Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 54, 2024 - Issue 5
742
Views
0
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Assessment of cytochrome P450 induction in canine intestinal organoid models

, , , &
Pages 217-225 | Received 12 Dec 2023, Accepted 02 Mar 2024, Published online: 13 Mar 2024

References

  • Ambrosini YM, Park Y, Jergens AE, Shin W, Min S, Atherly T, Borcherding DC, Jang J, Allenspach K, Mochel JP, et al. 2020. Recapitulation of the accessible interface of biopsy-derived canine intestinal organoids to study epithelial-luminal interactions. PLoS One. 15 (4):e0231423. doi: 10.1371/journal.pone.0231423.
  • Brück S, Strohmeier J, Busch D, Drozdzik M, Oswald S. 2017. Caco-2 cells – expression, regulation and function of drug transporters compared with human jejunal tissue. Biopharm Drug Dispos. 38 (2):115–126. doi: 10.1002/bdd.2025.
  • Brueck S, Bruckmueller H, Wegner D, Busch D, Martin P, Oswald S, Cascorbi I, Siegmund W. 2019. Transcriptional and post-transcriptional regulation of duodenal P-glycoprotein and MRP2 in healthy human subjects after chronic treatment with rifampin and carbamazepine. Mol Pharm. 16 (9):3823–3830. doi: 10.1021/acs.molpharmaceut.9b00458.
  • Chandra L, Borcherding DC, Kingsbury D, Atherly T, Ambrosini YM, Bourgois-Mochel A, Yuan W, Kimber M, Qi Y, Wang Q, et al. 2019. Derivation of adult canine intestinal organoids for translational research in gastroenterology. BMC Biol. 17 (1):33. doi: 10.1186/s12915-019-0652-6.
  • Corfield AP. 2015. Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta. 1850 (1):236–252. doi: 10.1016/j.bbagen.2014.05.003.
  • Court MH. 2013a. Canine cytochrome P450 (CYP) pharmacogenetics.” Veterinary Clinics of North America. Vet Clin North Am Small Anim Pract. 43 (5):1027–1038. doi: 10.1016/j.cvsm.2013.05.001.Canine.
  • Court MH. 2013b. Canine cytochrome P-450 pharmacogenetics. Vet Clin North Am Small Anim Pract. 43 (5):1027–1038. doi: 10.1016/j.cvsm.2013.05.001.
  • Dressman JB, Thelen K. 2009. Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol. 61 (5):541–558. doi: 10.1211/jpp/61.05.0002.
  • Fogh J, Wright WC, Loveless JD. 1977. Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J Natl Cancer Inst. 58 (2):209–214. doi: 10.1093/jnci/58.2.209.
  • Gabriel V, Zdyrski C, Sahoo DK, Dao K, Bourgois-Mochel A, Atherly T, Martinez MN, Volpe DA, Kopper J, Allenspach K, Mochel JP. 2022. Canine intestinal organoids in a dual-chamber permeable support system. J Vis Exp. March 2 (181). doi: 10.3791/63612.
  • Graham RA, Downey A, Mudra D, Krueger L, Carroll K, Chengelis C, Madan A, Parkinson A. 2002. In vivo and in vitro induction of cytochrome P450 enzymes in beagle dogs. Drug Metab Dispos. 30 (11):1206–1213. doi: 10.1124/dmd.30.11.1206.
  • Greger DL, Gropp F, Morel C, Sauter S, Blum JW. 2006. Nuclear receptor and target gene MRNA abundance in duodenum and colon of dogs with chronic enteropathies. Domest Anim Endocrinol. 31 (4):327–339. doi: 10.1016/j.domaniend.2005.12.002.
  • Heijmans J, van Lidth de Jeude JF, Koo B-K, Rosekrans SL, Wielenga MCB, van de Wetering M, Ferrante M, Lee AS, Onderwater JJM, Paton JC, et al. 2013. ER stress causes rapid loss of intestinal epithelial stemness through activation of the unfolded protein response. Cell Rep. 3 (4): 1128–1139. doi: 10.1016/j.celrep.2013.02.031.
  • Heikkinen AT, Fowler S, Gray L, Li J, Peng Y, Yadava P, Railkar A, Parrott N. 2013. In vitro to in vivo extrapolation and physiologically based modeling of cytochrome P450 mediated metabolism in beagle dog gut wall and liver. Mol Pharm. 10 (4):1388–1399. doi: 10.1021/mp300692k.
  • Heikkinen AT, Friedlein A, Lamerz J, Jakob P, Cutler P, Fowler S, Williamson T, Tolando R, Lave T, Parrott N. 2012. Mass spectrometry-based quantification of CYP enzymes to establish in vitro/in vivo scaling factors for intestinal and hepatic metabolism in beagle dog. Pharm Res. 29 (7):1832–1842. doi: 10.1007/s11095-012-0707-7.
  • Heikkinen AT, Friedlein A, Matondo M, Hatley OJD, Petsalo A, Juvonen R, Galetin A, Rostami-Hodjegan A, Aebersold R, Lamerz J, et al. 2015. Quantitative ADME proteomics - CYP and UGT enzymes in the beagle dog liver and intestine. Pharm Res. 32 (1):74–90. doi: 10.1007/s11095-014-1446-8.
  • Janssen AWF, Duivenvoorde LPM, Rijkers D, Nijssen R, Peijnenburg AACM, van der Zande M, Louisse J. 2021. Cytochrome P450 expression, induction and activity in human induced pluripotent stem cell-derived intestinal organoids and comparison with primary human intestinal epithelial cells and Caco-2 cells. Arch Toxicol. 95 (3):907–922. doi: 10.1007/s00204-020-02953-6.
  • Kamimura H. 2006. Genetic polymorphism of cytochrome P450s in beagles: possible influence of CYP1A2 deficiency on toxicological evaluations. Arch Toxicol. 80 (11):732–738. doi: 10.1007/s00204-006-0100-6.
  • Kawalek JC, Howard KD, Farrell DE, Derr J, Cope CV, Jackson JD, Myers MJ. 2003. Effect of oral administration of low doses of pentobarbital on the induction of cytochrome P450 isoforms and cytochrome P450-mediated reactions in immature beagles. Am J Vet Res. 64 (9):1167–1175. doi: 10.2460/ajvr.2003.64.1167.
  • Kopper JJ, Iennarella-Servantez C, Jergens AE, Sahoo DK, Guillot E, Bourgois-Mochel A, Martinez MN, Allenspach K, Mochel JP. 2021. Harnessing the biology of canine intestinal organoids to heighten understanding of inflammatory bowel disease pathogenesis and accelerate drug discovery: a one health approach. Front Toxicol. 3 (November):773953. doi: 10.3389/ftox.2021.773953.
  • Martinez MN, Antonovic L, Court M, Dacasto M, Fink-Gremmels J, Kukanich B, Locuson C, Mealey K, Myers MJ, Trepanier L. 2013. Challenges in exploring the cytochrome P450 system as a source of variation in canine drug pharmacokinetics. Drug Metab Rev. 45 (2):218–230. doi: 10.3109/03602532.2013.765445.
  • Myers MJ, Farrell DE, Howard KD, Kawalek JC. 2001. Identification of multiple constitutive and inducible hepatic cytochrome P450 enzymes in market weight swine. Drug Metab Dispos Biol Fate Chem. 29 (6):908–915.
  • Nantasanti S, de Bruin A, Rothuizen J, Penning LC, Schotanus BA. 2016. Concise review: organoids are a powerful tool for the study of liver disease and personalized treatment design in humans and animals. Stem Cells Transl Med. 5 (3):325–330. doi: 10.5966/sctm.2015-0152.
  • Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. 2006. The human intestinal cytochrome P450 ‘Pie. Drug Metab Dispos. 34 (5):880–886. doi: 10.1124/dmd.105.008672.
  • Park E, Kim HK, Jee J, Hahn S, Jeong S, Yoo J. 2019. Development of organoid-based drug metabolism model. Toxicol Appl Pharmacol. 385 (December):114790. doi: 10.1016/j.taap.2019.114790.
  • Peters IR, Peeters D, Helps CR, Day MJ. 2007. Development and application of multiple internal reference (housekeeper) gene assays for accurate normalisation of canine gene expression studies. Vet Immunol Immunopathol. 117 (1–2):55–66. doi: 10.1016/j.vetimm.2007.01.011.
  • Powell RH, Behnke MS. 2017. WRN conditioned media is sufficient for in vitro propagation of intestinal organoids from large farm and small companion animals. Biol Open. 6 (5):698–705. doi: 10.1242/bio.021717.
  • Sahoo DK, Martinez MN, Dao K, Gabriel V, Zdyrski C, Jergens AE, Atherly T, Iennarella-Servantez CA, Burns LE, Schrunk D, et al. 2023. Canine intestinal organoids as a novel in vitro model of intestinal drug permeability: a proof-of-concept study. Cells. 12 (9):1269. doi: 10.3390/CELLS12091269/S1.
  • Sato T, Stange DE, Ferrante M, Vries RGJ, Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD, et al. 2011. Long-term expansion of epithelial rganoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 141 (5) :1762–1772. doi: 10.1053/j.gastro.2011.07.050.
  • Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9 (7):671–675. doi: 10.1038/nmeth.2089.
  • Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. 1994. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 270 (1):414–423.
  • Sigurdsson HH, Kirch J, Lehr CM. 2013. Mucus as a barrier to lipophilic drugs. Int J Pharm. 453 (1):56–64. doi: 10.1016/j.ijpharm.2013.05.040.
  • Stipp MC, Acco A. 2021. Involvement of cytochrome P450 enzymes in inflammation and cancer: a review. Cancer Chemother Pharmacol. 87 (3):295–309. doi: 10.1007/s00280-020-04181-2.
  • Stresser DM, Sun J, Wilson SS. 2021. Evaluation of tissue stem cell-derived human intestinal organoids, a physiologically relevant model to evaluate cytochrome P450 induction in gut. Drug Metab Dispos. 49 (3):245–253. doi: 10.1124/DMD.120.000281.
  • Takahashi Y, Noguchi M, Inoue Y, Sato S, Shimizu M, Kojima H, Okabe T, Kiyono H, Yamauchi Y, Sato R. 2022. Organoid-derived intestinal epithelial cells are a suitable model for preclinical toxicology and pharmacokinetic studies. IScience. 25 (7):104542. doi: 10.1016/j.isci.2022.104542.
  • Uno Y, Jikuya S, Noda Y, Murayama N, Yamazaki H. 2023. A comprehensive investigation of dog cytochrome P450 3A (CYP3A) reveals a functional role of newly identified CYP3A98 in small intestine. Drug Metab Dispos. 51 (1):38–45. doi: 10.1124/dmd.121.000749.
  • Wenzel C, Gödtke L, Reichstein A, Keiser M, Busch D, Drozdzik M, Oswald S. 2022. Gene expression and protein abundance of nuclear receptors in human intestine and liver: a new application for mass spectrometry-based targeted proteomics. Molecules. 27 (14):4629. doi: 10.3390/molecules27144629.
  • Zanger UM, Schwab M. 2013. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 138 (1): 103–141. doi: 10.1016/j.pharmthera.2012.12.007.
  • Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, Huai C, et al. 2021. Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci. 22(23):1–16. doi: 10.3390/ijms222312808.