Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 51, 2021 - Issue 11
2,611
Views
6
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Molecular docking and oxidation kinetics of 3-phenyl coumarin derivatives by human CYP2A13

, , , ORCID Icon, & ORCID Icon
Pages 1207-1216 | Received 08 Jan 2021, Accepted 01 Mar 2021, Published online: 02 Nov 2021

References

  • Anttila S, Raunio H, Hakkola J. 2011. Cytochrome P450-mediated pulmonary metabolism of carcinogens: regulation and cross-talk in lung carcinogenesis. Am J Respir Cell Mol Biol. 44(5):583–590.
  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. 2000. The Protein Data Bank. Nucleic Acids Res. 28(1):235–242.
  • DeVore NM, Meneely KM, Bart AG, Stephens ES, Battaile KP, Scott EE. 2012. Structural comparison of cytochromes P450 2A6, 2A13, and 2E1 with pilocarpine. FEBS J. 279(9):1621–1631.
  • DeVore NM, Scott EE. 2012. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone binding and access channel in human cytochrome P450 2A6 and 2A13 enzymes. J Biol Chem. 287(32):26576–26585.
  • Fernandez-Salguero P, Hoffman SM, Cholerton S, Mohrenweiser H, Raunio H, Rautio A, Pelkonen O, Huang JD, Evans WE, Idle JR. 1995. A genetic polymorphism in coumarin 7-hydroxylation: sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am J Hum Genet. 57(3):651–660.
  • Fukami T, Nakajima M, Sakai H, Katoh M, Yokoi T. 2007. CYP2A13 metabolizes the substrates of human CYP1A2, phenacetin, and theophylline. Drug Metab Dispos. 35(3):335–339.
  • Gonzalez FJ, Coughtrie M, Tukey RH. 2017. Drug metabolism. In: Bruton L, Lazo J, Parker K, editors. Goodman & Gilmans’s the pharmacological basis of therapeutics. 13th ed. New York: McGraw-Hill; p. 85–100.
  • Gundert-Remy U, Bernauer U, Blömeke B, Döring B, Fabian E, Goebel C, Hessel S, Jäckh C, Lampen A, Oesch F, et al. 2014. Extrahepatic metabolism at the body's internal-external interfaces. Drug Metab Rev. 46(3):291–324.
  • Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, et al. 2016. OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput. 12(1):281–296.
  • He XY, Shen J, Ding X, Lu AY, Hong JY. 2004. Identification of critical amino acid residues of human CYP2A13 for the metabolic activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a tobacco-specific carcinogen. Drug Metab Dispos. 32(12):1516–1521.
  • He XY, Shen J, Hu WY, Ding X, Lu AY, Hong JY. 2004. Identification of Val117 and Arg372 as critical amino acid residues for the activity difference between human CYP2A6 and CYP2A13 in coumarin 7-hydroxylation. Arch Biochem Biophys. 427(2):143–153.
  • He XY, Tang L, Wang SL, Cai QS, Wang JS, Hong JY. 2006. Efficient activation of aflatoxin B1 by cytochrome P450 2A13, an enzyme predominantly expressed in human respiratory tract. Int J Cancer. 118(11):2665–2671.
  • Hritz J, de Ruiter A, Oostenbrink C. 2008. Impact of plasticity and flexibility on docking results for cytochrome P450 2D6: a combined approach of molecular dynamics and ligand docking. J Med Chem. 51(23):7469–7477.
  • Hukkanen J, Jacob P, Benowitz NL. 2005. Metabolism and disposition kinetics of nicotine. Pharmacol Rev. 57(1):79–115.
  • Hukkanen J, Pelkonen O, Hakkola J, Raunio H. 2002. Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit Rev Toxicol. 32(5):391–411.
  • Jacobson MP, Friesner RA, Xiang Z, Honig B. 2002. On the role of the crystal environment in determining protein side-chain conformations. J Mol Biol. 320(3):597–608.
  • Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, Friesner RA. 2004. A hierarchical approach to all-atom protein loop prediction. Proteins. 55(2):351–367.
  • Jalas JR, Hecht SS, Murphy SE. 2005. Cytochrome P450 enzymes as catalysts of metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a tobacco specific carcinogen. Chem Res Toxicol. 18(2):95–110.
  • Ji M, Zhang Z, Li N, Xia R, Wang C, Yu Y, Yao S, Shen J, Wang SL. 2018. Identification of 5-hydroxymethylfurfural in cigarette smoke extract as a new substrate metabolically activated by human cytochrome P450 2A13. Toxicol Appl Pharmacol. 359:108–117.
  • Juvonen RO, Ahinko M, Huuskonen J, Raunio H, Pentikäinen OT. 2019. Development of new Coumarin-based profluorescent substrates for human cytochrome P450 enzymes. Xenobiotica. 49(9):1015–1024.
  • Juvonen RO, Ahinko M, Huuskonen J, Raunio H, Pentikäinen OT. Substrate selectivity of coumarin derivatives by human CYP1 enzymes: in vitro enzyme kinetics and in silico modelling. Submitted
  • Juvonen RO, Kuusisto M, Fohrgrup C, Pitkänen MH, Nevalainen TJ, Auriola S, Raunio H, Pasanen M, Pentikäinen OT. 2016. Inhibitory effects and oxidation of 6-methylcoumarin, 7-methylcoumarin and 7-formylcoumarin via human CYP2A6 and its mouse and pig orthologous enzymes. Xenobiotica. 46(1):14–24.
  • Kinonen T, Pasanen M, Gynther J, Poso A, Järvinen T, Alhava E, Juvonen RO. 1995. Competitive inhibition of coumarin 7-hydroxylation by pilocarpine and its interaction with mouse CYP 2A5 and human CYP 2A6. Br J Pharmacol. 116(6):2625–2630.
  • Korb O, Stützle T, Exner TE. 2009. Empirical scoring functions for advanced protein-ligand docking with plants. J Chem Inf Model. 49(1):84–96.
  • Lehtonen JV, Still DJ, Rantanen VV, Ekholm J, Björklund D, Iftikhar Z, Huhtala M, Repo S, Jussila A, Jaakkola J, et al. 2004. BODIL: a molecular modeling environment for structure–function analysis and drug design. J Comput Aided Mol Des. 18(6):401–419.
  • Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA. 2011. The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins. 79(10):2794–2812.
  • Li L, Carratt S, Hartog M, Kovalchik N, Jia K, Wang Y, Zhang QY, Edwards P, Winkle LV, Ding X. 2017. Human CYP2A13 and CYP2F1 mediate naphthalene toxicity in the lung and nasal mucosa of CYP2A13/2F1-humanized mice. Environ Health Perspect. 125(6):067004.
  • Murphy SE, Raulinaitis V, Brown KM. 2005. Nicotine 5'-oxidation and methyl oxidation by P450 2A enzymes. Drug Metab Dispos. 33(8):1166–1173.
  • Niinivehmas S, Postila PA, Rauhamäki S, Manivannan E, Kortet S, Ahinko M, Huuskonen P, Nyberg N, Koskimies P, Lätti S, et al. 2018. Blocking oestradiol synthesis pathways with potent and selective coumarin derivatives. J Enzyme Inhib Med Chem. 33(1):743–754.
  • Oesch F, Fabian E, Landsiedel R. 2019. Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol. 93(12):3419–3489.
  • Parkinson A, Ogilvie BW, Buckley DB, Kazmi F, Parkinson O. 2019. Biotransformation of xenobiotics. In: Casarett LJ, Doull J, Klaassen CD, editors. Casarett & Doull’s toxicology: the basic science of poisons. 9th ed. New York: McGraw Hill; p. 193–430.
  • Pelkonen O, Raunio H. 1997. Metabolic activation of toxins: tissue-specific expression and metabolism in target organs. Environmental Health Perspective Suppl. 105(Suppl 4):767–774.
  • Rauhamäki S, Postila PA, Niinivehmas S, Kortet S, Schildt E, Pasanen M, Manivannan E, Ahinko M, Koskimies P, Nyberg N, et al. 2018. Structure–activity relationship analysis of 3-phenylcoumarin-based monoamine oxidase B inhibitors. Front Chem. 6:41.
  • Raunio H, Rahnasto-Rilla M. 2012. CYP2A6: genetics, structure, regulation, and function. Drug Metabol Drug Interact. 27(2):73–88.
  • Schrödinger. 2015. The PyMOL molecular graphics system, Version 2.3.
  • Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M. 2007. Epik: a software program for pK( a ) prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des. 21(12):681–691.
  • Sheng Y, Chen Y, Wang L, Liu G, Li W, Tang Y. 2014. Effects of protein flexibility on the site of metabolism prediction for CYP2A6 substrates. J Mol Graph Model. 54:90–99.
  • Shimada T, Takenaka S, Kakimoto K, Murayama N, Lim YR, Kim D, Foroozesh MK, Yamazaki H, Guengerich FP, Komori M. 2016. Structure–function studies of naphthalene, phenanthrene, biphenyl, and their derivatives in interaction with and oxidation by cytochromes P450 2A13 and 2A6. Chem Res Toxicol. 29 (6):1029–1040.
  • SIMCA. Umetrics. version 15.0.2. [accessed 2021 Feb 26]. https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/mvda-software/simca?gclid=Cj0KCQiAst2BBhDJARIsAGo2ldWk7cPBO2Aqv6npSJGViHKYuCMGMo-H3K2DfuJ-i_hJKkfxdyFSFcgaAnuFEALw_wcB
  • Smith BD, Sanders JL, Porubsky PR, Lushington GH, Stout CD, Scott EE. 2007. Structure of the human lung cytochrome P450 2A13. J Biol Chem. 282(23):17306–17313.
  • Su T, Ding X. 2004. Regulation of the cytochrome P450 2A genes. Toxicol Appl Pharmacol. 199(3):285–294.
  • von Weymarn LB, Murphy SE. 2003. CYP2A13-catalysed coumarin metabolism: comparison with CYP2A5 and CYP2A6. Xenobiotica. 33(1):73–81.
  • Word JM, Lovell SC, Richardson JS, Richardson DC. 1999. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol. 285(4):1735–1747.
  • Yano JK, Hsu MH, Griffin KJ, Stout CD, Johnson EF. 2005. Structures of human microsomal cytochrome P450 2A6 complexed with coumarin and methoxsalen. Nat Struct Mol Biol. 12(9):822–823.
  • Zanger UM, Schwab M. 2013. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 138(1):103–141.
  • Zhang X, D'Agostino J, Wu H, Zhang QY, von Weymarn L, Murphy SE, Ding X. 2007. CYP2A13: variable expression and role in human lung microsomal metabolic activation of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. J Pharmacol Exp Ther. 323(2):570–578.
  • Zhang Z, Yang X, Wang Y, Wang X, Lu H, Zhang X, Xiao X, Li S, Wang X, Wang SL. 2013. Cytochrome P450 2A13 is an efficient enzyme in metabolic activation of aflatoxin G1 in human bronchial epithelial cells. Arch Toxicol. 87(9):1697–1707.