Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 53, 2023 - Issue 3
133
Views
1
CrossRef citations to date
0
Altmetric
Animal Pharmacokinetics and Metabolism

Coptisine modulates the pharmacokinetics of florfenicol by targeting CYP1A2, CYP2C11 and CYP3A1 in the liver and P-gp in the jejunum of rats: a pilot study

, , , &
Pages 207-214 | Received 23 Mar 2023, Accepted 03 May 2023, Published online: 15 May 2023

References

  • Abd El-Aty AM, Goudah A, Abo El-Sooud K, El-Zorba HY, Shimoda M, Zhou HH. 2004. Pharmacokinetics and bioavailability of florfenicol following intravenous, intramuscular and oral administrations in rabbits. Vet Res Commun. 28(6):515–524.
  • Balcomb CC, Angelos JA, Chigerwe M, Byrne BA, Lane VM, Wetzlich SE, Sahin O, Holler L, Zhang S, Tell LA. 2018. Comparative pharmacokinetics of two florfenicol formulations following intramuscular and subcutaneous administration to sheep. Am J Vet Res. 79(1):107–114.
  • Cannon M, Harford S, Davies J. 1990. A comparative study on the inhibitory actions of chloramphenicol, thiamphenicol and some fluorinated derivatives. J Antimicrob Chemother. 26(3):307–317.
  • Chen HB, Luo CD, Liang JL, Zhang ZB, Lin GS, Wu JZ, Li CL, Tan LH, Yang XB, Su ZR, et al. 2017. Anti-inflammatory activity of coptisine free base in mice through inhibition of NF-κB and MAPK signaling pathways. Eur J Pharmacol. 811:222–231.
  • Chinese Veterinary Pharmacopoeia Committee. 2020. Veterinary pharmacopoeia of the People’s Republic of China. 2020th ed. Beijing: China Agriculture Press; p. 460–462.
  • European Medicines Agency (EMA) and Committee for Medicinal Products for Human Use (CHMP). 2012. Guideline on Bioanalytical Method Validation. p. 7–8.
  • Fang Y, Li S, Ye L, Yi J, Li X, Gao C, Wu F, Guo B. 2020. Increased bioaffinity and anti-inflammatory activity of florfenicol nanocrystals by wet grinding method. J Microencapsul. 37(2):109–120.
  • Feng JB, Huang DR, Zhong M, Liu P, Dong JD. 2016. Pharmacokinetics of florfenicol and behaviour of its metabolite florfenicol amine in orange-spotted grouper (Epinephelus coioides) after oral administration. J Fish Dis. 39(7):833–843.
  • Geng T, Si H, Kang D, Li Y, Huang W, Ding G, Wang Z, Bi Y, Zhang H, Xiao W. 2015. Influences of Re Du Ning Injection, a traditional Chinese medicine injection, on the CYP450 activities in rats using a cocktail method. J Ethnopharmacol. 174:426–436.
  • Gharaibeh S, Al Rifai R, Al-Majali A. 2010. Molecular typing and antimicrobial susceptibility of Clostridium perfringens from broiler chickens. Anaerobe. 16(6):586–589.
  • Han YL, Yu HL, Li D, Meng XL, Zhou ZY, Yu Q, Zhang XY, Wang FJ, Guo C. 2011. In vitro inhibition of Huanglian [Rhizoma coptidis (L.)] and its six active alkaloids on six cytochrome P450 isoforms in human liver microsomes. Phytother Res. 25(11):1660–1665.
  • Ho SP, Hsu TY, Che MH, Wang WS. 2000. Antibacterial effect of chloramphenicol, thiamphenicol and florfenicol against aquatic animal bacteria. J Vet Med Sci. 62(5):479–485.
  • Hu Y, Wang L, Xiang L, Wu J, Huang W, Xu C, Meng X, Wang P. 2019. Pharmacokinetic-pharmacodynamic modeling for coptisine challenge of inflammation in lps-stimulated rats. Sci Rep. 9(1):1450.
  • Illambas J, Potter T, Sidhu P, Rycroft AN, Cheng Z, Lees P. 2013. Pharmacodynamics of florfenicol for calf pneumonia pathogens. Vet Rec. 172(13):340.
  • Kwon OJ, Kim MY, Shin SH, Lee AR, Lee JY, Seo BI, Shin MR, Choi HG, Kim JA, Min BS, et al. 2016. Antioxidant and anti-inflammatory effects of Rhei rhizoma and Coptidis rhizoma mixture on reflux esophagitis in rats. Evid Based Complement Alternat Med. 2016:2052180.
  • Lei Z, Liu Q, Yang S, Yang B, Khaliq H, Li K, Ahmed S, Sajid A, Zhang B, Chen P, et al. 2018. PK-PD integration modeling and cutoff value of florfenicol against Streptococcus suis in Pigs. Front Pharmacol. 9:2.
  • Li SC, Li XT, Wang B, Yang R, Zhang M, Li JL, Huang W, Cao L, Xiao SY. 2020. Effects of baicalin on pharmacokinetics of florfenicol and mRNA expression of CYP1A2, CYP2C11, CYP3A1, UGT1A1, MDR1, and ABCC2 in rats. Phcog Mag. 16(67):1–6.
  • Li S, Li X, Yuan D, Wang B, Yang R, Zhang M, Li J, Zeng F. 2021. Effects of paeoniflorin on the activities and mRNA expression of rat CYP1A2, CYP2C11 and CYP3A1 enzymes in vivo. Xenobiotica. 51(9):961–967.
  • Liu N. 2011. The metabolism mechanism of florfenicol and drug-drug interaction in rabbits [dissertation]. Nanjing: Nanjing Agricultural University. (In Chinese)
  • Liu N, Guo M, Mo F, Sun YH, Yuan Z, Cao LH, Jiang SX. 2012. Involvement of P-glycoprotein and cytochrome P450 3A in the metabolism of florfenicol of rabbits. J Vet Pharmacol Ther. 35(2):202–205.
  • Liu C, Wang SJ, Zhang Q, Shao YX. 2015. Influence of three coccidiostats on the pharmacokinetics of florfenicol in rabbits. Exp Anim. 64(1):73–79.
  • Liu HZ, Zhang JP, Hu HY, Zhao QB, Zhang ZQ. 2014. Research of Efficient Florfenicol powder. Chinese Journal of Veterinary Medicine. 6(50):76–79. In Chinese
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25(4):402–408.
  • Lloret NL. 2008. Traditional Chinese veterinary medicine. Vet Hist. 14:97–103.
  • Lo A, Burckart GJ. 1999. P-glycoprotein and drug therapy in organ transplantation. J Clin Pharmacol. 39(10):995–1005.
  • McKellar QA, Varma KJ. 1996. Pharmacokinetics and tolerance of florfenicol in Equidae. Equine Vet J. 28(3):209–213.
  • National Research Council (US) Institute for Laboratory Animal Research, 1996. Guide for the Care and Use of Laboratory Animals. Guide for the Care & Use of Laboratory Animals. 103(1):1072–1073.
  • Paape MJ, Miller RH, Ziv G. 1990. Effects of florfenicol, chloramphenicol, and thiamphenicol on phagocytosis, chemiluminescence, and morphology of bovine polymorphonuclear neutrophil leukocytes. J Dairy Sci. 73(7):1734–1744.
  • Pérez R, Palma C, Drápela C, Sepulveda M, Espinoza A, Peñailillo AK. 2015. Pharmacokinetics of florfenicol after intravenous administration in Escherichia coli lipopolysaccharide-induced endotoxaemic sheep. J Vet Pharmacol Ther. 38(2):144–149.
  • Ramakrishna R, Bhateria M, Singh R, Bhatta RS. 2016. Evaluation of the impact of 16-dehydropregnenolone on the activity and expression of rat hepatic cytochrome P450 enzymes. J Steroid Biochem Mol Biol. 163:183–192.
  • Salmon SA, Watts JL. 2000. Minimum inhibitory concentration determinations for various antimicrobial agents against 1570 bacterial isolates from Turkey poults. Avian Diseases. 44(1):85–98.
  • Shen J, Hu D, Wu X, Coats JR. 2003. Bioavailability and pharmacokinetics of florfenicol in broiler chickens. J Vet Pharmacol Ther. 26(5):337–341.
  • Sidhu P, Rassouli A, Illambas J, Potter T, Pelligand L, Rycroft A, Lees P. 2014. Pharmacokinetic-pharmacodynamic integration and modelling of florfenicol in calves. J Vet Pharmacol Ther. 37(3):231–242.
  • Suzuki H, Tanabe H, Mizukami H, Inoue M. 2010. Selective regulation of multidrug resistance protein in vascular smooth muscle cells by the isoquinoline alkaloid coptisine. Biol Pharm Bull. 33(4):677–682.
  • van Erp NP, Baker SD, Zhao M, Rudek MA, Guchelaar HJ, Nortier JW, Sparreboom A, Gelderblom H. 2005. Effect of milk thistle (Silybum marianum) on the pharmacokinetics of irinotecan. Clin Cancer Res. 11(21):7800–7806.
  • Wang GY, Tu P, Chen X, Guo YG, Jiang SX. 2013. Effect of three polyether ionophores on pharmacokinetics of florfenicol in male broilers. J Vet Pharmacol Ther. 36(5):494–501.
  • Xu RA, Xu ZS, Ge RS. 2014. Effects of hydroxysafflor yellow A on the activity and mRNA expression of four CYP isozymes in rats. J Ethnopharmacol. 151(3):1141–1146.
  • Yu CP, Huang CY, Lin SP, Hou YC. 2018. Activation of P-glycoprotein and CYP 3A by Coptidis Rhizoma in vivo: using cyclosporine as a probe substrate in rats. J Food Drug Anal. 26(2S):S125–S132.
  • Zhang X, Qiu F, Jiang J, Gao C, Tan Y. 2011. Intestinal absorption mechanisms of berberine, palmatine, jateorhizine, and coptisine: involvement of P-glycoprotein. Xenobiotica. 41(4):290–296.
  • Zhou SF, Liu JP, Chowbay B. 2009. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev. 41(2):89–295.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.