiotica 37:986–99.
  • Farkas D, Oleson LE, Zhao Y, et al. (2007). Pomegranate juice does not impair clearance of oral or intravenous midazolam, a probe for cytochrome P450-3A activity: comparison with grapefruit juice. J Clin Pharmacol 47:286–94.
  • Foster TS, Hamann SR, Richards VR, et al. (1983). Nifedipine kinetics and bioavailability after single intravenous and oral doses in normal subjects. J Clin Pharmacol 23:161–70.
  • Foster JA, Houston JB, Hallifax D. (2011). Comparison of intrinsic clearances in human liver microsomes and suspended hepatocytes from the same donor livers: clearance-dependent relationship and implications for prediction of in vivo clearance. Xenobiotica 41:124–36.
  • Galetin A, Clarke SE, Houston JB. (2003). Multisite kinetic analysis of interactions between prototypical CYP3A4 subgroup substrates: midazolam, testosterone, and nifedipine. Drug Metab Dispos 31:1108–16.
  • Garg V, Chandorkar G, Farmer HF, et al. (2012). Effect of telaprevir on the pharmacokinetics of midazolam and digoxin. J Clin Pharmacol 52:1566–73.
  • Gertz M, Harrison A, Houston JB, Galetin A. (2010). Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos 38:1147–58.
  • Greenblatt DJ, Abernethy DR, Locniskar A, et al. (1984). Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 61:27–35.
  • Greenblatt DJ, Ehrenberg BL, Gunderman J, et al. (1989). Pharmacokinetic and electroencephalographic study of intravenous diazepam, midazolam, and placebo. Clin Pharmacol Ther 45:356–65.
  • Greenblatt DJ, Locniskar A, Scavone JM, et al. (1986). Absence of interaction of cimetidine and ranitidine with intravenous and oral midazolam. Anesth Analg 65:176–80.
  • Greenblatt DJ, Pfeifer HJ, Ochs HR, et al. (1977). Pharmacokinetics of quinidine in humans after intravenous, intramuscular and oral administration. J Pharmacol Exp Ther 202:365–78.
  • Gudmundsdottir H, Sigurjonsdottir JF, Masson M, et al. (2001). Intranasal administration of midazolam in a cyclodextrin based formulation: bioavailability and clinical evaluation in humans. Pharmazie 56:963–6.
  • Hallifax D, Foster JA, Houston JB. (2010). Prediction of human metabolic clearance from in vitro systems: retrospective analysis and prospective view. Pharm Res 27:2150–61.
  • Hallifax D, Houston JB. (2006). Binding of drugs to hepatic microsomes: comment and assessment of current prediction methodology with recommendation for improvement. Drug Metab Dispos 34:724–6.
  • Hardmeier M, Zimmermann R, Ruegg S, et al. (2012). Intranasal midazolam: pharmacokinetics and pharmacodynamics assessed by quantitative EEG in healthy volunteers. Clin Pharmacol Ther 91:856–62.
  • Heinemann A, Wischhusen F, Puschel K, Rogiers X. (1999). Standard liver volume in the Caucasian population. Liver Transpl Surg 5:366–8.
  • Heizmann P, Eckert M, Ziegler WH. (1983). Pharmacokinetics and bioavailability of midazolam in man. Br J Clin Pharmacol 16: 43S–9S.
  • Hoglund P, Nilsson LG. (1988). Physiological disposition of intravenously administered 14C-labeled diltiazem in healthy volunteers. Ther Drug Monit 10:401–9.
  • Holtbecker N, Fromm MF, Kroemer HK, et al. (1996). The nifedipine-rifampin interaction. Evidence for induction of gut wall metabolism. Drug Metab Dispos 24:1121–3.
  • Ibrahim A, Karim A, Feldman J, Kharasch E. (2002). The influence of parecoxib, a parenteral cyclooxygenase-2 specific inhibitor, on the pharmacokinetics and clinical effects of midazolam. Anesth Analg 95:667–73.
  • Ito K, Houston JB. (2004). Comparison of the use of liver models for predicting drug clearance using in vitro kinetic data from hepatic microsomes and isolated hepatocytes. Pharm Res 21:785–92.
  • Ito K, Houston JB. (2005). Prediction of human drug clearance from in vitro and preclinical data using physiologically based and empirical approaches. Pharm Res 22:103–12.
  • Iwatsubo T, Hirota N, Ooie T, et al. (1997). Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol Ther 73:147–71.
  • Karlsson FH, Bouchene S, Hilgendorf C, et al. (2013). Utility of in vitro systems and preclinical data for the prediction of human intestinal first-pass metabolism during drug discovery and preclinical development. Drug Metab Dispos 41:2033–46.
  • Kharasch ED, Walker A, Isoherranen N, et al. (2007). Influence of CYP3A5 genotype on the pharmacokinetics and pharmacodynamics of the cytochrome P4503A probes alfentanil and midazolam. Clin Pharmacol Ther 82:410–26.
  • Kleinbloesem CH, Van Brummelen P, Van De Linde JA, et al. (1984). Nifedipine: kinetics and dynamics in healthy subjects. Clin Pharmacol Ther 35:742–9.
  • Kudo T, Goda H, Yokosuka Y, et al. (2017). Estimation of the contribution of CYP2C8 and CYP3A4 in repaglinide metabolism by human liver microsomes under various buffer conditions. J Pharm Sci 106:2847–52.
  • Kudo T, Ozaki Y, Kusano T, et al. (2016). Effect of buffer conditions on CYP2C8-mediated paclitaxel 6alpha-hydroxylation and CYP3A4-mediated triazolam alpha- and 4-hydroxylation by human liver microsomes. Xenobiotica 46:241–6.
  • Lee JI, Chaves-Gnecco D, Amico JA, et al. (2002). Application of semisimultaneous midazolam administration for hepatic and intestinal cytochrome P450 3A phenotyping. Clin Pharmacol Ther 72:718–28.
  • Leucuta SE, Vida-Simiti L, Caprioara MG, et al. (1989). Bioavailability of nifedipine from different oral dosage forms in healthy volunteers. Pharmazie 44:336–8.
  • Lu JF, Wu MF, Chen G, et al. (1993). Midazolam pharmacokinetics and electroencephalographic changes in eight Chinese men. Zhongguo Yao Li Xue Bao 14:485–8.
  • Mahmood I, Balian JD. (1996). Interspecies scaling: predicting clearance of drugs in humans. Three different approaches. Xenobiotica 26:887–95.
  • Mandema JW, Tuk B, Van Steveninck AL, et al. (1992). Pharmacokinetic-pharmacodynamic modeling of the central nervous system effects of midazolam and its main metabolite alpha-hydroxymidazolam in healthy volunteers. Clin Pharmacol Ther 51:715–28.
  • Mcginnity DF, Parker AJ, Soars M, Riley RJ. (2000). Automated definition of the enzymology of drug oxidation by the major human drug metabolizing cytochrome P450s. Drug Metab Dispos 28:1327–34.
  • Mcnaney CA, Drexler DM, Hnatyshyn SY, et al. (2008). An automated liquid chromatography-mass spectrometry process to determine metabolic stability half-life and intrinsic clearance of drug candidates by substrate depletion. Assay Drug Dev Technol 6:121–9.
  • Misaka S, Uchida S, Imai H, et al. (2010). Pharmacokinetics and pharmacodynamics of low doses of midazolam administered intravenously and orally to healthy volunteers. Clin Exp Pharmacol Physiol 37:290–5.
  • Mohutsky MA, Chien JY, Ring BJ, Wrighton SA. (2006). Predictions of the in vivo clearance of drugs from rate of loss using human liver microsomes for phase I and phase II biotransformations. Pharm Res 23:654–62.
  • Naritomi Y, Terashita S, Kimura S, et al. (2001). Prediction of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab Dispos 29:1316–24.
  • Nishimuta H, Nakagawa T, Nomura N, Yabuki M. (2013). Species differences in hepatic and intestinal metabolic activities for 43 human cytochrome P450 substrates between humans and rats or dogs. Xenobiotica 43:948–55.
  • Nishimuta H, Sato K, Yabuki M, Komuro S. (2011). Prediction of the intestinal first-pass metabolism of CYP3A and UGT substrates in humans from in vitro data. Drug Metab Pharmacokinet 26:592–601.
  • Obach RS. (1997). Nonspecific binding to microsomes: impact on scale-up of in vitro intrinsic clearance to hepatic clearance as assessed through examination of warfarin, imipramine, and propranolol. Drug Metab Dispos 25:1359–69.
  • Obach RS. (1999). Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos 27:1350–9.
  • Obach RS. (2001). The prediction of human clearance from hepatic microsomal metabolism data. Curr Opin Drug Discov Devel 4:36–44.
  • Ochs HR, Greenblatt DJ, Woo E, Smith TW. (1978). Reduced quinidine clearance in elderly persons. Am J Cardiol 42:481–5.
  • Ochs HR, Knuchel M. (1984). Pharmacokinetics and absolute bioavailability of diltiazem in humans. Klin Wochenschr 62:303–6.
  • Ogawa K, Kato M, Houjo T, Ishigai M. (2013). A new approach to predicting human hepatic clearance of CYP3A4 substrates using monkey pharmacokinetic data. Xenobiotica 43:468–78.
  • Olkkola KT, Aranko K, Luurila H, et al. (1993). A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther 53:298–305.
  • Palkama VJ, Ahonen J, Neuvonen PJ, Olkkola KT. (1999). Effect of saquinavir on the pharmacokinetics and pharmacodynamics of oral and intravenous midazolam. Clin Pharmacol Ther 66:33–9.
  • Palma-Aguirre JA, Rosas-Alcazar G, Rodriguez JM, et al. (1989). Bioavailability and pharmacokinetics of nifedipine administered by different routes in healthy volunteers. Arch Invest Med (Mex) 20:129–35.
  • Pelkonen O, Turpeinen M. (2007). In vitro-in vivo extrapolation of hepatic clearance: biological tools, scaling factors, model assumptions and correct concentrations. Xenobiotica 37:1066–89.
  • Pentikis HS, Connolly M, Trapnell CB, et al. (2007). The effect of multiple-dose, oral rifaximin on the pharmacokinetics of intravenous and oral midazolam in healthy volunteers. Pharmacotherapy 27:1361–9.
  • Poulin P, Haddad S. (2011). Microsome composition-based model as a mechanistic tool to predict nonspecific binding of drugs in liver microsomes. J Pharm Sci 100:4501–17.
  • Poulin P, Hop CE, Ho Q, et al. (2012). Comparative assessment of in vitro-in vivo extrapolation methods used for predicting hepatic metabolic clearance of drugs. J Pharm Sci 101:4308–26.
  • Raemsch KD, Sommer J. (1983). Pharmacokinetics and metabolism of nifedipine. Hypertension 5:18–24.
  • Rakhit A, Holford NH, Guentert TW, et al. (1984). Pharmacokinetics of quinidine and three of its metabolites in man. J Pharmacokinet Biopharm 12:1–21.
  • Rashid TJ, Martin U, Clarke H, et al. (1995). Factors affecting the absolute bioavailability of nifedipine. Br J Clin Pharmacol 40:51–8.
  • Roberts MS, Rowland M. (1986). Correlation between in-vitro microsomal enzyme activity and whole organ hepatic elimination kinetics: analysis with a dispersion model. J Pharm Pharmacol 38:177–81.
  • Saari TI, Laine K, Leino K, et al. (2006). Effect of voriconazole on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Clin Pharmacol Ther 79:362–70.
  • Schwagmeier R, Alincic S, Striebel HW. (1998). Midazolam pharmacokinetics following intravenous and buccal administration. Br J Clin Pharmacol 46:203–6.
  • Shimada T, Yamazaki H, Mimura M, et al. (1994). Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270:414–23.
  • Shimizu M, Uno T, Tamura HO, et al. (2007). A developed determination of midazolam and 1’-hydroxymidazolam in plasma by liquid chromatography-mass spectrometry: application of human pharmacokinetic study for measurement of CYP3A activity. J Chromatogr B Analyt Technol Biomed Life Sci 847:275–81.
  • Shord SS, Chan LN, Camp JR, et al. (2010). Effects of oral clotrimazole troches on the pharmacokinetics of oral and intravenous midazolam. Br J Clin Pharmacol 69:160–6.
  • Sohlenius-Sternbeck AK, Afzelius L, Prusis P, et al. (2010). Evaluation of the human prediction of clearance from hepatocyte and microsome intrinsic clearance for 52 drug compounds. Xenobiotica 40:637–49.
  • Stringer R, Nicklin PL, Houston JB. (2008). Reliability of human cryopreserved hepatocytes and liver microsomes as in vitro systems to predict metabolic clearance. Xenobiotica 38:1313–29.
  • Tawashi M, Marc-Aurele J, Bichet D, et al. (1991). Pharmacokinetics of intravenous diltiazem and five of its metabolites in patients with chronic renal failure and in healthy volunteers. Biopharm Drug Dispos 12:105–12.
  • Teng R, Butler K. (2013). The effect of ticagrelor on the metabolism of midazolam in healthy volunteers. Clin Ther 35:1025–37.
  • Thummel KE, O'Shea D, Paine MF, et al. (1996). Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 59:491–502.
  • Tseng E, Walsky RL, Luzietti RA, Jr., et al. (2014). Relative contributions of cytochrome CYP3A4 versus CYP3A5 for CYP3A-cleared drugs assessed in vitro using a CYP3A4-selective inactivator (CYP3cide). Drug Metab Dispos 42:1163–73.
  • Vanakoski J, Idänpään-He JJ, Olkkola KT, Seppälä T. (1996). Effects of heat exposure in a Finnish sauna on the pharmacokinetics and metabolism of midazolam. Eur J Clin Pharmacol 51:335–8.
  • Vuppugalla R, Chang SY, Zhang H, et al. (2007). Effect of commonly used organic solvents on the kinetics of cytochrome P450 2B6- and 2C8-dependent activity in human liver microsomes. Drug Metab Dispos 35:1990–5.
  • Waller DG, Renwick AG, Gruchy BS, George CF. (1984). The first pass metabolism of nifedipine in man. Br J Clin Pharmacol 18:951–4.
  • Wermeling DP, Record KA, Archer SM, Rudy AC. (2009). A pharmacokinetic and pharmacodynamic study, in healthy volunteers, of a rapidly absorbed intranasal midazolam formulation. Epilepsy Res 83:124–32.
  • Wermeling DP, Record KA, Kelly TH, et al. (2006). Pharmacokinetics and pharmacodynamics of a new intranasal midazolam formulation in healthy volunteers. Anesth Analg 103:344–9.
  • Winiwarter S, Chang G, Desai P, et al. (2019). Prediction of fraction unbound in microsomal and hepatocyte incubations: a comparison of methods across industry datasets. Mol Pharm 16:4077–85.
  • Wood FL, Houston JB, Hallifax D. (2017). Clearance prediction methodology needs fundamental improvement: trends common to rat and human hepatocytes/microsomes and implications for experimental methodology. Drug Metab Dispos 45:1178–88.
  • Yan D, Yang Y, Uchida S, et al. (2008). Effects of ursodeoxycholic acid on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam in healthy volunteers. Naunyn Schmiedebergs Arch Pharmacol 377:629–36.
  • Zhang H, Gao N, Tian X, et al. (2015). Content and activity of human liver microsomal protein and prediction of individual hepatic clearance in vivo. Sci Rep 5:17671.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.