236
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Effect of copper nanoparticles on the cell viability of polymer composites

, , , &
Pages 462-468 | Received 22 Apr 2016, Accepted 17 Oct 2016, Published online: 12 Apr 2017

References

  • Borkow, G.; Gabbay, J. Copper as a biocidal tool. Curr. Med. Chem. 2005, 12, 2163–2175.
  • Muñoz-Bonilla, A.; Fernández-García, M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012, 37, 281–339.
  • Borkow, G.; Gabbay, J. Putting copper into action: Copper-impregnated products with potent biocidal activities. FASEB J. 2004, 1, 1–19.
  • Gaetke, L. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147–163.
  • Mouriño, V.; Cattalini, J. P.; Boccaccini, A. R. Metallic ions as therapeutic agents in tissue engineering scaffolds: An overview of their biological applications and strategies for new developments. J. R. Soc. Interface 2012, 9, 401–419.
  • Hoppe, A.; Güldal, N. S.; Boccaccini, A. R. A review of the biological response to ionic dissolution products from bioactive glasses; and glass-ceramics. Biomaterials 2011, 32, 2757–2774.
  • Finney, L.; Vogt, S.; Fukai, T.; Glesne, D. Copper and angiogenesis: Unravelling a relationship key to cancer progression. Clin. Exp. Pharmacol. Physiol. 2009, 36, 88–94.
  • Habibovic, P.; Barralet, J. E. Bioinorganics and biomaterials: Bone repair. Acta Biomater. 2011, 7, 3013–3026.
  • Giavaresi, G.; Torricelli, P.; Fornasari, P. M.; Giardino, R.; Barbucci, R.; Leone, G. Blood vessel formation after soft-tissue implantation of hyaluronan-based hydrogel supplemented with copper ions. Biomaterials 2005, 26, 3001–3008.
  • Gérard, C.; Bordeleau, L. J.; Barralet, J.; Doillon, C. J. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials 2010, 31, 824–831.
  • Hu, G. F. Copper stimulates proliferation of human endothelial cells under culture. J. Cell. Biochem. 1998, 69, 326–335.
  • Zhang, J.; Huang, J.; Xu, S.; Wang, K.; Yu, S. Effects of Cu2 + and pH on osteoclastic bone resorption in vitro. Prog. Nat. Sci. 2003, 13, 266–271.
  • Rodriguez, J. P.; Rios, S.; Gonzales, M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J. Cell. Biochem. 2002, 100, 92–100.
  • Ruparelia, J. P.; Chatterjee, A. K.; Duttagupta, S. P.; Mukherji, S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008, 4, 707–716.
  • Kim, Y. H.; Lee, D. K.; Cha, H. G.; Kim, C. W. Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J. Phys. Chem. B 2006, 110, 24923–24928.
  • Anyaogu, K. C.; Fedorov, A. V.; Neckers, D. C. Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles. Langmuir ACS J. Surf. Colloids 2008, 24, 4340–4346.
  • Ren, G.; Hu, D.; Cheng, E. W. C.; Vargas-Reus, M. A; Reip, P.; Allaker, R. P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 2009, 33, 587–590.
  • Kothapalli, C. R.; Ramamurthi, A. Copper nanoparticle cues for biomimetic cellular assembly of crosslinked elastin fibers. Acta Biomater. 2009, 5, 541–553.
  • Palza, H.; Quijada, R.; Delgado, K. Antimicrobial polymer composites with copper micro-and nanoparticles: Effect of particle size and polymer matrix. J. Bioact. Compat. Polym. 2015, 30, 366–380.
  • Cioffi, N.; Torsi, L.; Ditaranto, N.; Tantillo, G.; Ghibelli, L.; Sabbatini, L.; Bleve-Zacheo, T.; D’Alessio, M.; Zambonin, P. G.; Traversa, E. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem. Mater. 2005, 17, 5255–5262.
  • Palza, H.; Gutiérrez, S.; Delgado, K.; Salazar, O.; Fuenzalida, V.; Avila, J. I.; Figueroa, G.; Quijada, R. Toward tailor-made biocide materials based on poly(propylene)/copper nanoparticles. Macromol. Rapid Commun. 2010, 31, 563–567.
  • Delgado, K.; Quijada, R.; Palma, R.; Palza, H. Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Lett. Appl. Microbiol. 2011, 53, 50–54.
  • Bikiaris, D. N.; Triantafyllidis, K. S. HDPE/Cu-nanofiber nanocomposites with enhanced antibacterial; & oxygen barrier properties appropriate for food packaging applications. Mater. Lett. 2013, 93, 1–4.
  • Weickmann, H.; Tiller, J. C.; Thomann, R.; Mülhaupt, R. Metallized organoclays as new intermediates for aqueous nanohybrid dispersions, nanohybrid catalysts and antimicrobial polymer hybrid nanocomposites. Macromol. Mater. Eng. 2005, 290, 875–883.
  • Xu, T.; Lei, H.; Cai, S. Z.; Xia, X. P.; Xie, C. S. The release of cupric ion in simulated uterine: New material nano-Cu/low-density polyethylene used for intrauterine devices. Contraception 2004, 70, 153–157.
  • Dasari, A.; Quirós, J.; Herrero, B.; Boltes, K.; García-Calvo, E.; Rosal, R. Antifouling membranes prepared by electrospinning polylactic acid containing biocidal nanoparticles. J. Memb. Sci. 2012, 405–406, 134–140.
  • Liu, Y. Y.; Liu, D. M.; Chen, S. Y.; Tung, T. H.; Liu, T. Y. In situ synthesis of hybrid nanocomposite with highly order arranged amorphous metallic copper nanoparticle in poly(2-hydroxyethyl methacrylate) and its potential for blood-contact uses. Acta Biomater. 2008, 4, 2052–2058.
  • Chen, Z.; Meng, H.; Xing, G.; Chen, C.; Zhao, Y.; Jia, G.; Wang, T.; Yuan, H.; Ye, C.; Zhao, F., Chaia, Z.; Zhuc, C.; Fangc, X.; Mac, B.; Wan, L.. Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett. 2006, 163, 109–120.
  • Karlsson, H. L.; Cronholm, P.; Hedberg, Y.; Tornberg, M.; De Battice, L.; Svedhem, S.; Wallinder, I. O. Cell membrane damage and protein interaction induced by copper containing nanoparticles – importance of the metal release process. Toxicology 2013, 313, 59–69.
  • Valodkar, M.; Rathore, P. S.; Jadeja, R. N.; Thounaojam, M.; Devkar, R. V; Thakore, S. Cytotoxicity evaluation; and antimicrobial studies of starch capped water soluble copper nanoparticles. J. Hazard. Mater. 2012, 201–202, 244–249.
  • Karlsson, H. L.; Cronholm, P.; Gustafsson, J.; Mo, L. Copper oxide nanoparticles are highly toxic/: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 2008, 21, 1726–1732.
  • Worthington, K. L.; Dodd, A. A.; Wongrakpanich, A.; Mudunkotuwa, I. A.; Mapuskar, K. A.; Joshi, V. B.; Allan Guymon, C.; Spitz, D. R.; Grassian, V. H.; Thorne, P. S., Salem, A. K. Chitosan coating of copper nanoparticles reduces in vitro toxicity and increases inflammation in the lung. Nanotechnology 2013, 24, 1199–1216.
  • Martinez-Guitierrez, F.; Guajardo-Pacheco, J. M.; Noriega-Trevino, M. E.; Thi, E. P.; Reiner, N.; Orrantia, E.; Av-Gay, Y.; Ruiz, F.; Bach, H. Antimicrobial activity, cytotoxicity and inflammatory response of novel plastics embedded with silver nanoparticles. Fut. Microbiol. 2013, 8, 403–411.
  • Kim, J.; Kwon, S.; Ostler, E. Antimicrobial effect of silver-impregnated cellulose: Potential for antimicrobial therapy. J. Biol. Eng. 2009, 3, 20.
  • Lu, Z.; Zhang, X.; Li, Z.; Wu, Z.; Song, J.; Li, C. Composite copolymer hybrid silver nanoparticles: Preparation and characterization of antibacterial activity and cytotoxicity. Polym. Chem. R. Soc. Chem. 2015, 6, 772.
  • Smulders, S.; Luyts, K.; Brabants, G.; Golanski, L.; Martens, J.; Vanoirbeek, J.; Hoet, P. H. M. Toxicity of nanoparticles embedded in paints compared to pristine nanoparticles, in vitro study. Toxicol. Lett. 2015, 232, 333–339.
  • Machida-Sano, I.; Hirakawa, M.; Matsumoto, H.; Kamada, M.; Ogawa, S.; Satoh, N.; Namiki, H. Surface characteristics determining the cell compatibility of ionically cross-linked alginate gels. Biomed. Mater. 2014, 9, 025007.
  • Rinaudo, M. Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 2008, 57, 397–430.
  • Bellon, J. M.; G-honduvilla, N.; Jurado, F.; Carranza, A.; Buja, J. In vitro interaction of bacteria with polypropylene/ePTFE prostheses. Biomaterials 2001, 22, 2021–2024.
  • Cobb, W. S.; Kercher, K. W.; Heniford, B. T. The argument for lightweight polypropylene mesh in hernia repair. Surg. Innov. 2005, 12, 63–69.
  • Xia, X.; Xie, C.; Cai, S.; Yang, Z., Yang, X. Corrosion characteristics of copper microparticles and copper nanoparticles in distilled water. Corros. Sci. 2006, 48, 3924–3932.
  • Rapoport, S. I.; Arriagada, C.; Marõ, A.; Allen, D. D.; Caviedes, P. Impaired cholinergic function in cell lines derived from the cerebral cortex of normal and trisomy 16 mice. Eur. J. Neurosci. 2000, 12, 3259–3264.
  • Opazo, P.; Saud, K.; de Saint Pierre, M.; Cárdenas, A. M.; Allen, D. D.; Segura-Aguilar, J.; Caviedes, R.; Caviedes, P. Knockdown of amyloid precursor protein normalizes cholinergic function in a cell line derived from the cerebral cortex of a trisomy 16 mouse: An animal model of down syndrome. J. Neurosci. Res. 2006, 84, 1303–1310.
  • Bejarano, J.; Caviedes, P.; Palza, H. Sol–gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics. Biomed. Mater. 2015, 10, 025001.
  • ISO Standard 10993–5 Biological evaluation of medical devices, Part 5, Tests for cytotoxicity: In vitro methods, 2009.
  • Pokrywczynska, M.; Drewa, T.; Jundzill, A.; Lysik, J. Alginate is not a good material for growth of rapidly proliferating cells. Transplant. Proc. 2008, 40, 1664–1667.
  • Harman, A. W.; Maxwell, M. J. An evaluation of the role of calcium in cell injury. Annu. Rev. Pharmacol. Toxicol. 1995, 35, 129–144.
  • Mørch, Y. A.; Qi, M.; Gundersen, P. O. M.; Formo, K.; Lacik, I.; Skjåk-Braek, G.; Oberholzer, J.; Strand, B. L. Binding and leakage of barium in alginate microbeads. J. Biomed. Mater. Res. A 2012, 100, 2939–2947.
  • Gunawan, C.; Teoh, W. Y.; Marquis, C. P.; Amal, R. Cytotoxic origin of copper (II) oxide nanoparticles: Comparative studies and metal salts. ACS Nano 2011, 5, 7214–7225.
  • Cronholm, P.; Midander, K.; Karlsson, H. L.; Elihn, K.; Wallinder, I. O.; Möller, L. Effect of sonication and serum proteins on copper release from copper nanoparticles and the toxicity towards lung epithelial cells. Nanotoxicology 2011, 5, 269–281.
  • Hasman, H.; Bjerrum, M. J.; Christiansen, L. E.; Bruun Hansen, H. C.; Aarestrup, F. M. The effect of pH and storage on copper speciation and bacterial growth in complex growth media. J. Microbiol. Methods 2009, 78, 20–24.
  • Zhang, Y. M.; Rock, C. O. Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 2008, 6, 222–233.
  • Ghasemzadeh, H.; Ghanaat, F. Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J. Polym. Res. 2014, 21, 355.
  • Murthy, P. S. K.; Murali Mohan, Y.; Varaprasad, K.; Sreedhar, B.; Mohana Raju, K. First successful design of semi-IPN hydrogel-silver nanocomposites: A facile approach for antibacterial application. J. Colloid Interface Sci. 2008, 318, 217–224.
  • Palza, H.; Delgado, K.; Pinochet, I. Improving the metal ion release from nanoparticles embedded in a polypropylene matrix for antimicrobial applications. J. Appl. Polym. Sci. 2015, 132, 41232.
  • Midander, K.; Cronholm, P.; Karlsson, H. L.; Elihn, K.; Möller, L.; Leygraf, C.; Wallinder, I. O. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: A cross-disciplinary study. Small 2009, 5, 389–399.
  • Studer, A. M.; Limbach, L. K.; Van Duc, L.; Krumeich, F.; Athanassiou, E. K.; Gerber, L. C.; Moch, H.; Stark, W. J. Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol. Lett. 2010, 197, 169–174.
  • Teitzel, G. M.; Geddie, A.; De Long, S. K.; Kirisits, M. J.; Whiteley, M.; Parsek, M. R. Survival and growth in the presence of elevated copper: Transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J. Bacteriol. 2006, 188, 7242–7256.
  • Summers, A.; Silver, S. Microbial transformations of metals. Annu. Rev. Microbiol. 1978, 32, 637–672.
  • Šimon, P.; Chaudhry, Q.; Bakoš, D. Migration of engineered nanoparticles from polymer packaging to food – A physicochemical view. J. Food Nutr. Res. 2008, 47, 105–113.
  • Augst, A. D.; Kong, H. J.; Mooney, D. J. Alginate hydrogels as biomaterials. Macromol. Biosci. 2006, 6, 623–633.
  • Zheng, H. Interaction mechanism in sol-gel transition of alginate solutions by addition of divalent cations. Carbohydr. Res. 1997, 302, 97–101.
  • Cronholm, P.; Karlsson, H. L.; Hedberg, J.; Lowe, T. A.; Winnberg, L.; Elihn, K.; Wallinder, I. O.; Möller, L. Intracellular uptake and toxicity of Ag and CuO nanoparticles: A comparison between nanoparticles and their corresponding metal ions. Small 2013, 9, 970–982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.