Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 52, 2022 - Issue 8: 50th year of the DMDG
1,381
Views
4
CrossRef citations to date
0
Altmetric
Reviews

ADME and DMPK considerations for the discovery and development of antibody drug conjugates (ADCs)

, , , , , , , , , & show all
Pages 770-785 | Received 01 Sep 2022, Accepted 26 Oct 2022, Published online: 20 Dec 2022

References

  • Bender B, Leipold DD, Xu K, Shen BQ, Tibbitts J, Friberg LE. 2014. A mechanistic pharmacokinetic model elucidating the disposition of trastuzumab emtansine (T-DM1), an antibody-drug conjugate (ADC) for treatment of metastatic breast cancer. AAPS J. 16(5):994–1008.
  • Ben-Quan S, Xu K, Liu L, Raab H, Bhakta S, Kenrick M, Parsons-Reponte KL, Tien J, Yu SF, Mai E, et al. 2012. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol. 30(2):184–189.
  • Betts A, Clark T, Jasper P, Tolsma J, van der Graaf PH, Graziani EI, Rosfjord E, Sung M, Ma D, Barletta F. 2020. Use of translational modeling and simulation for quantitative comparison of PF-06804103, a new generation HER2 ADC, with Trastuzumab-DM1. J Pharmacokinet Pharmacodyn. 47(5):513–526.
  • Bobaly B, Fleury-Souverain S, Beck A, Veuthey JL, Guillarme D, Fekete S. 2018. Current possibilities of liquid chromatography for the characterization of antibody-drug conjugates. J Pharm Biomed Anal. 147:493–505.
  • Cardillo TM, Govindan SV, Sharkey RM, Trisal P, Arrojo R, Liu D, Rossi EA, Chang CH, Goldenberg DM. 2015. Sacituzumab govitecan (IMMU-132), an anti-trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug Chem. 26(5):919–931.
  • Chang HP, Li Z, Shah DK. 2022. Physiologically-based pharmacokinetic model for whole-body disposition of MMAE containing antibody-drug conjugate in mice. Pharm Res. 39(1):1–24.
  • Cilliers C, Guo H, Liao J, Christodolu N, Thurber GM. 2016. Multiscale modeling of antibody-drug conjugates: connecting tissue and cellular distribution to whole animal pharmacokinetics and potential implications for efficacy. AAPS J. 18(5):1117–1130.
  • Cilliers C, Thurber GM. 2018. Standing by for bystander effects: dual-isotope imaging of antibody–drug conjugate and payload distribution. J Nucl Med. 59(9):1459–1460.
  • Davies M, Jones RDO, Grime K, Jansson-Lofmark R, Fretland AJ, Winiwarter S, Morgan P, McGinnity DF. 2020. Improving the accuracy of predicted human pharmacokinetics: lessons learned from the astrazeneca drug pipeline over two decades. Trends Pharmacol Sci. 41(6):390–408.
  • de Mel N, Mulagapati SHR, Cao M, Liu D. 2019. A method to directly analyze free-drug-related species in antibody-drug conjugates without sample preparation. J Chromatogr B Analyt Technol Biomed Life Sci. 1116:51–59.
  • Deeks ED. 2021. Disitamab vedotin: First Approval. Drugs. 81(16):1929–1935.
  • Doi T, Shitara K, Naito Y, Shimomura A, Fujiwara Y, Yonemori K, Shimizu C, Shimoi T, Kuboki Y, Matsubara N, et al. 2017. Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody-drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study. Lancet Oncol. 18(11):1512–1522.
  • Dong S, Nessler I, Kopp A, Rubahamya B, Thurber GM. 2022. Predictive simulations in preclinical oncology to guide the translation of biologics. Front Pharmacol. 13:836925.
  • Fanale MA, Forero-Torres A, Rosenblatt JD, Advani RH, Franklin AR, Kennedy DA, Han TH, Sievers EL, Bartlett NL. 2012. A phase I weekly dosing study of brentuximab vedotin in patients with relapsed/refractory CD30-positive hematologic malignancies. Clin Cancer Res. 18(1):248–255.
  • FDA. 2017. FDA approves Mylotarg for treatment of acute myeloid leukemia. [accessed 20 June]. https://www.fda.gov/news-events/press-announcements/fda-approves-mylotarg-treatment-acute-myeloid-leukemia.
  • FDA. 2020. Drug-drug interaction assessment for therapeutic proteins guidance for industry. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/drug-drug-interaction-assessment-therapeutic-proteins-guidance-industry.
  • Ferl GZ, Wu AM, DiStefano JJ. III. 2005. A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng. 33(11):1640–1652. (2005), 33: 1640–52.
  • Fujiwara Y, Furuta M, Manabe S, Koga Y, Yasunaga M, Matsumura Y. 2016. Imaging mass spectrometry for the precise design of antibody-drug conjugates. Sci Rep. 6:24954.
  • Garg A, Balthasar JP. 2007. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn. 34(5):687–709.
  • Gibbs JP. 2010. Prediction of exposure–response relationships to support first-in-human study design. AAPS J. 12(4):750–758.
  • Girish S, Gupta M, Wang B, Lu D, Krop IE, Vogel CL, Burris HA, III, LoRusso PM, Yi J-H, Saad O, et al. 2012. Clinical pharmacology of trastuzumab emtansine (T-DM1): an antibody-drug conjugate in development for the treatment of HER2-positive cancer. Cancer Chemother Pharmacol. 69(5):1229–1240.
  • Gorovits B, Alley SC, Bilic S, Booth B, Kaur S, Oldfield P, Purushothama S, Rao C, Shord S, Siguenza P. 2013. Bioanalysis of antibody-drug conjugates: American Association of Pharmaceutical Scientists Antibody-Drug Conjugate Working Group position paper. Bioanalysis. 5(9):997–1006.
  • Grafmuller L, Wei C, Ramanathan R, Barletta F, Steenwyk R, Tweed J. 2016. Unconjugated payload quantification and DAR characterization of antibody-drug conjugates using high-resolution MS. Bioanalysis. 8(16):1663–1678.
  • Haddish-Berhane N, Shah DK, Ma D, Leal M, Gerber H-P, Sapra P, Barton HA, Betts AM. 2013. On translation of antibody drug conjugates efficacy from mouse experimental tumors to the clinic: a PK/PD approach. J Pharmacokinet Pharmacodyn. 40(5):557–571.
  • Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holcomb R, Hallett W, Tsou H-R, Upeslacis J, Shochat D, et al. 2002. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem. 13(1):47–58.
  • Hamblett KJ, Senter PD, Chace DF, Sun MMC, Lenox J, Cerveny CG, Kissler KM, Bernhardt SX, Kopcha AK, Zabinski RF, et al. 2004. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 10(20):7063–7070.
  • Hinrichs MJM, Ryan PM, Zheng B, Afif-Rider S, Yu XQ, Gunsior M, Zhong H, Harper J, Bezabeh B, Vashisht K, et al. 2017. Fractionated dosing improves preclinical therapeutic index of pyrrolobenzodiazepine-containing antibody drug conjugates. Clin Cancer Res. 23(19):5858–5868.
  • Huang RY, Chen G. 2016. Characterization of antibody-drug conjugates by mass spectrometry: advances and future trends. Drug Discov Today. 21(5):850–855.
  • Huang W, Czuba LC, Isoherranen N. 2020. Mechanistic PBPK modeling of urine pH effect on renal and systemic disposition of methamphetamine and amphetamine. Ournal Pharmacol Exp Ther0. 373:488–501.
  • Huang Y, Mou S, Wang Y, Mu R, Liang M, Rosenbaum AI. 2021. Characterization of antibody-drug conjugate pharmacokinetics and in vivo biotransformation using quantitative intact LC-HRMS and surrogate analyte LC-MRM. Anal Chem. 93(15):6135–6144.
  • Jain N, Smith SW, Ghone S, Tomczuk B. 2015. Current ADC linker chemistry. Pharm Res. 32(11):3526–3540.
  • Jove M, Spencer J, Clench M, Loadman PM, Twelves C. 2019. Precision pharmacology: mass spectrometry imaging and pharmacokinetic drug resistance. Crit Rev Oncol Hematol. 141:153–162.
  • Jumbe NL, Xin Y, Leipold DD, Crocker L, Dugger D, Mai E, Sliwkowski MX, Fielder PJ, Tibbitts J. 2010. Modeling the efficacy of trastuzumab-DM1, an antibody drug conjugate, in mice. J Pharmacokinet Pharmacodyn. 37(3):221–242.
  • Kaur S, Xu K, Saad OM, Dere RC, Carrasco-Triguero M. 2013. Bioanalytical assay strategies for the development of antibody-drug conjugate biotherapeutics. Bioanalysis. 5(2):201–226.
  • Khera E, Cilliers C, Bhatnagar S, Thurber GM. 2018. Computational transport analysis of antibody-drug conjugate bystander effects and payload tumoral distribution: implications for therapy. Mol Syst Des Eng. 3(1):73–88.
  • Khera E, Cilliers C, Smith MD, Ganno ML, Lai KC, Keating TA, Kopp A, Nessler I, Abu-Yousif AO, Thurber GM. 2021. Quantifying ADC bystander payload penetration with cellular resolution using pharmacodynamic mapping. Neoplasia. 23(2):210–221.
  • Khera E, Dong S, Huang H, de Bever L, van Delft FL, Thurber GM. 2022. Cellular-resolution imaging of bystander payload tissue penetration from antibody-drug conjugates tissue penetration of ADC bystander payloads. Mol Cancer Ther. 21(2):310–321.
  • Khot A, Tibbitts J, Rock D, Shah DK. 2017. Development of a translational physiologically based pharmacokinetic model for antibody-drug conjugates: a case study with T-DM1. AAPS J. 19(6):1715–1734.
  • Kovtun YV, Audette CA, Ye Y, Xie H, Ruberti MF, Phinney SJ, Leece BA, Chittenden T, Blättler WA, Goldmacher VS. 2006. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res. 66(6):3214–3221.
  • Kraynov E, Kamath AV, Walles M, Tarcsa E, Deslandes A, Iyer RA, Datta-Mannan A, Sriraman P, Bairlein M, Yang JJ, et al. 2016. Current approaches for absorption, distribution, metabolism, and excretion characterization of antibody-drug conjugates: an industry white paper. Drug Metab Dispos. 44(5):617–623.
  • Krop IE, Beeram M, Modi S, Jones SF, Holden SN, Yu W, Girish S, Tibbitts J, Yi JH, Sliwkowski MX, et al. 2010. Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol. 28(16):2698–2704.
  • Li C, Menon R, Walles M, Singh R, Upreti VV, Brackman D, Lee AJ, Endres CJ, Kumar S, Zhang D, et al. 2021. Risk-based pharmacokinetic and drug-drug interaction characterization of antibody-drug conjugates in oncology clinical development: an international consortium for innovation and quality in pharmaceutical development perspective. Clin Pharmacol Ther. 112:754–769.
  • Liao KH, Williams JH, Palani S, Yin D, Meng X. 2022. Joint disposition properties and comprehensive pharmacokinetic characterization of antibody–drug conjugates. AAPS J. 24:73.
  • Liao MZ, Lu D, Kågedal M, Miles D, Samineni D, Liu SN, Li C. 2021. Model-informed therapeutic dose optimization strategies for antibody-drug conjugates in oncology: what can we learn from US food and drug administration-approved antibody-drug conjugates. Clin Pharmacol Ther. 110(5):1216–1230.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev. 23(1–3):3–25.
  • Liu Y, Zhou F, Sang H, Ye H, Chen Q, Yao L, Ni P, Wang G, Zhang J. 2017. LC-MS/MS method for the simultaneous determination of Lys-MCC-DM1, MCC-DM1 and DM1 as potential intracellular catabolites of the antibody-drug conjugate trastuzumab emtansine (T-DM1). J Pharm Biomed Anal. 137:170–177.
  • Lyon RP, Bovee TD, Doronina SO, Burke PJ, Hunter JH, Neff-LaFord HD, Jonas M, Anderson ME, Setter JR, Senter PD. 2015. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol. 33(7):733–735.
  • Maurer TS, Smith D, Beaumont K, Di L. 2020. Dose predictions for drug design. J Med Chem. 63(12):6423–6435.
  • Mayer AP, Licea-Perez H, Boram S, Pannullo KE, Kehler J, Evans CA. 2021. Overcoming challenges associated with the bioanalysis of cysteine-conjugated metabolites in the presence of antibody–drug conjugates. Bioanalysis. 13(18):1427–1439.
  • Menezes B, Linderman JJ, Thurber GM. 2022. Simulating the selection of resistant cells with bystander killing and antibody coadministration in heterogeneous HER2 oositive tumors. Drug Metab Dispos. 50(1):8–16.
  • Meyer DW, Bou LB, Shum S, Jonas M, Anderson ME, Hamilton JZ, Hunter JH, Wo SW, Wong AO, Okeley NM, et al. 2020. An in vitro assay using cultured kupffer cells can predict the impact of drug conjugation on in vivo antibody pharmacokinetics. Mol Pharm. 17(3):802–809.
  • Mou S, Huang Y, Rosenbaum A. 2018. ADME considerations and bioanalytical strategies for pharmacokinetic assessments of antibody-drug conjugates. Antibodies. 7(4):41.
  • Mu R, Yuan J, Huang Y, Meissen JK, Mou S, Liang M, Rosenbaum AI. 2022. Bioanalytical methods and strategic perspectives addressing the rising complexity of novel bioconjugates and delivery routes for biotherapeutics. BioDrugs. 36(2):181–196.
  • Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, Soma M, Okamoto H, Oitate M, Arakawa S, et al. 2016. DS-8201a, A novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res. 22(20):5097–5108.
  • Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR. 2014. Site-specific antibody drug conjugates for cancer therapy. MAbs. 6(1):34–45.
  • Park SJ, Lee BI, Park MH, Choi J, Park Y, Park MJ, Lim JH, Lee J, Hwang S, Lee J, et al. 2021. Quantification for antibody-conjugated drug in trastuzumab emtansine and application to in vitro linker stability and in vivo pharmacokinetic study in rat using an immuno-affinity capture liquid chromatography-mass spectrometric method. Appl Sci. 11(20):9437.
  • Petersdorf SH, Kopecky KJ, Slovak M, Willman C, Nevill T, Brandwein J, Larson RA, Erba HP, Stiff PJ, Stuart RK, et al. 2013. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 121(24):4854–4860.
  • Poulin P, Jones RDO, Jones HM, Gibson CR, Rowland M, Chien JY, Ring BJ, Adkison KK, Sherry Ku M, He H, et al. 2011. PHRMA CPCDC initiative on predictive models of human pharmacokinetics, part 5: prediction of plasma concentration-time profiles in human by using the physiologically-based pharmacokinetic modeling approach. J Pharm Sci. 100(10):4127–4157.
  • Pu J, An B, Vazvaei F, Qu J. 2018. Enrichment of protein therapeutics and biomarkers for LC-MS quantification. Bioanalysis. 10(13):979–982.
  • Roopenian DC, Akilesh S. 2007. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 7(9):715–725.
  • Samineni D, Ding H, FM, Shi R, Lu D, Miles D, Mao J, Li C, Jin Jin M, Wright S, Girish Y. Chen 2020. Physiologically based pharmacokinetic model-informed drug development for polatuzumab vedotin: label for drug-drug interactions without dedicated clinical trials. J Clin Pharmacol. 60:S120–S31.
  • Shah DK, Betts AM. 2012. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn. 39(1):67–86.
  • Shen BQ, Bumbaca D, Saad O, Yue Q, Pastuskovas CV, Cyrus Khojasteh S, Tibbitts J, Kaur S, Wang B, Chu YW, et al. 2012. Catabolic fate and pharmacokinetic characterization of trastuzumab emtansine (T-DM1): an emphasis on preclinical and clinical catabolism. Curr Drug Metab. 13(7):901–910.
  • Singh AP, Maass KF, Betts AM, Wittrup KD, Kulkarni C, King LE, Khot A, Shah DK. 2016. Evolution of antibody-drug conjugate tumor disposition model to predict preclinical tumor pharmacokinetics of trastuzumab-emtansine (T-DM1). AAPS J. 18(4):861–875.
  • Singh AP, Seigel GM, Guo L, Verma A, Wong GGL, Cheng HP, Shah DK. 2020. Evolution of the systems pharmacokinetics-pharmacodynamics model for antibody-drug conjugates to characterize tumor heterogeneity and in vivo bystander effect. J Pharmacol Exp Ther. 374(1):184–199.
  • Smith DA, Di L, Kerns EH. 2010. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov. 9(12):929–939.
  • Stephan JP, Kozak KR, Wong WLT. 2011. Challenges in developing bioanalytical assays for characterization of antibody-drug conjugates. Bioanalysis. 3(6):677–700.
  • Su D, Ng C, Khosraviani M, Yu SF, Cosino E, Kaur S, Xu K. 2016. Custom-designed affinity capture LC-MS F(ab’)2 assay for biotransformation assessment of site-specific antibody drug conjugates. Anal Chem. 88(23):11340–11346.
  • Su Z, Xiao D, Xie F, Liu L, Wang Y, Fan S, Zhou X, Li S. 2021. Antibody-drug-conjugates: recent advances in linker chemistry. Acta Pharm Sin B. 11(12):3889–3907.
  • Summerfield SG, Yates JWT, Fairman DA. 2022. Free drug theory - no longer just a hypothesis? Pharm Res. 39(2):213–222.
  • Sun X, Ponte JF, Yoder NC, Laleau R, Coccia J, Lanieri L, Qiu Q, Wu R, Hong E, Bogalhas M, et al. 2017. Effects of drug-antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody-maytansinoid conjugates. Bioconjug Chem. 28(5):1371–1381.
  • Suri A, Mould DR, Liu Y, Jang G, Venkatakrishnan K. 2018. Population PK and exposure-response relationships for the antibody-drug conjugate brentuximab vedotin in CTCL patients in the phase III ALCANZA study. Clin Pharmacol Ther. 104(5):989–999.
  • Thurber GM, Wittrup KD. 2008. Quantitative spatiotemporal analysis of antibody fragment diffusion and endocytic consumption in tumor spheroids. Cancer Res. 68(9):3334–3341.
  • Thurber GM, Zajic SC, Wittrup KD. 2007. Theoretic criteria for antibody penetration into solid tumors and micrometastases. J Nucl Med. 48(6):995–999.
  • Tong JTW, Paul WRH, Brimble MA, Kavianinia I. 2021. An insight into FDA approved antibody-drug conjugates for cancer therapy. Molecules. 26:5847.
  • Trail PA, Willner D, Lasch SJ, Henderson AJ, Hofstead S, Casazza AM, Firestone RA, Hellstrom I, Hellstrom KE. 1993. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science. 261(5118):212–215.
  • Vasalou C, Helmlinger G, Gomes B. 2015. A mechanistic tumor penetration model to guide antibody drug conjugate design. PLoS One. 10(3):e0118977/1–e77/20.
  • Visser SAG, Aurell M, Jones RDO, Schuck VJA, Egnell A-C, Peters SA, Brynne L, Yates JWT, Jansson-Lofmark R, Tan B, et al. 2013. Model-based drug discovery: implementation and impact. Drug Discov Today. 18(15–16):764–775.
  • Wada R, Erickson HK, Lewis Phillips GD, Provenzano CA, Leipold DD, Mai E, Johnson H, Tibbitts J. 2014. Mechanistic pharmacokinetic/pharmacodynamic modeling of in vivo tumor uptake, catabolism, and tumor response of trastuzumab maytansinoid conjugates. Cancer Chemother Pharmacol. 74(5):969–980.
  • Wakankar A, Chen Y, Gokarn Y, Jacobson FS. 2011. Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs. 3(2):161–172.
  • Wang H, Rangan VS, Sung MC, Passmore D, Kempe T, Wang X, Thevanayagam L, Pan C, Rao C, Srinivasan M, Zhang Q, et al. 2016. Pharmacokinetic characterization of BMS-936561, an anti-CD70 antibody-drug conjugate, in preclinical animal species and prediction of its pharmacokinetics in humans. Biopharm Drug Dispos. 37(2):93–106.
  • Wang J, Song P, Schrieber S, Liu Q, Xu Q, Blumenthal G, Amiri Kordestani L, Cortazar P, Ibrahim A, Justice R, et al. 2014. Exposure-response relationship of T-DM1: insight into dose optimization for patients with HER2-positive metastatic breast cancer. Clin Pharmacol Ther. 95(5):558–564.
  • Wang W, Wang EQ, Balthasar JP. 2008. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 84(5):548–558.
  • Wei C, Su D, Wang J, Jian W, Zhang D. 2018. LC–MS challenges in characterizing and quantifying monoclonal antibodies (mAb) and Antibody-Drug Conjugates (ADC) in biological samples. Curr Pharmacol Rep. 4(1):45–63.
  • Wei D, Sullivan M, Espinosa O, Yang L. 2012. A sensitive LC–MS/MS method for the determination of free maytansinoid DM4 concentrations—method development, validation, and application to the nonclinical studies of antitumor agent DM4 conjugated hu-anti-Cripto MAb B3F6 (B3F6-DM4) in rats and monkeys. Int J Mass Spectrom. 312:53–60.
  • Xu K, Liu L, Dere R, Mai E, Erickson R, Hendricks A, Lin K, Junutula JR, Kaur S. 2013. Characterization of the drug-to-antibody ratio distribution for antibody-drug conjugates in plasma/serum. Bioanalysis. 5(9):1057–1071.
  • Xu K, Liu L, Saad OM, Baudys J, Williams L, Leipold D, Shen B, Raab H, Junutula JR, Kim A, et al. 2011. Characterization of intact antibody-drug conjugates from plasma/serum in vivo by affinity capture capillary liquid chromatography-mass spectrometry. Anal Biochem. 412(1):56–66.
  • Xu L, Packer LE, Li C, Abdul-Hadi K, Veiby P. 2017. A generic approach for simultaneous measurements of total antibody and cleavable antibody-conjugated drug by LC/MS/MS. Anal Biochem. 537:33–36.
  • Xu L, Zhang Z, Xu S, Xu J, Lin ZJ, Lee DH. 2019. Simultaneous quantification of total antibody and antibody-conjugated drug for XMT-1522 in human plasma using immunocapture-liquid chromatography/mass spectrometry. J Pharm Biomed Anal. 174:441–449.
  • Yin O, Iwata H, Lin C-C, Tamura K, Watanabe J, Wada R, Kastrissios H, AbuTarif M, Garimella T, Lee C, et al. 2021. Exposure-response relationships in patients with HER2-positive metastatic breast cancer and other solid tumors treated with trastuzumab deruxtecan. Clin Pharmacol Ther. 110(4):986–996.
  • Zhang D, Dragovich PS, Yu SF, Ma Y, Pillow TH, Sadowsky JD, Su D, Wang W, Polson A, Cyrus Khojasteh S, et al. 2019. Exposure-efficacy analysis of antibody-drug conjugates delivering an excessive level of payload to tissues. Drug Metab Dispos. 47(10):1146–1155.
  • Zhu X, Huo S, Xue C, An B, Qu J. 2020. Current LC-MS-based strategies for characterization and quantification of antibody-drug conjugates. J Pharm Anal. 10(3):209–220.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.