Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 53, 2023 - Issue 5
218
Views
2
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Physiologically based pharmacokinetic modelling to predict drug–drug interactions for encorafenib. Part I. Model building, validation, and prospective predictions with enzyme inhibitors, inducers, and transporter inhibitors

, &
Pages 366-381 | Received 29 Jun 2023, Accepted 18 Aug 2023, Published online: 04 Sep 2023

References

  • Abouir K, Samer CF, Gloor Y, Desmeules JA, Daali Y. 2021. Reviewing data integrated for PBPK model development to predict metabolic drug–drug interactions: shifting perspectives and emerging trends. Front Pharmacol. 12:708299. doi: 10.3389/fphar.2021.708299.
  • Baneyx G, Parrott N, Meille C, Iliadis A, Lavé T. 2014. Physiologically based pharmacokinetic modeling of CYP3A4 induction by rifampicin in human: influence of time between substrate and inducer administration. Eur J Pharm Sci. 56:1–15. doi: 10.1016/j.ejps.2014.02.002.
  • Bhatnagar S, Mukherjee D, Salem AH, Miles D, Menon RM, Gibbs JP. 2021. Dose adjustment of venetoclax when co-administered with posaconazole: clinical drug–drug interaction predictions using a PBPK approach. Cancer Chemother Pharmacol. 87(4):465–474. doi: 10.1007/s00280-020-04179-w.
  • Bhattacharya SA, Singh D, Aich J, Ajaz A, Shete MB. 2022. Development and characterization of hyaluronic acid surface scaffolds encorafenib loaded polymeric nanoparticles for colorectal cancer targeting. Mater Today Commun. 31:103757. doi: 10.1016/j.mtcomm.2022.103757.
  • Chen Y, Jin JY, Mukadam S, Malhi V, Kenny JR. 2012. Application of IVIVE and PBPK modeling in prospective prediction of clinical pharmacokinetics: strategy and approach during the drug discovery phase with four case studies. Biopharm Drug Dispos. 33(2):85–98. doi: 10.1002/bdd.1769.
  • Cui C, Valerie Sia JE, Tu S, Li X, Dong Z, Yu Z, Yao X, Hatley O, Li H, Liu D. 2021. Development of a physiologically based pharmacokinetic (PBPK) population model for Chinese elderly subjects. Br J Clin Pharmacol. 87(7):2711–2722. doi: 10.1111/bcp.14609.
  • Deb S, Hopefl R. 2023. Simulation of drug–drug interactions between breast cancer chemotherapeutic agents and antiemetic drugs. Daru. doi: 10.1007/s40199-023-00463-1.
  • Del Frari L, Lukacova V, Reddy M. 2023. Real world impact + regulatory decision making track poster presentation: building of encorafenib physiologically based pharmacokinetic model and its qualification to predict drug drug interaction with posaconazole. In: MIDD 2023 Conference, Simulations-Plus; [accessed 2023 Jun 15]. https://www.simulations-plus.com/wp-content/uploads/Laurence_DelFrari-MIDD_16FEB2023.pdf.
  • Dodd S, Kollipara S, Sanchez-Felix M, Kim H, Meng Q, Beato S, Heimbach T. 2019. Prediction of ARA/PPI drug–drug interactions at the drug discovery and development interface. J Pharm Sci. 108(1):87–101. doi: 10.1016/j.xphs.2018.10.032.
  • Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G, Garbe C, Schadendorf D, Krajsova I, Gutzmer R, et al. 2018. Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 19(10):1315–1327. doi: 10.1016/S1470-2045(18)30497-2.
  • EMA. 2013. Guideline on the investigation of drug interactions; [accessed 2023 Jun 15]. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf.
  • EMA. 2018a. Encorafenib summary of product characteristics; [accessed 2023 Jun 15]. https://www.ema.europa.eu/en/documents/product-information/braftovi-epar-product-information_en.pdf.
  • EMA. 2018b. Guideline on the reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation; [accessed 2023 Jun 15]. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-reporting-physiologically-based-pharmacokinetic-pbpk-modelling-simulation_en.pdf.
  • EMA. 2018c. Encorafenib public assessment report; [accessed 2023 Aug 16]. https://www.ema.europa.eu/en/documents/assessment-report/braftovi-epar-public-assessment-report_en.pdf.
  • Ervine CM, Houston JB. 1994. Disposition of azole antifungal agents. III. Binding of fluconazole and other azoles in rat liver. Pharm Res. 11(7):961–965. doi: 10.1023/a:1018918917046.
  • Franchetti Y, Nolin TD. 2020. Dose optimization in kidney disease: opportunities for PBPK modeling and simulation. J Clin Pharmacol. 60(Suppl. 1):S36–S51. doi: 10.1002/jcph.1741.
  • Gill J, Moullet M, Martinsson A, Miljković F, Williamson B, Arends RH, Pilla Reddy V. 2022. Comparing the applications of machine learning, PBPK, and population pharmacokinetic models in pharmacokinetic drug–drug interaction prediction. CPT Pharmacometrics Syst Pharmacol. 11(12):1560–1568. doi: 10.1002/psp4.12870.
  • Guest EJ, Aarons L, Houston JB, Rostami-Hodjegan A, Galetin A. 2011. Critique of the two-fold measure of prediction success for ratios: application for the assessment of drug–drug interactions. Drug Metab Dispos. 39(2):170–173. doi: 10.1124/dmd.110.036103.
  • Koelblinger P, Thuerigen O, Dummer R. 2018. Development of encorafenib for BRAF-mutated advanced melanoma. Curr Opin Oncol. 30(2):125–133. doi: 10.1097/CCO.0000000000000426.
  • Kollipara S, Ahmed T, Praveen S. 2023a. Physiologically based pharmacokinetic modeling (PBPK) to predict drug-drug interactions for encorafenib. Part II. Prospective predictions in hepatic and renal impaired populations with clinical inhibitors and inducers. Xenobiotica. 1–24. doi: 10.1080/00498254.2023.2246153.
  • Kollipara S, Bhattiprolu AK, Boddu R, Ahmed T, Chachad S. 2023b. Best practices for integration of dissolution data into physiologically based biopharmaceutics models (PBBM): a biopharmaceutics modeling scientist perspective. AAPS PharmSciTech. 24(2):59. doi: 10.1208/s12249-023-02521-y.
  • Liu L, Bello A, Dresser MJ, Heald D, Komjathy SF, O'Mara E, Rogge M, Stoch SA, Robertson SM. 2016. Best practices for the use of itraconazole as a replacement for ketoconazole in drug–drug interaction studies. J Clin Pharmacol. 56(2):143–151. doi: 10.1002/jcph.562.
  • Lukacova V, Parrott NJ, Lave T, Franczkiewicz G, Bolger MB, Woltosz WS. 2008. General approach to calculation of tissue: plasma partition coefficients for physiologically based pharmacokinetic (PBPK) modeling; [accessed 2023 Jun 15]. https://www.simulations-plus.com/wp-content/uploads/Lukacova-General_Approach_Calc_Tissue_Plasma_Partition_Coefficients_PBPK_Modeling-AAPS-2008-1.pdf.
  • Maharaj AR, Barrett JS, Edginton AN. 2013. A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J. 15(2):455–464. doi: 10.1208/s12248-013-9451-0.
  • Marques L, Vale N. 2023. Prediction of CYP-mediated drug interaction using physiologically based pharmacokinetic modeling: a case study of salbutamol and fluvoxamine. Pharmaceutics. 15(6):1586. doi: 10.3390/pharmaceutics15061586.
  • Marsousi N, Desmeules JA, Rudaz S, Daali Y. 2017. Usefulness of PBPK modeling in incorporation of clinical conditions in personalized medicine. J Pharm Sci. 106(9):2380–2391. doi: 10.1016/j.xphs.2017.04.035.
  • Naga D, Parrott N, Ecker GF, Olivares-Morales A. 2022. Evaluation of the success of high-throughput physiologically based pharmacokinetic (HT-PBPK) modeling predictions to inform early drug discovery. Mol Pharm. 19(7):2203–2216. doi: 10.1021/acs.molpharmaceut.2c00040.
  • Piscitelli J, Hens B, Tomaszewska I, Wollenberg L, Litwiler K, McAllister M, Reddy M. 2023. Effect of food and a proton-pump inhibitor on the absorption of encorafenib: an in vivo–in vitro–in silico approach. Mol Pharm. 20(5):2589–2599. doi: 10.1021/acs.molpharmaceut.3c00016.
  • Poulin P, Haddad S. 2011. Microsome composition-based model as a mechanistic tool to predict nonspecific binding of drugs in liver microsomes. J Pharm Sci. 100(10):4501–4517. doi: 10.1002/jps.22619.
  • Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A, Bernards R. 2012. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 483(7387):100–103. doi: 10.1038/nature10868.
  • Ren HC, Sai Y, Chen T, Zhang C, Tang L, Yang CG. 2022. Predicting the drug–drug interaction mediated by CYP3A4 inhibition: method development and performance evaluation. AAPS J. 24(1):12. doi: 10.1208/s12248-021-00659-w.
  • Rodgers T, Rowland M. 2006. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 95(6):1238–1257. doi: 10.1002/jps.20502.
  • Roviello G, D'Angelo A, Petrioli R, Roviello F, Cianchi F, Nobili S, Mini E, Lavacchi D. 2020. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. Transl Oncol. 13(9):100795. doi: 10.1016/j.tranon.2020.100795.
  • Srinivas NR. 2016. Dual incorporation of the in vitro data (IC50) and in vivo (Cmax) data for the prediction of area under the curve (AUC) for statins using regression models developed for either pravastatin or simvastatin. Drug Res. 66(8):402–406. doi: 10.1055/s-0042-106289.
  • Trojaniello C, Festino L, Vanella V, Ascierto PA. 2019. Encorafenib in combination with binimetinib for unresectable or metastatic melanoma with BRAF mutations. Expert Rev Clin Pharmacol. 12(3):259–266. doi: 10.1080/17512433.2019.1570847.
  • USFDA. 2018a. Encorafenib multi-disciplinary review; [accessed 2023 Jun 15]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210496Orig1s000MultidisciplineR.pdf.
  • USFDA. 2018b. Encorafenib label; [accessed 2023 Jun 15]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/210496s006lbl.pdf.
  • USFDA. 2020. Clinical drug interaction studies—cytochrome P450 enzyme- and transporter-mediated drug interactions; [accessed 2023 Jun 15]. https://www.fda.gov/media/134581/download.
  • USFDA. 2020a. The use of physiologically based pharmacokinetic analyses-biopharmaceutics applications for oral drug product development, manufacturing changes, and controls guidance for industry; [accessed 2023 Jun 15]. https://www.fda.gov/media/142500/download.
  • USFDA. 2020b. Clinical drug interaction studies—cytochrome P450 enzyme- and transporter-mediated drug interactions; [accessed 2023 Jun 15]. https://www.fda.gov/media/134581/download.
  • USFDA. 2023. Drug development and drug interactions | table of substrates, inhibitors and inducers; [accessed 2023 Jun 15]. https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers.
  • van Geel RMJM, Tabernero J, Elez E, Bendell JC, Spreafico A, Schuler M, Yoshino T, Delord J-P, Yamada Y, Lolkema MP, et al. 2017. A phase Ib dose-escalation study of encorafenib and cetuximab with or without alpelisib in metastatic BRAF-mutant colorectal cancer. Cancer Discov. 7(6):610–619. doi: 10.1158/2159-8290.CD-16-0795.
  • Wu D, Sanghavi M, Kollipara S, Ahmed T, Saini AK, Heimbach T. 2023. Physiologically based pharmacokinetics modeling in biopharmaceutics: case studies for establishing the bioequivalence safe space for innovator and generic drugs. Pharm Res. 40(2):337–357. doi: 10.1007/s11095-022-03319-6.
  • Yau E, Gertz M, Ogungbenro K, Aarons L, Olivares-Morales A. 2023. A “middle-out approach” for the prediction of human drug disposition from preclinical data using simplified physiologically based pharmacokinetic (PBPK) models. CPT Pharmacometrics Syst Pharmacol. 12(3):346–359. doi: 10.1002/psp4.12915.
  • Yeo KR, Walsky RL, Jamei M, Rostami-Hodjegan A, Tucker GT. 2011. Prediction of time-dependent CYP3A4 drug–drug interactions by physiologically based pharmacokinetic modelling: impact of inactivation parameters and enzyme turnover. Eur J Pharm Sci. 43(3):160–173. doi: 10.1016/j.ejps.2011.04.008.
  • Zhao P, Lee CA, Kunze KL. 2007. Sequential metabolism is responsible for diltiazem-induced time-dependent loss of CYP3A. Drug Metab Dispos. 35(5):704–712. doi: 10.1124/dmd.106.013847.
  • Zhuang X, Lu C. 2016. PBPK modeling and simulation in drug research and development. Acta Pharm Sin B. 6(5):430–440. doi: 10.1016/j.apsb.2016.04.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.