436
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Research progress regarding nanohydroxyapatite and its composite biomaterials in bone defect repair

, , , , , , , , , & show all
Pages 601-610 | Received 17 Nov 2015, Accepted 31 Jan 2016, Published online: 18 Apr 2016

References

  • Holt, G. E.; Christie, M. J.; Schwartz, H. S. Trabecular metal endoprosthetic limb salvage reconstruction of the lower limb. J. Arthroplasty 2009, 24, 1079–1085.
  • Cales, B.; Stefani, Y.; Lilley, E. Long-term in vivo and in vitro aging of a zirconia ceramic used in orthopaedy. J. Biomed. Mater. Res. 1994, 28, 619–624.
  • Azami, M.; Tavakol, S.; Samadikuchaksaraei, A.; Hashjin, M. S.; Baheiraei, N.; Kamali, M.; Nourani, M. R. A porous hydroxyapatite/gelatin nanocomposite scaffold for bone tissue repair: in vitro and in vivo evaluation. J. Biomater. Sci. Polym. Ed. 2012, 23, 2353–2368.
  • Appleford, M. R.; Oh, S.; Oh, N.; Ong, J. L. In vivo study on hydroxyapatite scaffolds with trabecular architecture for bone repair. J. Biomed. Mater. Res. A 2009, 89, 1019–1027.
  • Abd El-Fattah, H.; Helmy, Y.; El-Kholy, B.; Marie, M. In vivo animal histomorphometric study for evaluating biocompatibility and osteointegration of nano-hydroxyapatite as biomaterials in tissue engineering. J. Egypt Natl. Canc. Instit. 2010, 22, 241–250.
  • Sharifi, D.; Khoushkerdar, H. R.; Abedi, G.; Asghari, A.; Hesaraki, S. Mechanical properties of radial bone defects treated with autogenous graft covered with hydroxyapatite in rabbit. Acta Cir. Bras. 2012, 27, 256–259.
  • Jiang, J. L.; Li, Y. F.; Fang, T. L.; Zhou, J.; Li, X. L.; Wang, Y. C.; Dong, J. Vancomycin-loaded nano-hydroxyapatite pellets to treat MRSA-induced chronic osteomyelitis with bone defect in rabbits. Inflamm. Res. 2012, 61, 207–215.
  • Nandi, S. K.; Kundu, B.; Ghosh, S. K.; De, D. K.; Basu, D. Efficacy of nano-hydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat. J. Vet. Sci. 2008, 9, 183–191.
  • Zhu, W.; Wang, D.; Zhang, X.; Lu, W.; Han, Y.; Ou, Y.; Zhou, K.; Fen, W.; Liu, J.; Peng, L.; He, C.; Zeng, Y. Experimental study of nano-hydroxyapatite/recombinant human bone morphogenetic protein-2 composite artificial bone. Artif. Cells Blood Substit. Immobil. Biotechnol. 2010, 38, 150–156.
  • Rahimzadeh, R.; Veshkini, A.; Sharifi, D.; Hesaraki, S. Value of color Doppler ultrasonography and radiography for the assessment of the cancellous bone scaffold coated with nano-hydroxyapatite in repair of radial bone in rabbit. Acta Cir. Bras. 2012, 27, 148–154.
  • Zhu, W.; Xiao, J.; Wang, D.; Liu, J.; Xiong, J.; Liu, L.; Zhang, X.; Zeng, Y. Experimental study of nano-HA artificial bone with different pore sizes for repairing the radial defect. Int. Orthop. 2009, 33, 567–571.
  • Du, B.; Liu, W.; Deng, Y.; Li, S.; Liu, X.; Gao, Y.; Zhou, L. Angiogenesis and bone regeneration of porous nano-hydroxyapatite/coralline blocks coated with rhVEGF165 in critical-size alveolar bone defects in vivo. Int. J. Nanomed. 2015, 10, 2555–2565.
  • Behnia, H.; Khojasteh, A.; Kiani, M. T.; Khoshzaban, A.; Mashhadi Abbas, F.; Bashtar, M.; Dashti, S. G. Bone regeneration with a combination of nanocrystalline hydroxyapatite silica gel, platelet-rich growth factor, and mesenchymal stem cells: a histologic study in rabbit calvaria. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 115, e7–15.
  • Korematsu, A.; Furuzono, T.; Yasuda, S.; Tanaka, J.; Kishida, A. Nano-scaled hydroxyapatite/polymer composite III. Coating of sintered hydroxyapatite particles on poly(4-methacryloyloxyethyl trimellitate anhydride)-grafted silk fibroin fibers. J. Mater. Sci. Mater. Med. 2005, 16, 67–71.
  • Wang, D. X.; He, Y.; Bi, L.; Qu, Z. H.; Zou, J. W.; Pan, Z.; Fan, J. J.; Chen, L.; Dong, X.; Liu, X. N.; Pei, G. X.; Ding, J. D. Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model. Int. J. Nanomed. 2013, 8, 1855–1865.
  • Abedi, G.; Jahanshahi, A.; Fathi, M. H.; Haghdost, I. S.; Veshkini, A. Study of nano-hydroxyapatite/zirconia stabilized with yttria in bone healing: histopathological study in rabbit model. Pol. J. Pathol. 2014, 65, 40–47.
  • Liu, P.; Wang, N.; Hao, Y.; Zhao, Q.; Qiao, Y.; Li, H.; Li, J. Entangled titanium fibre balls combined with nano strontium hydroxyapatite in repairing bone defects. Med. Princ. Pract. 2014, 23, 264–270.
  • Li, Z.; Yubao, L.; Yi, Z.; Lan, W.; Jansen, J. A. In vitro; and in vivo evaluation on the bioactivity of ZnO containing nano-hydroxyapatite/chitosan cement. J. Biomed. Mater. Res. A 2010, 93, 269–279.
  • Chen, F.; Lam, W. M.; Lin, C. J.; Qiu, G. X.; Wu, Z. H.; Luk, K. D.; Lu, W. W. Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82, 183–191.
  • Shi, S.; Kirk, M.; Kahn, A. J. The role of type I collagen in the regulation of the osteoblast phenotype. J. Bone Miner. Res. 1996, 11, 1139–1145.
  • Mizuno, M.; Shindo, M.; Kobayashi, D.; Tsuruga, E.; Amemiya, A.; Kuboki, Y. Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone 1997, 20, 101–107.
  • Tsuchiya, A.; Sotome, S.; Asou, Y.; Kikuchi, M.; Koyama, Y.; Ogawa, T.; Tanaka, J.; Shinomiya, K. Effects of pore size and implant volume of porous hydroxyapatite/collagen (HAp/Col) on bone formation in a rabbit bone defect model. J. Med. Dent. Sci. 2008, 55, 91–99.
  • Chiu, L. H.; Lai, W. F.; Chang, S. F.; Wong, C. C.; Fan, C. Y.; Fang, C. L.; Tsai, Y. H. The effect of type II collagen on MSC osteogenic differentiation and bone defect repair. Biomaterials 2014, 35, 2680–2691.
  • Du, C.; Cui, F. Z.; Feng, Q. L.; Zhu, X. D.; de Groot, K. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. J. Biomed. Mater. Res. 1998, 42, 540–548.
  • Du, C.; Cui, F. Z.; Zhang, W.; Feng, Q. L.; Zhu, X. D.; de Groot, K. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J. Biomed. Mater. Res. 2000, 50, 518–527.
  • Lin, B. N.; Whu, S. W.; Chen, C. H.; Hsu, F. Y.; Chen, J. C.; Liu, H. W.; Chen, C. H.; Liou, H. M. Bone marrow mesenchymal stem cells, platelet-rich plasma and nanohydroxyapatite-type I collagen beads were integral parts of biomimetic bone substitutes for bone regeneration. J. Tissue Eng. Regen. Med. 2013, 7, 841–854.
  • Madihally, S. V.; Matthew, H. W. Porous chitosan scaffolds for tissue engineering. Biomaterials 1999, 20, 1133–1142.
  • Chesnutt, B. M.; Yuan, Y.; Buddington, K.; Haggard, W. O.; Bumgardner, J. D. Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Eng. Part A 2009, 15, 2571–2579.
  • Jiang, H.; Zuo, Y.; Zou, Q.; Wang, H.; Du, J.; Li, Y.; Yang, X. Biomimetic spiral-cylindrical scaffold based on hybrid chitosan/cellulose/nano-hydroxyapatite membrane for bone regeneration. ACS Appl. Mater. Interfaces 2013, 5, 12036–12044.
  • Liu, X.; Li, X.; Fan, Y.; Zhang, G.; Li, D.; Dong, W.; Sha, Z.; Yu, X.; Feng, Q.; Cui, F.; Watari, F. Repairing goat tibia segmental bone defect using scaffold cultured with mesenchymal stem cells. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 94, 44–52.
  • Kong, L.; Ao, Q.; Wang, A.; Gong, K.; Wang, X.; Lu, G.; Gong, Y.; Zhao, N.; Zhang, X. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. J Biomater Appl 2007, 22, 223–239.
  • Meinel, L.; Hofmann, S.; Karageorgiou, V.; Kirker-Head, C.; McCool, J.; Gronowicz, G.; Zichner, L.; Langer, R.; Vunjak-Novakovic, G.; Kaplan, D. L. The inflammatory responses to silk films in vitro and in vivo. Biomaterials 2005, 26, 147–155.
  • Kim, J. Y.; Yang, B. E.; Ahn, J. H.; Park, S. O.; Shim, H. W. Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects. J. Adv. Prosthodont. 2014, 6, 539–546.
  • Yang, S. Y.; Hwang, T. H.; Che, L.; Oh, J. S.; Ha, Y.; Ryu, W. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering. Biomed. Mater. 2015, 10, 035011.
  • Liu, H.; Xu, G. W.; Wang, Y. F.; Zhao, H. S.; Xiong, S.; Wu, Y.; Heng, B. C.; An, C. R.; Zhu, G. H.; Xie, D. H. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Biomaterials 2015, 49, 103–112.
  • Lin, L.; Hao, R.; Xiong, W.; Zhong, J. Quantitative analyses of the effect of silk fibroin/nano-hydroxyapatite composites on osteogenic differentiation of MG-63 human osteosarcoma cells. J. Biosci. Bioeng. 2015, 119, 591–595.
  • Kweon, H.; Lee, K. G.; Chae, C. H.; Balázsi, C.; Min, S. K.; Kim, J. Y.; Choi, J. Y.; Kim, S. G. Development of nano-hydroxyapatite graft with silk fibroin scaffold as a new bone substitute. J. Oral Maxillofac. Surg. 2011, 69, 1578–1586.
  • Qu, Y.; Wang, P.; Man, Y.; Li, Y.; Zuo, Y.; Li, J. Preliminary biocompatible evaluation of nano-hydroxyapatite/polyamide 66 composite porous membrane. Int. J. Nanomed. 2010, 5, 429–435.
  • Li, J.; Man, Y.; Zuo, Y.; Zhang, L.; Huang, C.; Liu, M.; Li, Y. In vitro and in vivo evaluation of a nHA/PA66 composite membrane for guided bone regeneration. J. Biomater. Sci. Polym. Ed. 2011, 22, 263–275.
  • You, F.; Li, Y.; Zuo, Y.; Li, J. The influence of gamma-ray irradiation on the mechanical and thermal behaviors of nHA/PA66 composite scaffolds. Sci. World J. 2013, 2013, 162384.
  • Sachlos, E.; Gotora, D.; Czernuszka, J. T. Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels. Tissue Eng. 2006, 12, 2479–2487.
  • Xiong, Y.; Ren, C.; Zhang, B.; Yang, H.; Lang, Y.; Min, L.; Zhang, W.; Pei, F.; Yan, Y.; Li, H.; Mo, A.; Tu, C.; Duan, H. Analyzing the behavior of a porous nano-hydroxyapatite/polyamide 66 (n-HA/PA66) composite for healing of bone defects. Int. J. Nanomed. 2014, 9, 485–494.
  • Qu, D.; Li, J.; Li, Y.; Gao, Y.; Zuo, Y.; Hsu, Y.; Hu, J. Angiogenesis; and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects. J. Biomed. Mater. Res.. A 2011, 96, 543–551.
  • Li, J.; Li, Y.; Ma, S.; Gao, Y.; Zuo, Y.; Hu, J. Enhancement of bone formation by BMP-7 transduced MSCs on biomimetic nano-hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects. J. Biomed. Mater. Res.. A 2010, 95, 973–981.
  • Zhang, J. C.; Lu, H. Y.; Lv, G. Y.; Mo, A. C.; Yan, Y. G.; Huang, C. The repair of critical-size defects with porous hydroxyapatite/polyamide nanocomposite: an experimental study in rabbit mandibles. Int. J. Oral Maxillofac. Surg. 2010, 39, 469–477.
  • Ma, P. X.; Zhang, R.; Xiao, G.; Franceschi, R. Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. J. Biomed. Mater. Res. 2001, 54, 284–293.
  • Li, J.; Hong, J.; Zheng, Q.; Guo, X.; Lan, S.; Cui, F.; Pan, H.; Zou, Z.; Chen, C. Repair of rat cranial bone defects with nHAC/PLLA and BMP-2-related peptide or rhBMP-2. J. Orthop. Res. 2011, 29, 1745–1752.
  • Liao, S. S.; Cui, F. Z.; Zhang, W.; Feng, Q. L. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 69, 158–165.
  • Hao, W.; Dong, J.; Jiang, M.; Wu, J.; Cui, F.; Zhou, D. Enhanced bone formation in large segmental radial defects by combining adipose-derived stem cells expressing bone morphogenetic protein 2 with nHA/RHLC/PLA scaffold. Int. Orthop. 2010, 34, 1341–1349.
  • Li, X.; Feng, Q.; Liu, X.; Dong, W.; Cui, F. Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials 2006, 27, 1917–1923.
  • Zong, C.; Qian, X.; Tang, Z.; Hu, Q.; Chen, J.; Gao, C.; Tang, R.; Tong, X.; Wang, J. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds. J. Biomed. Nanotechnol. 2014, 10, 1091–1104.
  • Zhu, W.; Wang, D.; Xiong, J.; Liu, J.; You, W.; Huang, J.; Duan, L.; Chen, J.; Zeng, Y. Study on clinical application of nano-hydroxyapatite bone in bone defect repair. Artif. Cells Nanomed. Biotechnol. 2015, 43, 361–365.
  • Roohani-Esfahani, S. I.; Nouri-Khorasani, S.; Lu, Z.; Appleyard, R.; Zreiqat, H. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Biomaterials 2010, 31, 5498–5509.
  • Zhou, Y.; Yao, H.; Wang, J.; Wang, D.; Liu, Q.; Li, Z. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering. Int. J. Nanomed. 2015, 10, 3203–3215.
  • Chen, J.; Pan, P.; Zhang, Y.; Zhong, S.; Zhang, Q. Preparation of chitosan/nano hydroxyapatite organic-inorganic hybrid microspheres for bone repair. Colloids Surf., B Biointerfaces 2015, 134, 401–407.
  • Liu, L.; Liu, J.; Wang, M.; Min, S.; Cai, Y.; Zhu, L.; Yao, J. Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds. J. Biomater. Sci. Polym. Ed. 2008, 19, 325–338.
  • Huang, D.; Zuo, Y.; Zou, Q.; Zhang, L.; Li, J.; Cheng, L.; Shen, J.; Li, Y. Antibacterial chitosan coating on nano-hydroxyapatite/polyamide66 porous bone scaffold for drug delivery. J. Biomater. Sci. Polym. Ed. 2011, 22, 931–944.
  • Baldino, L.; Naddeo, F.; Cardea, S.; Naddeo, A.; Reverchon, E. FEM modeling of the reinforcement mechanism of hydroxyapatite in PLLA scaffolds produced by supercritical drying, for tissue engineering applications. J. Mech. Behav. Biomed. Mater. 2015, 51, 225–236.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.