167
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Solvent effect in phase separation for fabrication of micropatterned porous scaffold sheets

, , , , , & show all
Pages 351-357 | Received 21 Sep 2015, Accepted 10 Nov 2015, Published online: 02 Feb 2016

References

  • Thompson, D.; Buettner, H. Schwann cell response to micro-patterned laminin. Tissue Eng. 2001, 7, 247.
  • Brunette, D.; Chehroudi, B. The effects of the surface topography of micro-machined titanium substrata on cell behavior in vitro and in vivo. J. Biomech. Eng. 1999, 121, 49.
  • Chou, L.; Firth, J.; Uitto, V. J.; Brunette, D. Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J. Cell Sci. 1995, 108, 1563.
  • Clark, P.; Connolly, P.; Curtis, A.; Dow, J.; Wilkinson, C. Cell guidance by ultrafine topography in vitro. J Cell Sci. 1991, 99, 73.
  • Dalby, M.; Riehle, M.; Yarwood, S.; Wilkinson, C.; Curtis, A. Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography. Exp. Cell Res. 2003, 284, 274.
  • Miller, C.; Shanks, H.; Witt, A.; Rutkowski, G.; Mallapragada, S. Oriented Schwann cell growth on micro-patterned biodegradable polymer substrates. Biomaterials 2001, 22, 1263.
  • Miller, C.; Jeftnija, S.; Mallapragada, S. Micro-patterned Schwann cell-seeded biodegradable polymer substrates significantly enhance neurite alignment and outgrowth. Tissue Eng. 2001, 7, 705.
  • Miller, C.; Jeftnija, S.; Mallapragada, S. Synergistic effects of physical and chemical guidance cues on neurite alignment and outgrowth on biodegradable polymer substrates. Tissue Eng. 2002, 8, 367.
  • Clark, P.; Britland, S.; Connolly, P. Growth cone guidance and neuron morphology on micro-patterned laminin surfaces. J. Cell Sci. 1993, 105, 203.
  • Biazar, E.; Zhang, Z.; Heidari, S. Cellular orientation on micro-patterned biocompatible PHBV film. J. Paramed. Sci. 2010, 1, 74.
  • Kim, T. K.; Yoon, J. J.; Lee, D. S.; Park, T. G. Gas foamed open porous biodegradable polymeric microspheres. Biomaterials 2006, 27, 152.
  • Wang, X.; Li, W.; Kumar, V. A method for solvent-free fabrication of porous polymer using solid-state foaming; and ultrasound for tissue engineering applications. Biomaterials 2006, 27, 1924.
  • Katoh, K.; Tanabe, T.; Yamauchi, K. Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity. Biomaterials 2004, 25, 4255.
  • Ma, P. X.; Choi, J. W. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 2001, 7, 23.
  • Kim, S. Y.; Kanamori, T.; Noumi, Y.; Wang, O. C.; Shinbo, T. Preparationof porous poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) membranes by a phase inversion process and investigation of their morphological changes as cell culture scaffolds. J. Appl. Polym. Sci. 2004, 92, 2082.
  • Zoppi, R. A.; Contant, S.; Duek, E. A. R.; Marques, F. R.; Wada, M. L. F.; Nunes, S. P. Porous poly(L-lactide) films obtained by immersion precipitation process: morphology, phase separation and culture of VERO cells. Polymer 1999, 40, 3275.
  • Ho, M. H.; Kuo, P. Y.; Hsieh, H. J.; Hsien, T. Y.; Hou, L. T.; Lai, J. Y.; et al. Preparation of porous scaffolds by using freeze-extraction and freeze gelation methods. Biomaterials 2004, 25, 129.
  • O’Brien, F. J.; Harley, B. A.; Yannas, I. V.; Gibson, L. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 2004, 25, 1077.
  • Falconnet, D.; Csucs, G.; Michelle Grandin, H.; Textor, M. Surface engineering approaches to micro-pattern surfaces for cell-based assays. Biomaterials 2006, 27, 3044.
  • Gadegaard, N.; Martines, E.; Riehle, M. O.; Seunarine, K.; Wilkinson, C. D. W. Applications of nano-patterning to tissue engineering. Microelect. Eng. 2006, 83, 1577.
  • Vozzi, G.; Flaim, C.; Ahluwalia, A.; Bhatia, S. Fabrication of PLGA scaffolds using soft lithography and micro-syringe deposition. Biomaterials 2003, 24, 2533.
  • Lussi, J. W.; Falconnet, D.; Hubbell, J. A.; Textor, M.; Csucs, G. Pattern stability under cell culture conditions—a comparative study of patterning methods based on PLL-g-PEG background passivation. Biomaterials 2006, 27, 2534.
  • Majdi, A.; Biazar, E.; Heidari, S. Fabrication and comparison of electro-spun PHBV nanofiber and normal film and its cellular study. Orient. J. Chem. 2011, 27, 523.
  • Biazar, E.; Heidari, S. K. The healing effect of stem cells loaded in nanofibrous scaffolds on full thickness skin defects. J. Biomed. Nanotechnol. 2013, 9, 1471.
  • Biazar, E.; Heidari, S. K. Chitosan–cross-linked nanofibrous PHBV nerve guide for rat for sciatic nerve regeneration across a defect bridge. ASAIO J. 2013, 59, 651.
  • Biazar, E.; Heidari, S. K. Electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate/hydroxyapatite scaffold with unrestricted somatic stem cells for bone regeneration. ASAIO J. 2015, 61, 357.
  • Montazeri, M.; Rashidi, N.; Biazar, E.; Rad, H.; Sahebalzamani, M.; Heidari, S.; Majdi, A. Compatibility of cardiac muscle cells on coated-gelatin electro-spun polyhydroxybutyrate-valerate nano fibrous film. Biosci. Biotechnol. Res. ASIA 2011, 8, 515.
  • Baradaran-Rafii, A.; Biazar, E.; Keshel, S. H. Cellular response of limbal stem cells on poly(hydroxybuthyrate-co-hydroxyvalerate) porous scaffolds for ocular surface bioengineering. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 815.
  • Biazar, E.; Keshel, S. H.; Sahebalzamani, A.; Heidari, M. Design of oriented porous PHBV scaffold as a neural guide. Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 753.
  • Biazar, E.; Keshel, S. H. Unrestricted somatic stem cells loaded in nanofibrous scaffolds as potential candidate for skin regeneration. Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 741.
  • Biazar, E. Polyhydroxyalkanoates as potential biomaterials for neural tissue regeneration. Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 898.
  • Biazar, E. Use of umbilical cord and cord blood-derived stem cells for tissue repair and regeneration. Expert Opin. Biol. Ther. 2013, 13, 1653.
  • Zeinali, R.; Biazar, E.; Heidari, S.; Rezaei, M.; Asadipour, K. Regeneration of full-thickness skin defects using umbilical cord blood stem cells loaded into modified porous scaffolds. ASAIO J. 2014, 60, 106.
  • Biazar, E.; Heidari, S.; Sahebalzamani, A.; Hamidi, M.; Ebrahimi, M. The healing effect of unrestricted somatic stem cells loaded in nanofibrous Polyhydroxybutyrate-co-hydroxyvalerate scaffold on full-thickness skin defects. J. Biomater. Tissue Eng. 2014, 4, 20.
  • Rezaei-Tavirani, M.; Biazar, E.; Ai, J.; Heidari, S.; Asefnejad, A. Fabrication of collagen-coated Poly (beta-hydroxy butyrate-cobeta-hydroxyvalerate) nanofiber by chemical; and physical methods. Orient. J. Chem. 2011, 27, 385.
  • Ai, J.; Heidari, SK.; Ghorbani, F.; Ejazi, F.; Biazar, E.; Asefnejad, A.; Pourshamsian, K.; Montazeri, M. Fabrication of coated-collagen electrospun PHBV nanofiber film by plasma method; and its cellular study. J. Nanomater. 2011, 2011, 1.
  • Biazar, E.; Heidari, S. A nanofibrous PHBV tube with Schwann cell as artificial nerve graft contributing to Rat sciatic nerve regeneration across a 30-mm defect bridge. Cell Commun Adhes. 2013, 20, 41.
  • Biazar, E.; Heidari, S.; Pouya, M. Behavioral evaluation of regenerated rat sciatic nerve by a nanofibrous PHBV conduit filled with Schwann cell as artificial nerve graft. Cell Commun. Adhes. 2013, 20, 93.
  • Biazar, E.; Heidari, S. Gelatin-modified nanofibrous PHBV tube as artificial nerve graft for rat sciatic nerve regeneration. Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 330.
  • Hino, H.; Hashimoto, S.; Sato, F. Effect of micro ridges on orientation of cultured cell. J. Syst. Cybernet. Inform. 2014, 12, 47.
  • Hashimoto, S.; Okada, M. Orientation of cells cultured in vortex flow with swinging plate in vitro. J. Syst. Cybernet. Inform. 2011, 9, 1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.