Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Latest Articles
430
Views
1
CrossRef citations to date
0
Altmetric
Review Article

In silico ADME/tox comes of age: twenty years later

, , &
Received 22 Jun 2023, Accepted 02 Aug 2023, Published online: 08 Aug 2023

References

  • Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, and, others. 2020. Language models are few-shot learners. Available at: https://arxiv.org/abs/2005.14165.
  • Bubeck S, Chandrasekaran V, Eldan R, Gehrke J, Horvitz E, Kamar E, Lee P, Lee YT, Li Y, Lundberg SM, and, others. 2023. Sparks of artificial general intelligence: early experiments with GPT-4. https://arxiv.org/abs/2303.12712.
  • Butina D, Segall MD, Frankcombe K. 2002. Predicting ADME properties in silico: methods and models. Drug Discov Today. 7(11):S83–S8. doi:10.1016/s1359-6446(02)02288-2.
  • Chowdhery A, Narang S, Devlin J, Bosma M, Mishra G, Roberts A, Barham P, Chung HW, Sutton C, Gehrmann S, and, others. 2022. PaLM: scaling language modeling with pathways. p arXiv:2204.02311.
  • Cronin MTD, Belfield SJ, Briggs KA, Enoch SJ, Firman JW, Frericks M, Garrard C, Maccallum PH, Madden JC, Pastor M, and, others. 2023. Making in silico predictive models for toxicology FAIR. Regul Toxicol Pharmacol. 140:105385. doi:10.1016/j.yrtph.2023.105385.
  • Di Lascio E, Gerebtzoff G, Rodriguez-Perez R. 2023. Systematic evaluation of local and global machine learning models for the prediction of ADME properties. Mol Pharm. 20(3):1758–1767. doi:10.1021/acs.molpharmaceut.2c00962.
  • Dickins M, Modi S. 2002. The importance of predictive ADME simulation. Drug Discov Today. 7(14):755–756. doi:10.1016/s1359-6446(02)02357-7.
  • Ekins S. 2014. Progress in computational toxicology. J Pharmacol Toxicol Methods. 69(2):115–140. doi:10.1016/j.vascn.2013.12.003.
  • Ekins S, Boulanger B, Swaan PW, Hupcey MA. 2002. Towards a new age of virtual ADME/TOX and multidimensional drug discovery. J Comput Aided Mol Des. 16(5-6):381–401. doi:10.1023/a:1020816005910.
  • Ekins S, de Groot MJ, Jones JP. 2001. Pharmacophore and three-dimensional quantitative structure activity relationship methods for modeling cytochrome p450 active sites. Drug Metab Dispos. 29(7):936–944.
  • Ekins S, Nikolsky Y, Nikolskaya T. 2005. Techniques: application of systems biology to absorption, distribution, metabolism, excretion and toxicity. Trends Pharmacol Sci. 26(4):202–209. doi:10.1016/j.tips.2005.02.006.
  • Ekins S, Ring BJ, Grace J, McRobie-Belle DJ, Wrighton SA. 2000a. Present and future in vitro approaches for drug metabolism. J Pharmacol Toxicol Methods. 44(1):313–324. doi:10.1016/s1056-8719(00)00110-6.
  • Ekins S, Waller CL, Swaan PW, Cruciani G, Wrighton SA, Wikel JH. 2000b. Progress in predicting human ADME parameters in silico. J Pharmacol Toxicol Methods. 44(1):251–272. doi:10.1016/s1056-8719(00)00109-x.
  • Ekins S, Williams AJ. 2010. Precompetitive preclinical ADME/Tox data: set it free on the web to facilitate computational model building and assist drug development. Lab Chip. 10(1):13–22. doi:10.1039/b917760b.
  • Ekins S, Wrighton SA. 2001. Application of in silico approaches to predicting drug–drug interactions. J Pharmacol Toxicol Methods. 45(1):65–69. doi:10.1016/s1056-8719(01)00119-8.
  • Esposito C, Wang S, Lange UEW, Oellien F, Riniker S. 2020. Combining machine learning and molecular dynamics to predict P-glycoprotein substrates. J Chem Inf Model. 60(10):4730–4749. doi:10.1021/acs.jcim.0c00525.
  • Gill J, Moullet M, Martinsson A, Miljkovic F, Williamson B, Arends RH, Pilla Reddy V. 2023. Evaluating the performance of machine-learning regression models for pharmacokinetic drug-drug interactions. CPT Pharmacometr Syst Pharmacol. 12(1):122–134. doi:10.1002/psp4.12884.
  • Goller AH, Kuhnke L, Montanari F, Bonin A, Schneckener S, Ter Laak A, Wichard J, Lobell M, Hillisch A. 2020. Bayer’s in silico ADMET platform: a journey of machine learning over the past two decades. Drug Discov Today. 25(9):1702–1709. doi:10.1016/j.drudis.2020.07.001.
  • Gupta RR, Gifford EM, Liston T, Waller CL, Hohman M, Bunin BA, Ekins S. 2010. Using open source computational tools for predicting human metabolic stability and additional absorption, distribution, metabolism, excretion, and toxicity properties. Drug Metab Dispos. 38(11):2083–2090. doi:10.1124/dmd.110.034918.
  • Hamzic S, Lewis R, Desrayaud S, Soylu C, Fortunato M, Gerebtzoff G, Rodriguez-Perez R. 2022. Predicting in vivo compound brain penetration using multi-task graph neural networks. J Chem Inf Model. 62(13):3180–3190. doi:10.1021/acs.jcim.2c00412.
  • He J, Nittinger E, Tyrchan C, Czechtizky W, Patronov A, Bjerrum EJ, Engkvist O. 2022. Transformer-based molecular optimization beyond matched molecular pairs. J Cheminform. 14(1):18. doi:10.1186/s13321-022-00599-3.
  • Hoffmann J, Borgeaud S, Mensch A, Buchatskaya E, Cai T, Rutherford E, de Las Casas D, Hendricks LA, Welbl J, Clark A, and, others. 2022. Training compute-optimal large language models. p arXiv:2203.15556.
  • Ietswaart R, Arat S, Chen AX, Farahmand S, Kim B, DuMouchel W, Armstrong D, Fekete A, Sutherland JJ, Urban L. 2020. Machine learning guided association of adverse drug reactions with in vitro target-based pharmacology. EBioMedicine. 57:102837. doi:10.1016/j.ebiom.2020.102837.
  • Irwin R, Dimitriadis S, He J, Bjerrum EJ. 2022. Chemformer: a pre-trained transformer for computational chemistry. Mach Learn: sci Technol. 3(1):015022.
  • Isert C, Kromann JC, Stiefl N, Schneider G, Lewis RA. 2023. Machine learning for fast, quantum mechanics-based approximation of drug lipophilicity. ACS Omega. 8(2):2046–2056. doi:10.1021/acsomega.2c05607.
  • Janssen APA, Grimm SH, Wijdeven RHM, Lenselink EB, Neefjes J, van Boeckel CAA, van Westen GJP, van der Stelt M. 2019. Drug discovery maps, a machine learning model that visualizes and predicts kinome-inhibitor interaction landscapes. J Chem Inf Model. 59(3):1221–1229. doi:10.1021/acs.jcim.8b00640.
  • Kennedy T. 1997. Managing the drug discovery/development interface. Drug Discovery Today. 2(10):436–444. doi:10.1016/S1359-6446(97)01099-4.
  • Komura H, Watanabe R, Kawashima H, Ohashi R, Kuroda M, Sato T, Honma T, Mizuguchi K. 2021. A public-private partnership to enrich the development of in silico predictive models for pharmacokinetic and cardiotoxic properties. Drug Discov Today. 26(5):1275–1283. doi:10.1016/j.drudis.2021.01.024.
  • Konečný J, McMahan B, Ramage D. 2015. Federated optimization: distributed optimization beyond the datacenter. p arXiv:1511.03575.
  • Landrum G, RDkit 2020. Available at: https://www.rdkit.org.
  • Lane TR, Harris J, Urbina F, Ekins S. 2023. Comparing LD50/LC50 machine learning models for multiple species. J Chem Health Saf. 30(2):83–97. doi:10.1021/acs.chas.2c00088.
  • Lewis M, Liu Y, Goyal N, Gazvininejad M, Levy O, Stoyanov V, Zettlemoyer L. 2019. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. https://arxiv.org/abs/1910.13461.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 23(1-3):3–25. doi:10.1016/S0169-409X(96)00423-1.
  • Liu X, Ye K, van Vlijmen HWT, Emmerich MTM, Ij AP, van Westen GJP. 2021. DrugEx v2: de novo design of drug molecules by Pareto-based multi-objective reinforcement learning in polypharmacology. J Cheminform. 13(1):85. doi:10.1186/s13321-021-00561-9.
  • Lombardo F, Desai PV, Arimoto R, Desino KE, Fischer H, Keefer CE, Petersson C, Winiwarter S, Broccatelli F. 2017. In silico absorption, distribution, metabolism, excretion, and pharmacokinetics (ADME-PK): Utility and best practices. An industry perspective from the international consortium for innovation through quality in pharmaceutical development. J Med Chem. 60(22):9097–9113. doi:10.1021/acs.jmedchem.7b00487.
  • Lu J, Zhang Y. 2022. Unified deep learning model for multitask reaction predictions with explanation. J Chem Inf Model. 62(6):1376–1387. doi:10.1021/acs.jcim.1c01467.
  • Mansouri K, Karmaus AL, Fitzpatrick J, Patlewicz G, Pradeep P, Alberga D, Alepee N, Allen TEH, Allen D, Alves VM, et al. 2021. Erratum: CATMoS: Collaborative acute toxicity modeling suite. Environ Health Perspect. 129(10):109001. doi:10.1289/EHP10369.
  • Martin MT, Koza-Taylor P, Di L, Watt ED, Keefer C, Smaltz D, Cook J, Jackson JP. 2022. Early drug-induced liver injury risk screening: "Free," as good as it gets. Toxicol Sci. 188(2):208–218. doi:10.1093/toxsci/kfac054.
  • Minerali E, Foil DH, Zorn KM, Ekins S. 2020. Evaluation of assay central® machine learning models for rat acute oral toxicity prediction. ACS Sustainable Chem Eng. 8(42):16020–16027. doi:10.1021/acssuschemeng.0c06348.
  • Mittone G, Svoboda F, Aldinucci M, Lane ND, Lio P. 2023. A federated learning benchmark for drug-target interaction. p arXiv:2302.07684. doi:10.1145/3543873.3587687.
  • Murad N, Pasikanti KK, Madej BD, Minnich A, McComas JM, Crouch S, Polli JW, Weber AD. 2021. Predicting volume of distribution in humans: performance of in silico methods for a large set of structurally diverse clinical compounds. Drug Metab Dispos. 49(2):169–178. doi:10.1124/dmd.120.000202.
  • Muster W, Breidenbach A, Fischer H, Kirchner S, Muller L, Pahler A. 2008. Computational toxicology in drug development. Drug Discov Today. 13(7-8):303–310. doi:10.1016/j.drudis.2007.12.007.
  • Obrezanova O, Martinsson A, Whitehead T, Mahmoud S, Bender A, Miljkovic F, Grabowski P, Irwin B, Oprisiu I, Conduit G, and, others. 2022. Prediction of in vivo pharmacokinetic parameters and time-exposure curves in rats using machine learning from the chemical structure. Mol Pharm. 19(5):1488–1504. doi:10.1021/acs.molpharmaceut.2c00027.
  • Oldenhof M, Ács G, Pejó B, Schuffenhauer A, Holway N, Sturm N, Dieckmann A, Fortmeier O, Boniface E, Mayer C, and, others. 2022. Industry-scale orchestrated federated learning for drug discovery. p arXiv:2210.08871.
  • Pillai N, Dasgupta A, Sudsakorn S, Fretland J, Mavroudis PD. 2022. Machine learning guided early drug discovery of small molecules. Drug Discov Today. 27(8):2209–2215. doi:10.1016/j.drudis.2022.03.017.
  • Poongavanam V, Kolling F, Giese A, Goller AH, Lehmann L, Meibom D, Kihlberg J. 2023. Predictive modeling of PROTAC cell permeability with machine learning. ACS Omega. 8(6):5901–5916. doi:10.1021/acsomega.2c07717.
  • Ramesh A, Dhariwal P, Nichol A, Chu C, Chen M. 2022. Hierarchical text-conditional image generation with CLIP latents. Available at: https://arxiv.org/abs/2204.06125.
  • Rao M, Nassiri V, Alhambra C, Snoeys J, Van Goethem F, Irrechukwu O, Aleo MD, Geys H, Mitra K, Will Y. 2023. AI/ML models to predict the severity of drug-induced liver injury for small molecules. Chem Res Toxicol. 36(7):1129–1139. doi:10.1021/acs.chemrestox.3c00098.
  • Rao MS, Gupta R, Liguori MJ, Hu M, Huang X, Mantena SR, Mittelstadt SW, Blomme EAG, Van Vleet TR. 2019. Novel computational approach to predict off-target interactions for small molecules. Front Big Data. 2:25. doi:10.3389/fdata.2019.00025.
  • Schaduangrat N, Lampa S, Simeon S, Gleeson MP, Spjuth O, Nantasenamat C. 2020. Towards reproducible computational drug discovery. J Cheminform. 12(1):9. doi:10.1186/s13321-020-0408-x.
  • Schmidt F, Wenzel J, Halland N, Gussregen S, Delafoy L, Czich A. 2019. Computational investigation of drug phototoxicity: photosafety assessment, photo-toxophore identification, and machine learning. Chem Res Toxicol. 32(11):2338–2352. doi:10.1021/acs.chemrestox.9b00338.
  • Selick HE, Beresford AP, Tarbit MH. 2002. The emerging importance of predictive ADME simulation in drug discovery. Drug Discov Today. 7(2):109–116. doi:10.1016/s1359-6446(01)02100-6.
  • Siramshetty V, Williams J, Nguyễn Ð-T, Neyra J, Southall N, Mathé E, Xu X, Shah P. 2021. Validating ADME QSAR models using marketed drugs. SLAS Discov. 26(10):1326–1336. doi:10.1177/24725552211017520.
  • Srivastava A, Rastogi A, Rao A, Shoeb AAM, Abid A, Fisch A, Brown AR, Santoro A, Gupta A, Garriga-Alonso A, and, others. 2022. Beyond the imitation game: quantifying and extrapolating the capabilities of language models. p arXiv:2206.04615.
  • Stahl M, Guba W, Kansy M. 2006. Integrating molecular design resources within modern drug discovery research: the Roche experience. Drug Discov Today. 11(7-8):326–333. doi:10.1016/j.drudis.2006.02.008.
  • Stoyanova R, Katzberger PM, Komissarov L, Khadhraoui A, Sach-Peltason L, Groebke Zbinden K, Schindler T, Manevski N. 2023. Computational predictions of nonclinical pharmacokinetics at the drug design stage. J Chem Inf Model. 63(2):442–458. doi:10.1021/acs.jcim.2c01134.
  • Tysinger EP, Rai BK, Sinitskiy AV. 2023. Can we quickly learn to "translate" bioactive molecules with transformer models? J Chem Inf Model. 63(6):1734–1744. doi:10.1021/acs.jcim.2c01618.
  • van de Waterbeemd H, Gifford E. 2003. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov. 2(3):192–204. doi:10.1038/nrd1032.
  • Van Rompaey D, Morrison D, Van Den Bergh A, Wegner JK. 2023. A symbolic regression model for the prediction of drug binding to human liver microsomes. Mol Pharm. 20(5):2436–2442. doi:10.1021/acs.molpharmaceut.2c01048.
  • Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, HGomez AN, Kaiser L, Plusukhin I. 2017. Attention is all you need. ArXiv, 1706.03762.
  • Volak LP, Duevel HM, Humphreys S, Nettleton D, Phipps C, Pike A, Rynn C, Scott-Stevens P, Zhang D, Zientek M. 2023. Industry perspective on the pharmacokinetic and ADME characterization of heterobifunctional protein degraders. Drug Metab Dispos. 51(7):792–803. doi:10.1124/dmd.122.001154.
  • Weininger D. 1988. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci. 28(1):31–36. doi:10.1021/ci00057a005.
  • Willighagen EL, Mayfield JW, Alvarsson J, Berg A, Carlsson L, Jeliazkova N, Kuhn S, Pluskal T, Rojas-Cherto M, Spjuth O, and, others. 2017. The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching. J Cheminform. 9(1):33. doi:10.1186/s13321-017-0220-4.
  • Winiwarter S, Chang G, Desai P, Menzel K, Faller B, Arimoto R, Keefer C, Broccatelli F. 2019. Correction to "prediction of fraction unbound in microsomal and hepatocyte incubations: a comparison of methods across industry datasets". Mol Pharm. 16(11):4755. doi:10.1021/acs.molpharmaceut.9b00993.
  • Yu H, Adedoyin A. 2003. ADME-Tox in drug discovery: integration of experimental and computational technologies. Drug Discov Today. 8(18):852–861. doi:10.1016/s1359-6446(03)02828-9.
  • Zeller A, Brigo A, Brink A, Guerard M, Lang D, Muster W, Runge F, Sutter A, Vock E, Wichard J, et al. 2020. Genotoxicity assessment of drug metabolites in the context of MIST and beyond. Chem Res Toxicol. 33(1):10–19. doi:10.1021/acs.chemrestox.9b00348.
  • Zhang J, Norinder U, Svensson F. 2021. Deep learning-based conformal prediction of toxicity. J Chem Inf Model. 61(6):2648–2657. doi:10.1021/acs.jcim.1c00208.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.