Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Latest Articles
35
Views
0
CrossRef citations to date
0
Altmetric
Topics in Xenobiochemistry

Teratogenicity is more likely a function of primary and secondary pharmacology than caused by chemically reactive metabolites: a critical evaluation of 40 years of scientific research

Received 01 May 2024, Accepted 06 Jun 2024, Published online: 01 Jul 2024

References

  • Abdelsayed M, Sokolov S. 2013. Voltage-gated sodium channels: pharmaceutical targets via anticonvulsants to treat epileptic syndromes. Channels. 7(3):146–152. doi: 10.4161/chan.24380.
  • Aikawa N. 2020. A novel screening test to predict the developmental toxicity of drugs using human induced pluripotent stem cells. J Toxicol Sci. 45(4):187–199. doi: 10.2131/jts.45.187.
  • Alwan S, Chambers CD. 2015. Identifying human teratogens: an update. J Pediatr Genet. 4(2):39–41.
  • Amore BM, Kalhorn TF, Skiles GL, Hunter AP, Bennett GD, Finnell RH, Nelson SD, Slattery JT. 1997. Characterization of carbamazepine metabolism in a mouse model of carbamazepine teratogenicity. Drug Metab Dispos. 25(8):953–962.
  • Arafa HM, Elmazar MM, Hamada FM, Reichert U, Shroot B, Nau H. 2000. Selective agonists of retinoic acid receptors: comparative toxicokinetics and embryonic exposure. Arch Toxicol. 73(10-11):547–556. doi: 10.1007/s002040050007.
  • Bender A, Cortés-Ciriano I. 2021. Artificial intelligence in drug discovery. Drug Discov Today. 26(2):511–524. doi: 10.1016/j.drudis.2020.12.009.
  • Bennett GD, Amore BM, Finnell RH, Wlodarczyk B, Kalhorn TF, Skiles GL, Nelson SD, Slattery JT. 1996. Teratogenicity of carbamazepine-10, 11-epoxide and oxcarbazepine in the SWV mouse. J.pharm Exp Therap. 279(3):1237–1242.
  • Bernus I, Dickinson RG, Hooper WD, Eadie MJ. 1996. Dose-dependent metabolism of carbamazepine in humans. Epilepsy Res. 24(3):163–172. doi: 10.1016/0920-1211(96)00011-3.
  • Beutler AS, Li S, Nicol R, Walsh MJ. 2005. Carbamazepine is an inhibitor of histone deacetylases. Life Sci. 13(26):3107–3115.
  • Brazzell RK, Colburn WA. 1982. Pharmacokinetics of the retinoids isotretinoin and etretinate: a comparative review. J Am Acad Dermatol. 6(4 Pt 2):643–651. doi: 10.1016/s0190-9622(82)70053-2.
  • Bu HZ, Kang P, Deese AJ, Zhao P, Pool WF. 2005. Human in vitro glutathionyl and protein adducts of carbamazepine-10, 11-epoxide, a stable and pharmacologically active metabolite of carbamazepine. Drug Met Disp. 33(12):1920–1924.
  • Chen H, Juchau MR. 1998. Recombinant human glutathione S-transferases catalyse enzymic isomerization of 13-cis-retinoic acid to all-trans-retinoic acid in vitro. Biochem J. 336(Pt 1):223–226. doi: 10.1042/bj3360223.
  • Chung F, Lu J, Palmer BD, Kestell P, Browett P, Baguley BC, Tingle M, Ching LM. 2004. Thalidomide pharmacokinetics and metabolite formation in mice, rabbits, and multiple myeloma patients. Clin Cancer Res. 10(17):5949–5956. doi: 10.1158/1078-0432.CCR-04-0421.
  • Colleoni S, Galli C, A Gaspar J, Meganathan K, Jagtap S, Hescheler J, Sachinidis A, Lazzari G. 2012. Characterisation of a neural teratogenicity assay based on human ESCs differentiation following exposure to valproic acid. CMC. 19(35):6065–6071. doi: 10.2174/0929867311209066065.
  • Conaway HH, Henning P, Lerner UH. 2013. Vitamin a metabolism, action, and role in skeletal homeostasis. Endocr Rev. 34(6):766–797.
  • Cuttle L, Munns AJ, Hogg NA, Scott JR, Hooper WD, Dickinson RG, Gillam EM. 2000. Phenytoin metabolism by human cytochrome P450: involvement of P450 3A and 2C forms in secondary metabolism and drug-protein adduct formation. Drug Metab Dispos. 28(8):945–950.
  • Danielsson BR, Johansson A, Danielsson C, Azarbayjani F, Blomgren B, Sköld AC. 2005. Phenytoin teratogenicity: hypoxia marker and effects on embryonic heart rhythm suggest an hERG-related mechanism. Birth Defects Res A Clin Mol Teratol. 73(3):146–153. doi: 10.1002/bdra.20124.
  • Danielsson BR, Lansdell K, Patmore L, Tomson T. 2005. Effects of the antiepileptic drugs lamotrigine, topiramate and gabapentin on hERG potassium currents. Epilepsy Res. 63(1):17–25. doi: 10.1016/j.eplepsyres.2004.10.002.
  • Davies JA. 1995. Mechanisms of action of antiepileptic drugs. Seizure. 4(4):267–271. doi: 10.1016/s1059-1311(95)80003-4.
  • De Santis M, Straface G, Carducci B, Cavaliere AFD, Santis L, Lucchese A, Merola AM, Caruso A. 2004. Risk of drug-induced congenital defects. Eur J Obstet Gynecol Reprod Biol. 117(1):10–19. doi: 10.1016/j.ejogrb.2004.04.022.
  • Eichelbaum M, Tomson T, Tybring G, Bertilsson L. 1985. Carbamazepine metabolism in man: induction and pharmacogenetic aspects. Clin Pharmacokinet. 10 (1):80–90. doi: 10.2165/00003088-198510010-00004.
  • Eikel D, Lampen A, Nau H. 2006. Teratogenic effects mediated by inhibition of histone deacetylases: evidence from quantitative structure activity relationships of 20 valproic acid derivatives. Chem Res Toxicol. 19(2):272–278. doi: 10.1021/tx0502241.
  • Fathe K, Palacios A, Finnell RH. 2014. Brief report novel mechanism for valproate-induced teratogenicity. Birth Defects Res A Clin Mol Teratol. 100(8):592–597. doi: 10.1002/bdra.23277.
  • Finnell RH, Bennett GD, Slattery JT, Amore BM, Bajpai M, Levy RH. 1995. Effect of treatment with phenobarbital and stiripentol on carbamazepine-induced teratogenicity and reactive metabolite formation. Teratology. 52(6):324–332. doi: 10.1002/tera.1420520603.
  • Fortuna A, Alves G, Soares-da-Silva P, Falcão A. 2013. Pharmacokinetics, brain distribution and plasma protein binding of carbamazepine and nine derivatives: new set of data for predictive in silico ADME models. Epilepsy Res. 107(1-2):37–50. doi: 10.1016/j.eplepsyres.2013.08.013.
  • Fratta D, Sigg EB, Maiorana K. 1965. Teratogenic effects of thalidomide in rabbits, rats, hamsters, and mice. Toxicol Appl Pharmacol. 7(2):268–286. doi: 10.1016/0041-008x(65)90095-5.
  • Fritz H, Müller D, Hess R. 1976. Comparative study of the teratogenicity of phenobarbitone, diphenlhydatoin and carbamazepine in mice. Toxicology. 6(3):323–330. doi: 10.1016/0300-483x(76)90036-6.
  • Furihata H, Yamanaka S, Honda T, Miyauchi Y, Asano A, Shibata N, Tanokura M, Sawasaki T, Miyakawa T. 2020. Structural bases of IMiD selectivity that emerges by 5hydroxythalidomide. Nature Comms. 11(1):4578.
  • Furst SM, Uetrecht JP. 1993. Carbamazepine metabolism to a reactive intermediate by the myeloperoxidase system of activated neutrophils. Biochem Pharmacol. 4(6):1267–1275.
  • Ghodke-Puranik Y, Thorn CF, Lamba JK, Leeder JS, Song W, Birnbaum AK, Altman RB, Klein TE. 2013. Valproic acid pathway: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 23(4):236–241. doi: 10.1097/FPC.0b013e32835ea0b2.
  • Gordon GB, Spielberg SP, Blake DA, Balasubramanian V. 1981. Thalidomide teratogenesis: evidence for a toxic arene oxide metabolite. Proc Natl Acad Sci U S A. 78(4):2545–2548. doi: 10.1073/pnas.78.4.2545.
  • Graham GG, Davies MJ, Day RO, Mohamudally A, Scott KF. 2013. The modern pharmacology of paracetamol: therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings. Inflammopharmacology. 21(3):201–232. doi: 10.1007/s10787-013-0172-x.
  • Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS. 2004. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res. 64(3):1079–1086. doi: 10.1158/0008-5472.can-03-0799.
  • Güveli BT, Rosti RÖ, Güzeltaş A, Tuna EB, Ataklı D, Sencer S, Yekeler E, Kayserili H, Dirican A, Bebek N, et al. 2017. Teratogenicity of antiepileptic drugs. Clin Psychopharmacol Neurosci. 15(1):19–27. doi: 10.9758/cpn.2017.15.1.19.
  • Hakkola J, Pelkonen O, Pasanen M, Raunio H. 1998. Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit: role in intrauterine toxicity. Crit Rev Toxicol. 28(1):35–72. doi: 10.1080/10408449891344173.
  • Hales BF. 1981. Modification of the mutagenicity and teratogenicity of cyclophosphamide in rats with inducers of the cytochromes P-450. Teratology. 24(1):1–11. doi: 10.1002/tera.1420240102.
  • Hales BF. 1982. Comparison of the mutagenicity and teratogenicity of cyclophosphamide and its active metabolites, 4-hydroxycyclophosphamide, phosphoramide mustard, and acrolein. Cancer Res. 42(8):3016–3021.
  • Hartmann MD, Boichenko I, Coles M, Zanini F, Lupas AN, Alvarez BH. 2010. Thalidomide mimics uridine binding to an aromatic cage in cereblon. J Struct Biol. 188(3):225–232. doi: 10.1016/j.jsb.2014.10.010.
  • Hernández-Díaz S, Levin M. 2014. Alteration of bioelectrically-controlled processes in the embryo: a teratogenic mechanism for anticonvulsants. Reprod Toxicol. 47:111–114. doi: 10.1016/j.reprotox.2014.04.008.
  • Hirose Y, Kitazono T, Sezaki M, Abe M, Sakimura K, Funato H, Handa H, Vogt KE, Yanagisawa M. 2020. Hypnotic effect of thalidomide is independent of teratogenic ubiquitin/proteasome pathway. Proc Natl Acad Sci U S A. 117(37):23106–23112. doi: 10.1073/pnas.1917701117.
  • Hudson RE, Metz TD, Ward RM, McKnite AM, Enioutina EY, Sherwin CM, Watt KM, Job KM. 2023. Drug exposure during pregnancy: current understanding and approaches to measure maternal-fetal drug exposure. Front Pharmacol. 14:1111601. doi: 10.3389/fphar.2023.1111601.
  • Hughes A, Greene ND, Copp AJ, Galea GL. 2018. Valproic acid disrupts the biomechanics of late spinal neural tube closure in mouse embryos. Mech Dev. 149:20–26. doi: 10.1016
  • Idres N, Marill J, Flexor MA, Chabot GG. 2002. Activation of retinoic acid receptordependent transcription by all-trans-retinoic acid metabolites and isomers. J Biol Chem. 277(35):31491–31498. doi: 10.1074/jbc.M205016200.
  • Irving RM, Elfarra AA. 2012. Role of reactive metabolites in the circulation in extrahepatic toxicity. Expert Opin Drug Metab Toxicol. 8(9):1157–1172. doi: 10.1517/17425255.2012.695347.
  • Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H. 2010. Identification of a primary target of thalidomideteratogenicity. Science. 327(5971):1345–1350. doi: 10.1126/science.1177319.
  • Jacobson JM. 2000. Thalidomide: a remarkable comeback. Exp Opin Pharmacother. 1(4):849–863. doi: 10.1517/14656566.1.4.849.
  • Kalgutkar AS, Dalvie D. 2015. Predicting toxicities of reactive metabolite–positive drug candidates. Annu Rev Pharmacol Toxicol. 55(55):35–54. doi: 10.1146/annurev-pharmtox-010814-124720.
  • Kamali F, Ball DE, McLaughlin WS, Seymour RA. 1999. Phenytoin metabolism to 5(4hydroxyphenyl)-5-phenylhydantoin (HPPH) in man, cat and rat in vitro and in vivo, and susceptibility to phenytoin-induced gingival overgrowth. J Periodontal Res. 34(3):145–153. doi: 10.1111/j.1600-0765.1999.tb02235.x.
  • Kato R, Ijiri Y, Hayashi T, Uetrecht J. 2019. The 2-hydroxyiminostilbene metabolite of carbamazepine or the supernatant from incubation of hepatocytes with carbamazepine activates inflammasomes: implications for carbamazepine-induced hypersensitivity reactions. Drug Metab Dispos. 47(10):1093–1096. doi: 10.1124/dmd.119.087981.
  • Kay ED, Goldman AS, Daniel JC. 1990. Common biochemical pathway of dysmorphogenesis in murine embryos: use of the glucocorticoid pathway by phenytoin. Teratog Carcinog Mutagen. 10(1):31–39. doi: 10.1002/tcm.1770100105.
  • Kodytková A, Dusatkova P, Amaratunga SA, Plachy L, Pruhova S, Lebl J. 2024. Integrative role of the SALL4 gene: from thalidomide embryopathy to genetic defects of the upper limb, internal organs, cerebral midline, and pituitary. Horm Res Paediatr. 97(2):106–112.
  • Kowalski TW, Gomes JD, Garcia GB, Fraga LR, Paixao-Cortes VR, Recamonde-Mendoza M, Sanseverino MT, Schuler-Faccini L, Vianna FS. 2020. CRL4-Cereblon complex in thalidomide embryopathy: a translational investigation. Sci Rep. 10(1):851. doi: 10.1038/s41598-020-57512-x.
  • Kubow S. 1992. Inhibition of isotretinoin teratogenicity by acetylsalicylic acid pretreatment in mice. Teratology. 45(1):55–63. doi: 10.1002/tera.1420450105.
  • Lammer EJ, Chen DT, Hoar RM, Agnish ND, Benke PJ, Braun JT, Curry CJ, Fernhoff PM, Grix AW, Lott IT, et al. 1985. Retinoic acid embryopathy. N Engl J Med. 313(14):837–841. doi: 10.1056/NEJM198510033131401.
  • Lee LM, Leung CY, Tang WW, Choi HL, Leung YC, McCaffery PJ, Wang CC, Woolf AS, Shum AS. 2012. A paradoxical teratogenic mechanism for retinoic acid. Proc Natl Acad Sci U S A. 109(34):13668–13673. doi: 10.1073/pnas.1200872109.
  • Li RT, Chen ZY, Tang SY, Wen DS, Ren RN, Zhang XX, Liu SZ, Zhou S, Wang XD, Zhou LM, et al. 2024. Association of valproic acid and its main metabolites’ plasma concentrations with clinical outcomes among epilepsy patients: a 10-year retrospective study based on therapeutic drug monitoring. Drug Metab Dispos. 52(3):210–217. doi: 10.1124/dmd.123.001539.
  • Löscher W. 1981. Anticonvulsant activity of metabolites of valproic acid. Arch Int Pharmacodyn Ther. 249(1):158–163.
  • Lu J, Helsby N, Palmer BD, Tingle M, Baguley BC, Kestell P, Ching LM. 2004. Metabolism of thalidomide in liver microsomes of mice, rabbits, and humans. J Pharmacol Exp Ther. 310(2):571–577. doi: 10.1124/jpet.104.067793.
  • Lum JT, Wells PG. 1986. Pharmacological studies on the potentiation of phenytoin teratogenicity by acetaminophen. Teratology. 33(1):53–72. doi: 10.1002/tera.1420330109.
  • Marson JW, Baldwin HE. 2021. Isotretinoin update. Dermatological Rev. 2(6):331–342. doi: 10.1002/der2.100.
  • Matyskiela ME, Couto S, Zheng X, Lu G, Hui J, Stamp K, Drew C, Ren Y, Wang M, Carpenter A, et al. 2018. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat Chem Biol. 14(10):981–987. 2018; doi: 10.1038/s41589-018-0129-x.
  • Melnik BC. 2017. Apoptosis may explain the pharmacological mode of action and adverse effects of isotretinoin, including teratogenicity. Acta Derm Venereol. 97(2):173–181. doi: 10.2340/00015555-2535.
  • Melnik BC. 2018. Overexpression of p53 explains isotretinoin’s teratogenicity. Exp Dermatol. 27(1):91–93. doi: 10.1111/exd.13420.
  • Meseguer ES, Elizalde MU, Borobia AM, Ramírez E. 2021. Valproic acid-induced liver injury: a case-control study from a prospective pharmacovigilance program in a tertiary hospital. J Clin Med. 10(6):1153. doi: 10.3390/jcm10061153.
  • Mirkes PE. 1985. Cyclophosphamide teratogenesis: a review. Teratog Carcinog Mutagen. 5(2):75–88. doi: 10.1002/tcm.1770050202.
  • Moreau M, Jamalpoor A, Hall JC, Fisher J, Hartvelt S, Hendriks G, Nong A. 2023. Animalfree assessment of developmental toxicity: combining PBPK modeling with the ReproTracker assay. Toxicology. 500:153684. doi: 10.1016/j.tox.2023.153684.
  • Nau H, Hauck RS, Ehlers K. 1991. Valproic acid-induced neural tube defects in mouse and human: aspects of chirality, alternative drug development, pharmacokinetics and possible mechanisms. Pharmacol Toxicol. 69(5):310–321. doi: 10.1111/j.1600-0773.1991.tb01303.x.
  • Nau H, Löscher W. 1986. Pharmacologic evaluation of various metabolites and analogs of valproic acid: teratogenic potencies in mice 1986. Fundam Appl Toxicol. 6(4):669–676. doi: 10.1016/0272-0590(86)90180-6.
  • Nau H. 1986. Valproic acid teratogenicity in mice after various administration and phenobarbital-pretreatment regimens: the parent drug and not one of the metabolites assayed is implicated as teratogen. Fundam Appl Toxicol. 6(4):662–668. doi: 10.1016/0272-0590(86)90179-x.
  • Nau H. 2001. Teratogenicity of isotretinoin revisited: species variation and the role of alltrans-retinoic acid. J Am Acad Dermatol. 45(5):S183–S7. doi: 10.1067/mjd.2001.113720.
  • Ozekin YH, Isner T, Bates EA. 2020. Ion channel contributions to morphological development: insights from the role of Kir2.1 in bone development. Front Mol Neurosci. 13:99. doi: 10.3389/fnmol.2020.00099.
  • Pal R, Singh K, Khan SA, Chawla P, Kumar B, Akhtar MJ. 2021. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. Eur J Med Chem. 226:113890. doi: 10.1016/j.ejmech.2021.113890.
  • Palmer JA, Smith AM, Egnash LA, Colwell MR, Donley EL, Kirchner FR, Burrier RE. 2017. A human induced pluripotent stem cell-based in vitro assay predicts developmental toxicity through a retinoic acid receptor-mediated pathway for a series of related retinoid analogues. Reprod Toxicol. 73:350–361. doi: 10.1016/j.reprotox.2017.07.011.
  • Pennimpede T, Cameron DA, MacLean GA, Li H, Abu-Abed S, Petkovich M. 2010. The role of CYP26 enzymes in defining appropriate retinoic acid exposure during embryogenesis. Birth Defects Res A Clin Mol Teratol. 88(10):883–894. doi: 10.1002/bdra.20709.
  • Petkovich M, Brand NJ, Krust A, Chambon P. 1987. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature. 330(6147):444–450. doi: 10.1038/330444a0.
  • Porubek DJ, Barnes H, Meier GP, Theodore LJ, Baillie TA. 1989. Enantiotopic differentiation during the biotransformation of valproic acid to the hepatotoxic olefin 2-n-propyl-4-pentenoic acid. Chem Res Toxicol. 2(1):35–40. doi: 10.1021/tx00007a006.
  • Randall T. 1990. Thalidomide has 37-year history. JAMA. 263(11):1474. doi: 10.1001/jama.1990.03440110028006.
  • Romoli M, Mazzocchetti P, D’Alonzo R, Siliquini S, Rinaldi VE, Verrotti A, Calabresi P, Costa C. 2019. Valproic acid and epilepsy: from molecular mechanisms to clinical evidences. CN. 17(10):926–946. doi: 10.2174/1570159X17666181227165722.
  • Schumacher H, Blake D, Gurian J, Gillette JR. 1968. A comparison of the teratogenic activity of thalidomide in rabbits and rats. J Pharmacol Exp Ther. 160 (1):189–200.
  • Shnayder NA, Grechkina VV, Khasanova AK, Bochanova EN, Dontceva EA, Petrova MM, Asadullin AR, Shipulin GA, Altynbekov KS, Al-Zamil M, et al. 2023. Therapeutic and Toxic Effects of Valproic Acid Metabolites. Metabolites. 13(1):134. doi: 10.3390/metabo13010134.
  • Smith DA, Burton LM, Smith SA. 2023. Through a computer monitor darkly: artificial intelligence in absorption, distribution, metabolism and excretion science. Xenobiotica. 1–15. doi: 10.1080/00498254.2023.2295361.
  • Stepan AF, Walker DP, Bauman J, Price DA, Baillie TA, Kalgutkar AS, Aleo MD. 2011. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem Res Toxicol. 24(9):1345–1410. doi: 10.1021/tx200168d.
  • Thorn CF, Leckband SG, Kelsoe J, Leeder JS, Müller DJ, Klein TE, Altman RB. 2011. PharmGKB summary: carbamazepine pathway. Pharmacogenet Genomics. 21(12):906–910. doi: 10.1097/FPC.0b013e328348c6f2.
  • Tsukada M, Schröder M, Orfanos CE, Zouboulis CC, Roos TC, Chandraratna RA, Reichert U, Merk HF. 2000. 13-cis retinoic acid exerts its specific activity on human sebocytes through selective intracellular isomerization to all-trans retinoic acid and binding to retinoid acid receptors. J Invest Dermatol. 115(2):321–327. doi: 10.1046/j.1523-1747.2000.00066.x.
  • Vajda FJE, O’Brien TJ, Graham J, Lander CM, Eadie MJ. 2016. Is carbamazepine a human teratogen? J Clin Neurosci. 23:34–37. doi: 10.1016/j.jocn.2015.07.011.
  • Vane FM, Bugge CJ, Rodriguez LC, Rosenberger M, Doran TI. 1990. Human biliary metabolites of isotretinoin: identification, quantification, synthesis, and biological activity. Xenobiotica. 20(2):193–207. doi: 10.3109/00498259009047155.
  • Vargesson N. 2015. Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res C Embryo Today. 105(2):140–156. doi: 10.1002/bdrc.21096.
  • Veroniki AA, Cogo E, Rios P, Straus SE, Finkelstein Y, Kealey R, Reynen E, Soobiah C, Thavorn K, Hutton B, et al. 2017. Comparative safety of anti-epileptic drugs during pregnancy: a systematic review and network meta-analysis of congenital malformations and prenatal outcomes. BMC Med. 15(1):95. doi: 10.1186/s12916-017-0845-1.
  • Wani TH, Chakrabarty A, Shibata N, Yamazaki H, Guengerich FP, Chowdhury G. 2017. The dihydroxy metabolite of the teratogen thalidomide causes oxidative DNA damage. Chem Res Toxicol. 30(8):1622–1628. doi: 10.1021/acs.chemrestox.7b00127.
  • Webster WS, Howe AM, Abela D, Oakes DJ. 2006. The relationship between cleft lip, maxillary hypoplasia, hypoxia and phenytoin. Curr Pharm Des. 12(12):1431–1448. doi: 10.2174/138161206776389868.
  • Xue HX, Fu WY, Cui HD, Yang LL, Zhang N, Zhao LJ. 2015. High-dose thalidomide increases the risk of peripheral neuropathy in the treatment of ankylosing spondylitis. Neural Regen Res. 10(5):814–818. doi: 10.4103/1673-5374.156988.
  • Yamanaka S, Murai H, Saito D, Abe G, Tokunaga E, Iwasaki T, Takahashi H, Takeda H, Suzuki T, Shibata N, et al. 2021. Thalidomide and its metabolite 5hydroxythalidomide induce teratogenicity via the cereblon neosubstrate PLZF. Embo J. 40(4):e105375. doi: 10.15252/embj.2020105375.
  • Yamazaki H, Shimizu M. 2023. Species specificity and selection of models for drug oxidations mediated by polymorphic human enzymes. Drug Metab Dispos. 51(1):123–129. doi: 10.1124/dmd.121.000742.
  • Yamazaki H, Suemizu H, Igaya S, Shimizu M, Shibata N, Nakamura M, Chowdhury G, Guengerich FP. 2011. In vivo formation of a glutathione conjugate derived from thalidomide in humanized uPA-NOG mice. Chem Res Toxicol. 24(3):287–289. doi: 10.1021/tx200005g.
  • Yoshimura R, Yanagihara N, Terao T, Minami K, Abe K, Izumi F. 1995. Inhibition by carbamazepine of various ion channels-mediated catecholamine secretion in cultured bovine adrenal medullary cells. Naunyn Schmiedebergs Arch Pharmacol. 352(3):297–303. doi: 10.1007/BF00168560.
  • Yoshimura R, Yanagihara N, Terao T, Minami K, Toyohira Y, Ueno S, Uezono Y, Abe K, Izumi F. 1998. An active metabolite of carbamazepine, carbamazepine-10, 11-epoxide, inhibits ion channel-mediated catecholamine secretion in cultured bovine adrenal medullary cells. Psychopharmacology. 135(4):368–373. doi: 10.1007/s002130050524.
  • Zaccara G, Franciotta D, Perucca E. 2007. Idiosyncratic adverse reactions to antiepileptic drugs. Epilepsia. 48(7):1223–1244. doi: 10.1111/j.1528-1167.2007.01041.x.
  • Zhang XZ, Huo HQ, Zhu YQ, Feng HY, Jiao J, Tan JX, Wang Y, Hu P, Xu ZF. 2022. Folic acid rescues valproic acid-induced morphogenesis inhibition in neural rosettes derived from human pluripotent stem cells. Front Cell Neurosci. 16:888152. doi: 10.3389/fncel.2022.888152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.