316
Views
9
CrossRef citations to date
0
Altmetric
Review Article

Antibody-drug conjugates as drug carrier systems for bioactive agents

, , &
Pages 1-10 | Received 11 Dec 2014, Accepted 05 Apr 2015, Published online: 10 Oct 2015

References

  • Akash, M. S. H.; Shen, Q.; Rehman, K.; Chen, S. Interleukin-1 receptor antagonist: a new therapy for type 2 diabetes mellitus. J. Pharm. Sci. 2012, 101, 1647–1658.
  • Akash, M. S. H.; Rehman, K.; Chen, S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J. Cell Biochem. 2013, 114, 525–531.
  • Akash, M. S.; Rehman, K.; Chen, S. An overview of valuable scientific models for diabetes mellitus. Curr. Diabetes Rev. 2013, 9, 286–293.
  • Ried, K.; Frank, O. R.; Stocks, N. P.; Fakler, P.; Sullivan, T. Effect of garlic on blood pressure: a systematic review and meta-analysis. BMC Cardiovasc. Disord. 2008, 8, 13.
  • Qin, L.; Yang, Z.; Gu, H.; Lu, S.; Shi, Q.; Xing, Y.; Li, X.; Li, R.; Ning, G.; Su, Q. Association between serum uric acid levels and cardiovascular disease in middle-aged and elderly Chinese individuals. BMC Cardiovasc. Disord. 2014, 14, 26.
  • Robinson, J. G.; Fox, K. M.; Bullano, M. F.; Grandy, S. Atherosclerosis profile and incidence of cardiovascular events: a population-based survey. BMC Cardiovasc. Disord. 2009, 9, 46.
  • Rehman, K.; Tariq, M.; Akash, M. S. H.; Gillani, Z.; Qazi, M. H. Effect of HA14–1 on apoptosis-regulating proteins in HeLa cells. Chem. Biol. Drug Des. 2014, 83, 317–323.
  • Flygare, J. A.; Pillow, T. H.; Aristoff, P. Antibody-drug conjugates for the treatment of cancer. Chem. Biol. Drug Des. 2013, 81, 113–121.
  • Gerlinger, M.; Rowan, A. J.; Horswell, S.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; Varela, I.; Phillimore, B.; Begum, S.; McDonald, N. Q.; Butler, A.; Jones, D.; Raine, K.; Latimer, C.; Santos, C. R.; Nohadani, M.; Eklund, A. C.; Spencer-Dene, B.; Clark, G.; Pickering, L.; Stamp, G.; Gore, M.; Szallasi, Z.; Downward, J.; Futreal, P. A.; Swanton, C. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 2012, 366, 883–892.
  • Alley, S. C.; Okeley, N. M.; Senter, P. D. Antibody-drug conjugates: targeted drug delivery for cancer. Curr. Opin. Chem. Biol. 2010, 14, 529–537.
  • Adair, J. R.; Howard, P. W.; Hartley, J. A.; Williams, D. G.; Chester, K. A. Antibody-drug conjugates - a perfect synergy. Expert Opin. Biol. Ther. 2012, 12, 1191–1206.
  • Casi, G.; Neri, D. Antibody-drug conjugates: basic concepts, examples and future perspectives. J. Control. Release 2012, 161, 422–428.
  • Sammet, B.; Steinkuhler, C.; Sewald, N. Antibody-drug conjugates in tumor therapy. Pharm. Pat. Anal. 2012, 1, 65–73.
  • Bornstein, G. G. Antibody drug conjugates: preclinical considerations. AAPS J. 2015, 17, 525–534.
  • Carter, P. J.; Senter, P. D. Antibody-drug conjugates for cancer therapy. Cancer. J. 2008, 14, 154–169.
  • Chari, R. V. J. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc. Chem. Res. 2008, 41, 98–107.
  • Senter, P. D. Potent antibody drug conjugates for cancer therapy. Curr. Opin. Chem. Biol. 2009, 13, 235–244.
  • Teicher, B. A. Antibody-drug conjugate targets. Curr. Cancer Drug Targets 2009, 9, 982–1004.
  • Sanderson, R. J.; Hering, M. A.; James, S. F.; Sun, M. M.; Doronina, S. O.; Siadak, A. W.; Senter, P. D.; Wahl, A. F. In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin. Cancer Res. 2005, 11, 843–852.
  • Alley, S. C.; Benjamin, D. R.; Jeffrey, S. C.; Okeley, N. M.; Meyer, D. L.; Sanderson, R. J.; Senter, P. D. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug. Chem. 2008, 19, 759–765.
  • Hamann, P. R.; Hinman, L. M.; Beyer, C. F.; Lindh, D.; Upeslacis, J.; Flowers, D. A.; Bernstein, I. An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug. Chem. 2002, 13, 40–46.
  • Doronina, S. O.; Toki, B. E.; Torgov, M. Y.; Mendelsohn, B. A.; Cerveny, C. G.; Chace, D. F.; DeBlanc, R. L.; Gearing, R. P.; Bovee, T. D.; Siegall, C. B.; Francisco, J. A.; Wahl, A. F.; Meyer, D. L.; Senter, P. D. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 2003, 21, 778–784.
  • Hamblett, K. J.; Senter, P. D.; Chace, D. F.; Sun, M. M.; Lenox, J.; Cerveny, C. G.; Kissler, K. M.; Bernhardt, S. X.; Kopcha, A. K.; Zabinski, R. F.; Meyer, D. L.; Francisco, J. A. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 2004, 10, 7063–7070.
  • Sun, M. M.; Beam, K. S.; Cerveny, C. G.; Hamblett, K. J.; Blackmore, R. S.; Torgov, M. Y.; Handley, F. G.; Ihle, N. C.; Senter, P. D.; Alley, S. C. Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug. Chem. 2005, 16, 1282–1290.
  • McDonagh, C. F.; Turcott, E.; Westendorf, L.; Webster, J. B.; Alley, S. C.; Kim, K.; Andreyka, J.; Stone, I.; Hamblett, K. J.; Francisco, J. A.; Carter, P. Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein. Eng. Des. Sel. 2006, 19, 299–307.
  • Junutula, J. R.; Raab, H.; Clark, S.; Bhakta, S.; Leipold, D. D.; Weir, S.; Chen, Y.; Simpson, M.; Tsai, S. P.; Dennis, M. S.; Lu, Y.; Meng, Y. G.; Ng, C.; Yang, J.; Lee, C. C.; Duenas, E.; Gorrell, J.; Katta, V.; Kim, A.; McDorman, K.; Flagella, K.; Venook, R.; Ross, S.; Spencer, S. D.; Lee Wong, W.; Lowman, H. B.; Vandlen, R.; Sliwkowski, M. X.; Scheller, R. H.; Polakis, P.; Mallet, W. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 2008, 26, 925–932.
  • Chari, R. V.; Miller, M. L.; Widdison, W. C. Antibody-drug conjugates: an emerging concept in cancer therapy. Angew. Chem. Int. Ed. Engl. 2014, 53, 3796–3827.
  • Laguzza, B. C.; Nichols, C. L.; Briggs, S. L.; Cullinan, G. J.; Johnson, D. A.; Starling, J. J.; Baker, A. L.; Bumol, T. F.; Corvalan, J. R. New antitumor monoclonal antibody-vinca conjugates LY203725 and related compounds: design, preparation, and representative in vivo activity. J. Med. Chem. 1989, 32, 548–555.
  • Trail, P. A.; Willner, D.; Lasch, S. J.; Henderson, A. J.; Hofstead, S.; Casazza, A. M.; Firestone, R. A.; Hellstrom, I.; Hellstrom, K. E. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 1993, 261, 212–215.
  • Nolting, B. Linker technologies for antibody-drug conjugates. Methods Mol. Biol. 2013, 1045, 71–100.
  • Erickson, H. K.; Park, P. U.; Widdison, W. C.; Kovtun, Y. V.; Garrett, L. M.; Hoffman, K.; Lutz, R. J.; Goldmacher, V. S.; Blattler, W. A. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 2006, 66, 4426–4433.
  • Hamann, P. R.; Hinman, L. M.; Hollander, I.; Beyer, C. F.; Lindh, D.; Holcomb, R.; Hallett, W.; Tsou, H. R.; Upeslacis, J.; Shochat, D.; Mountain, A.; Flowers, D. A.; Bernstein, I. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem. 2002, 13, 47–58.
  • van Der Velden, V. H.; te Marvelde, J. G.; Hoogeveen, P. G.; Bernstein, I. D.; Houtsmuller, A. B.; Berger, M. S.; van Dongen, J. J. Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood 2001, 97, 3197–3204.
  • Schneck, D.; Butler, F.; Dugan, W.; Littrell, D.; Petersen, B.; Bowsher, R.; DeLong, A.; Dorrbecker, S. Disposition of a murine monoclonal antibody vinca conjugate (KS1/4-DAVLB) in patients with adenocarcinomas. Clin. Pharmacol. Ther. 1990, 47, 36–41.
  • Greenfield, R. S.; Kaneko, T.; Daues, A.; Edson, M. A.; Fitzgerald, K. A.; Olech, L. J.; Grattan, J. A.; Spitalny, G. L.; Braslawsky, G. R. Evaluation in vitro of adriamycin immunoconjugates synthesized using an acid-sensitive hydrazone linker. Cancer Res. 1990, 50, 6600–6607.
  • Boghaert, E. R.; Khandke, K.; Sridharan, L.; Armellino, D.; Dougher, M.; Dijoseph, J. F.; Kunz, A.; Hamann, P. R.; Sridharan, A.; Jones, S.; Discafani, C.; Damle, N. K. Tumoricidal effect of calicheamicin immuno-conjugates using a passive targeting strategy. Int. J. Oncol. 2006, 28, 675–684.
  • Kovtun, Y. V.; Audette, C. A.; Ye, Y.; Xie, H.; Ruberti, M. F.; Phinney, S. J.; Leece, B. A.; Chittenden, T.; Blattler, W. A.; Goldmacher, V. S. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res. 2006, 66, 3214–3221.
  • Lewis Phillips, G. D.; Li, G.; Dugger, D. L.; Crocker, L. M.; Parsons, K. L.; Mai, E.; Blattler, W. A.; Lambert, J. M.; Chari, R. V.; Lutz, R. J.; Wong, W. L.; Jacobson, F. S.; Koeppen, H.; Schwall, R. H.; Kenkare-Mitra, S. R.; Spencer, S. D.; Sliwkowski, M. X. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008, 68, 9280–9290.
  • Appenzeller-Herzog, C.; Ellgaard, L. The human PDI family: versatility packed into a single fold. Biochim. Biophys. Acta 2008, 1783, 535–548.
  • Ciechanover, A. Intracellular protein degradation: from a vague idea, through the lysosome and the ubiquitin-proteasome system, and onto human diseases and drug targeting (Nobel lecture). Angew. Chem. Int. Ed. Engl. 2005, 44, 5944–5967.
  • Koblinski, J. E.; Ahram, M.; Sloane, B. F. Unraveling the role of proteases in cancer. Clin. Chim. Acta 2000, 291, 113–135.
  • Doronina, S. O.; Mendelsohn, B. A.; Bovee, T. D.; Cerveny, C. G.; Alley, S. C.; Meyer, D. L.; Oflazoglu, E.; Toki, B. E.; Sanderson, R. J.; Zabinski, R. F.; Wahl, A. F.; Senter, P. D. Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug. Chem. 2006, 17, 114–124.
  • Dubowchik, G. M.; Firestone, R. A.; Padilla, L.; Willner, D.; Hofstead, S. J.; Mosure, K.; Knipe, J. O.; Lasch, S. J.; Trail, P. A. Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjug. Chem. 2002, 13, 855–869.
  • Walker, M. A.; Dubowchik, G. M.; Hofstead, S. J.; Trail, P. A.; Firestone, R. A. Synthesis of an immunoconjugate of camptothecin. Bioorg. Med. Chem. Lett. 2002, 12, 217–219.
  • Kovar, M.; Strohalm, J.; Etrych, T.; Ulbrich, K.; Rihova, B. Star structure of antibody-targeted HPMA copolymer-bound doxorubicin: a novel type of polymeric conjugate for targeted drug delivery with potent antitumor effect. Bioconjug. Chem. 2002, 13, 206–215.
  • Jeffrey, S. C.; Andreyka, J. B.; Bernhardt, S. X.; Kissler, K. M.; Kline, T.; Lenox, J. S.; Moser, R. F.; Nguyen, M. T.; Okeley, N. M.; Stone, I. J.; Zhang, X.; Senter, P. D. Development and properties of beta-glucuronide linkers for monoclonal antibody-drug conjugates. Bioconjug. Chem. 2006, 17, 831–840.
  • Jeffrey, S. C.; Torgov, M. Y.; Andreyka, J. B.; Boddington, L.; Cerveny, C. G.; Denny, W. A.; Gordon, K. A.; Gustin, D.; Haugen, J.; Kline, T.; Nguyen, M. T.; Senter, P. D. Design, synthesis, and in vitro evaluation of dipeptide-based antibody minor groove binder conjugates. J. Med. Chem. 2005, 48, 1344–1358.
  • Jeffrey, S. C.; Nguyen, M. T.; Moser, R. F.; Meyer, D. L.; Miyamoto, J. B.; Senter, P. D. Minor groove binder antibody conjugates employing a water soluble beta-glucuronide linker. Bioorg. Med. Chem. Lett. 2007, 17, 2278–2280.
  • Jiang, X.; Garcia-Fortanet, J.; De Brabander, J. K. Synthesis and complete stereochemical assignment of psymberin/irciniastatin A. J. Am. Chem. Soc. 2005, 127, 11254–11255.
  • Advani, A.; Coiffier, B.; Czuczman, M. S.; Dreyling, M.; Foran, J.; Gine, E.; Gisselbrecht, C.; Ketterer, N.; Nasta, S.; Rohatiner, A.; Schmidt-Wolf, I. G.; Schuler, M.; Sierra, J.; Smith, M. R.; Verhoef, G.; Winter, J. N.; Boni, J.; Vandendries, E.; Shapiro, M.; Fayad, L. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin’s lymphoma: results of a phase I study. J. Clin. Oncol. 2010, 28, 2085–2093.
  • Bross, P. F.; Beitz, J.; Chen, G.; Chen, X. H.; Duffy, E.; Kieffer, L.; Roy, S.; Sridhara, R.; Rahman, A.; Williams, G.; Pazdur, R. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res. 2001, 7, 1490–1496.
  • Wang, L.; Amphlett, G.; Blattler, W. A.; Lambert, J. M.; Zhang, W. Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci. 2005, 14, 2436–2446.
  • Katz, J.; Janik, J. E.; Younes, A. Brentuximab vedotin (SGN-35). Clin. Cancer Res. 2011, 17, 6428–6436.
  • Sapra, P.; Shor, B. Monoclonal antibody-based therapies in cancer: advances and challenges. Pharmacol. Ther. 2013, 138, 452–469.
  • King, H. D.; Dubowchik, G. M.; Mastalerz, H.; Willner, D.; Hofstead, S. J.; Firestone, R. A.; Lasch, S. J.; Trail, P. A. Monoclonal antibody conjugates of doxorubicin prepared with branched peptide linkers: inhibition of aggregation by methoxytriethyleneglycol chains. J. Med. Chem. 2002, 45, 4336–4343.
  • Hollander, I.; Kunz, A.; Hamann, P. R. Selection of reaction additives used in the preparation of monomeric antibody-calicheamicin conjugates. Bioconjug. Chem. 2008, 19, 358–361.
  • Burke, P. J.; Senter, P. D.; Meyer, D. W.; Miyamoto, J. B.; Anderson, M.; Toki, B. E.; Manikumar, G.; Wani, M. C.; Kroll, D. J.; Jeffrey, S. C. Design, synthesis, and biological evaluation of antibody-drug conjugates comprised of potent camptothecin analogues. Bioconjug. Chem. 2009, 20, 1242–1250.
  • Zhao, R. Y.; Wilhelm, S. D.; Audette, C.; Jones, G.; Leece, B. A.; Lazar, A. C.; Goldmacher, V. S.; Singh, R.; Kovtun, Y.; Widdison, W. C.; Lambert, J. M.; Chari, R. V. Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid conjugates. J. Med. Chem. 2011, 54, 3606–3623.
  • Hitchcock, S. A. Structural modifications that alter the P-glycoprotein efflux properties of compounds. J. Med. Chem. 2012, 55, 4877–4895.
  • Zhao, R. Y.; Erickson, H. K.; Leece, B. A.; Reid, E. E.; Goldmacher, V. S.; Lambert, J. M.; Chari, R. V. Synthesis and biological evaluation of antibody conjugates of phosphate prodrugs of cytotoxic DNA alkylators for the targeted treatment of cancer. J. Med. Chem. 2012, 55, 766–782.
  • Damle, N. K.; Frost, P. Antibody-targeted chemotherapy with immunoconjugates of calicheamicin. Curr. Opin. Pharmacol. 2003, 3, 386–390.
  • Lee, M. D.; Dunne, T. S.; Chang, C. C.; Ellestad, G. A.; Siegel, M. M.; Morton, G. O.; McGahren, W. J.; Borders, D. B. Calichemicins, a novel family of antitumor antibiotics. 2. Chemistry; and structure of calichemicin. gamma. 1I. J. Am. Chem. Soc. 1987, 109, 3466–3468.
  • Blencowe, C. A.; Russell, A. T.; Greco, F.; Hayes, W.; Thornthwaite, D. W. Self-immolative linkers in polymeric delivery systems. Polym. Chem. 2011, 2, 773–790.
  • Toki, B. E.; Cerveny, C. G.; Wahl, A. F.; Senter, P. D. Protease-mediated fragmentation of p-amidobenzyl ethers: a new strategy for the activation of anticancer prodrugs. J. Org. Chem. 2002, 67, 1866–1872.
  • de Groot, F. M.; Albrecht, C.; Koekkoek, R.; Beusker, P. H.; Scheeren, H. W. “Cascade-release dendrimers” liberate all end groups upon a single triggering event in the dendritic core. Angew. Chem. Int. Ed. Engl. 2003, 42, 4490–4494.
  • De Groot, F. M. H.; Beusker, P. H.; Scheeren, J. W.; Prodrugs Built as Multiple Self-Elimination-Release Spacers. U.S. Patent, US7705045(B2,X601), 2010
  • DeWit, M. A.; Gillies, E. R. Design, synthesis, and cyclization of 4-aminobutyric acid derivatives: potential candidates as self-immolative spacers. Org. Biomol. Chem. 2011, 9, 1846–1854.
  • Rudnick, S. I.; Lou, J.; Shaller, C. C.; Tang, Y.; Klein-Szanto, A. J.; Weiner, L. M.; Marks, J. D.; Adams, G. P. Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors. Cancer Res. 2011, 71, 2250–2259.
  • Orth, J. D.; Krueger, E. W.; Weller, S. G.; McNiven, M. A. A novel endocytic mechanism of epidermal growth factor receptor sequestration; and internalization. Cancer Res. 2006, 66, 3603–3610.
  • Bander, N. H. Antibody-drug conjugate target selection: critical factors. Methods Mol. Biol. 2013, 1045, 29–40.
  • Lin, K.; Tibbitts, J.; Shen, B. Q. Pharmacokinetics and ADME characterizations of antibody-drug conjugates. Methods Mol. Biol. 2013, 1045, 117–131.
  • Alley, S. C.; Zhang, X.; Okeley, N. M.; Anderson, M.; Law, C. L.; Senter, P. D.; Benjamin, D. R. The pharmacologic basis for antibody-auristatin conjugate activity. J. Pharmacol. Exp. Ther. 2009, 330, 932–938.
  • Boswell, C. A.; Mundo, E. E.; Zhang, C.; Stainton, S. L.; Yu, S. F.; Lacap, J. A.; Mao, W.; Kozak, K. R.; Fourie, A.; Polakis, P.; Khawli, L. A.; Lin, K. Differential effects of predosing on tumor and tissue uptake of an 111In-labeled anti-TENB2 antibody-drug conjugate. J. Nucl. Med. 2012, 53, 1454–1461.
  • Boswell, C. A.; Mundo, E. E.; Firestein, R.; Zhang, C.; Mao, W.; Gill, H.; Young, C.; Ljumanovic, N.; Stainton, S.; Ulufatu, S.; Fourie, A.; Kozak, K. R.; Fuji, R.; Polakis, P.; Khawli, L. A.; Lin, K. An integrated approach to identify normal tissue expression of targets for antibody-drug conjugates: case study of TENB2. Br. J. Pharmacol. 2013, 168, 445–457.
  • Bilal, A.; Rehman, K.; Akash, M. S. H.; Hussain, K.; Ibrahim, M.; Hussan, S. S. Development and validation of analytical method for qualitative and quantitative determination of glibenclamide in different brands of tablet dosage form using UV-visible spectroscopy. J. Mol. Genet. Med. 2013, 7.
  • Lei, Y.; Fang, L.; Akash, M. S. H.; Liu, Z.; Shi, W.; Chen, S. Development and comparison of two competitive ELISAs for the detection of bisphenol A in human urine. Anal. Methods 2013, 5, 6106–6113.
  • Lei, Y.; Zhang, S.; Fang, L.; Akash, M. S. H.; Shi, W.; Sun, K.; Xu, Y.; Chen, S. A sensitive; and specific enzyme immunoassay for detecting tartrazine in human urinary samples. Anal. Methods 2013, 5, 925–930.
  • Lei, Y.; Fang, L.; Akash, M. S.; Rehman, K.; Liu, Z.; Shi, W.; Chen, S. Estimation of urinary concentration of aflatoxin M1 in Chinese pregnant women. J. Food Sci. 2013, 78, T1835–1838.
  • Lei, Y.; Zhang, Q.; Fang, L.; Akash, M. S.; Rehman, K.; Liu, Z.; Shi, W.; Chen, S. Development and comparison of two competitive ELISAs for estimation of cotinine in human exposed to environmental tobacco smoke. Drug Test Anal. 2014, 6, 525–534.
  • Lei, Y.; Liu, W.; Fang, L.; Akash, M. S. H.; Rehman, K.; Narenmandura, H.; Shi, W.; Lu, W.; Xu, Y.; Chen, S. Assessment of urinary concentration of cotinine in Chinese pregnant women exposed to environmental tobacco smoke. Chinese Sci. Bull. 2014, 59, 1386–1391.
  • Wakankar, A.; Chen, Y.; Gokarn, Y.; Jacobson, F. S. Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs. 2011, 3, 161–172.
  • Lazar, A. C.; Wang, L.; Blattler, W. A.; Amphlett, G.; Lambert, J. M.; Zhang, W. Analysis of the composition of immunoconjugates using size-exclusion chromatography coupled to mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 1806–1814.
  • Basa, L. Drug-to-antibody ratio (DAR) and drug load distribution by LC-ESI-MS. Methods Mol. Biol. 2013, 1045, 285–293.
  • Ouyang, J. Drug-to-antibody ratio (DAR) and drug load distribution by hydrophobic interaction chromatography and reversed phase high-performance liquid chromatography. Methods Mol. Biol. 2013, 1045, 275–283.
  • Chen, Y. Drug-to-antibody ratio (DAR) by UV/Vis spectroscopy. Methods Mol. Biol. 2013, 1045, 267–273.
  • Annunziata, C. M.; Kohn, E. C.; LoRusso, P.; Houston, N. D.; Coleman, R. L.; Buzoianu, M.; Robbie, G.; Lechleider, R. Phase 1, open-label study of MEDI-547 in patients with relapsed or refractory solid tumors. Invest. New Drugs 2013, 31, 77–84.
  • Ricart, A. D. Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin. Cancer Res. 2011, 17, 6417–6427.
  • Lapusan, S.; Vidriales, M. B.; Thomas, X.; de Botton, S.; Vekhoff, A.; Tang, R.; Dumontet, C.; Morariu-Zamfir, R.; Lambert, J. M.; Ozoux, M. L.; Poncelet, P.; San Miguel, J. F.; Legrand, O.; DeAngelo, D. J.; Giles, F. J.; Marie, J. P. Phase I studies of AVE9633, an anti-CD33 antibody-maytansinoid conjugate, in adult patients with relapsed/refractory acute myeloid leukemia. Invest. New Drugs 2012, 30, 1121–1131.
  • Galsky, M. D.; Eisenberger, M.; Moore-Cooper, S.; Kelly, W. K.; Slovin, S. F.; DeLaCruz, A.; Lee, Y.; Webb, I. J.; Scher, H. I. Phase I trial of the prostate-specific membrane antigen-directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer. J. Clin. Oncol. 2008, 26, 2147–2154.
  • Riechelmann, H.; Sauter, A.; Golze, W.; Hanft, G.; Schroen, C.; Hoermann, K.; Erhardt, T.; Gronau, S. Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol. 2008, 44, 823–829.
  • Tijink, B. M.; Buter, J.; de Bree, R.; Giaccone, G.; Lang, M. S.; Staab, A.; Leemans, C. R.; van Dongen, G. A. A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head; and neck or esophagus. Clin. Cancer Res. 2006, 12, 6064–6072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.