196
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of structural, mechanical, and cellular behavior of electrospun poly-3-hydroxybutyrate scaffolds loaded with glucosamine sulfate to develop cartilage tissue engineering

, , , , &
Pages 589-602 | Received 04 Jul 2016, Accepted 17 Oct 2016, Published online: 04 May 2017

References

  • Chen, F. H.; Rousche, K. T.; Tuan, R. S. Technology insight: Adult stem cells in cartilage regeneration and tissue engineering. Nat. Clin. Pract. Rheumatol. 2006, 2, 373–382.
  • Tuan, R. S.; Chen, F. H. Cartilage, in Stem Cell and Gene-based Therapy; Springer, New York, 2006; pp. 179–193.
  • Hashimoto, S.; Ochs, R. L.; Komiya, S.; Lotz, M. Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis Rheum. 1998, 41, 1632–1638.
  • Yin, J.; Xia, Y. Proteoglycan concentrations in healthy and diseased articular cartilage by Fourier transform infrared imaging and principal component regression. Spectrochim. Acta A 2014, 133, 825–830.
  • Chen, Q.; Liang, S.; Thouas, G. A. Elastomeric biomaterials for tissue engineering. Progr. Polym. Sci. 2013, 38, 584–671.
  • Lien, S.-M.; Ko, L.-Y.; Huang, T.-J. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater. 2009, 5, 670–679.
  • Benders, K. E.; van Weeren, P. R.; Badylak, S. F.; Saris, D. B.; Dhert, W. J.; Malda, J. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 2013, 31, 169–176.
  • Vatankhah, E.; Semnani, D.; Prabhakaran, M. P.; Tadayon, M.; Razavi, S.; Ramakrishna, S. Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomater. 2014, 10, 709–721.
  • Agarwal, S.; Wendorff, J. H.; Greiner, A. Use of electrospinning technique for biomedical applications. Polymer 2008, 49, 5603–5621.
  • Sill, T. J.; von Recum, H. A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008, 29, 1989–2006.
  • Ikada, Y. Tissue Engineering: Fundamentals and Applications, Vol. 8; Academic Press, San Diego, CA, 2008; pp. 26–32.
  • Izadifar, Z.; Chen, X.; Kulyk, W. Strategic design and fabrication of engineered scaffolds for articular cartilage repair. J. Funct. Biomater. 2012, 3, 799–838.
  • Kanjirathumutil, C. T. Novel Polyhydroxyalkanoate Blends: Their Characterisation and Possible Applications; University of Westminster, UK, 2012; pp. 16–44.
  • Suzuki, T.; Deguchi, H.; Yamanae, T.; Shimizu, S.; Gekko, K. Control of molecular weight of poly-β-hydroxybutyric acid produced in fet-batch culture of Protomonas extorquens. Appl. Microbiol. Biotechnol. 1988, 27(5), 487–491.
  • Korsatko, W.; Wabnegg, B.; Tillian, H. M.; Braunegg, G.; Lafferty, R. M. Poly-D-hydroxybutyric acid-a biologically degradable vehicle to regard release of a drug. Pharm. Ind. 1983, 45, 1004–1007.
  • Miller, N.; Williams, D. On the biodegradation of poly-β-hydroxybutyrate (PHB) homopolymer and poly-β-hydroxybutyrate-hydroxyvalerate copolymers. Biomaterials 1987, 8, 129–137.
  • Voit, B.; Wegner, G.; Wiesner, U. Editorial Board: Abe, A.; Albertsson, A.-C.; Duncan, R.; Duŝek, K.; de Jeu, W. H.; Joanny, J-F.; Kausch, H-H.; Kobayashi, S.; Lee, K.-S.; Leibler, L.; Long, T. E.; Manners, I.; Möller, M.; Nuyken, O.; Terentjev, E. M. Enzyme 2006, 195, 4–70.
  • Derfoul, A.; Miyoshi, A. D.; Freeman, D. E.; Tuan, R. S. Glucosamine promotes chondrogenic phenotype in both chondrocytes and mesenchymal stem cells and inhibits MMP-13 expression and matrix degradation. Osteoarthritis Cartilage 2007, 15, 646–655.
  • Hwang, N. S.; Varghese, S.; Theprungsirikul, P.; Canver, A.; Elisseeff, J. Enhanced chondrogenic differentiation of murine embryonic stem cells in hydrogels with glucosamine. Biomaterials 2006, 27, 6015–6023.
  • Varghese, S.; Theprungsirikul, P.; Sahani, S.; Hwang, N.; Yarema, K. J.; Elisseeff, J. H. Glucosamine modulates chondrocyte proliferation, matrix synthesis, and gene expression. Osteoarthritis Cartilage 2007, 15, 59–68.
  • Shikhman, A. R.; Brinson, D. C.; Valbracht, J.; Lotz, M. K. Differential metabolic effects of glucosamine and N-acetylglucosamine in human articular chondrocytes. Osteoarthritis Cartilage 2009, 17, 1022–1028.
  • Wang, L.; Detamore, M. S. Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications. Arch. Oral Biol. 2009, 54, 1–5.
  • Dodge, G.; Jimenez, S. Glucosamine sulfate modulates the levels of aggrecan and matrix metalloproteinase-3 synthesized by cultured human osteoarthritis articular chondrocytes. Osteoarthritis Cartilage 2003, 11, 424–432.
  • Qu, C-J.; Karjalainen, H. M.; Helminen, H. J.; Lammi, M. J. The lack of effect of glucosamine sulphate on aggrecan mRNA expression and (35)S-sulphate incorporation in bovine primary chondrocytes. Biochim. Biophys. Acta 2006, 1762, 453–459.
  • Bassleer, C.; Rovati, L.; Franchimont, P. Stimulation of proteoglycan production by glucosamine sulfate in chondrocytes isolated from human osteoarthritic articular cartilage in vitro. Osteoarthritis Cartilage 1998, 6, 427–434.
  • Meinel, A. J.; Germershaus, O.; Luhmann, T.; Merkle, H. P.; Meinel, L. Electrospun matrices for localized drug delivery: Current technologies and selected biomedical applications. Eur. J. Pharm. Biopharm. 2012, 81, 1–13.
  • Balaji, A.; Vellayappan, M. V.; John, A. A.; Subramanian, A. P.; Jaganathan, S. K.; Supriyanto, E.; Razak, S. I. A. An insight on electrospun-nanofibers-inspired modern drug delivery system in the treatment of deadly cancers. RSC Adv. 2015, 5, 57984–58004.
  • Zhang, Z.; Xie, J.; Liu, H.; Liu, J.; Linhardt, R. J. Quantification of heparan sulfate disaccharides using ion-pairing reversed-phase microflow high-performance liquid chromatography with electrospray ionization trap mass spectrometry. Anal. Chem. 2009, 81, 4349–4355.
  • Wu, Y.; Hussain, M.; Fassihi, R. Development of a simple analytical methodology for determination of glucosamine release from modified release matrix tablets. J. Pharm. Biomed. Anal. 2005, 38, 263–269.
  • Kaplan, D. L.; Lee, J. W.; Deng, F.; Yeomans, W. G.; Allen, A. L.; Gross, R. A. Direct incorporation of glucosamine and N-acetylglucosamine into exopolymers by Gluconacetobacter xylinus (=Acetobacter xylinum) ATCC 10245: production of chitosan-cellulose and chitin-cellulose exopolymers. Appl. Environ. Microbiol. 2001, 67, 3970–3975.
  • Soga, T.; Heiger, D. N. Simultaneous determination of monosaccharides in glycoproteins by capillary electrophoresis. Anal. Biochem. 1998, 261, 73–78.
  • Liang, Z., Leslie, J.; Adebowale, A.; Ashraf, M.; Eddington, N. D. Determination of the nutraceutical, glucosamine hydrochloride, in raw materials, dosage forms and plasma using pre-column derivatization with ultraviolet HPLC. J. Pharm. Biomed. Anal. 1999, 20, 807–814.
  • Ander, B.; Karlsson, A.; Öhrlund, Å. Determination of heparin on intraocular lens surfaces by ion chromatography. J. Chromatogr. A 2001, 917, 105–110.
  • Campo, G. M.; Campo, S.; Ferlazzo, A. M.; Calatroni, A. Improved high-performance liquid chromatographic method to estimate aminosugars and its application to glycosaminoglycan determination in plasma and serum. J. Chromatogr. B 2001, 765, 151–160.
  • Suzuki, S.; Shimotsu, N.; Honda, S.; Arai, A.; Nakanishi, H. Rapid analysis of amino sugars by microchip electrophoresis with laser-induced fluorescence detection. Electrophoresis 2001, 22, 4023–4031.
  • El-Saharty, Y. S.; Bary, A. A. High-performance liquid chromatographic determination of neutraceuticals, glucosamine sulphate and chitosan, in raw materials and dosage forms. Anal. Chim. Acta 2002, 462, 125–131.
  • Xu, F.; Zhu, W. J.; Mao, X. L.; Dai, Z. P.; Zhang, Q.; Du, Y. G.; Liang, X. M.; Lin, B. C. [Direct UV detection of glucose; and its derivatives in capillary zone electrophoresis]. Se Pu 2002, 20, 156–158 (Article in Chinese).
  • Russell, A. S.; Aghazadeh-Habashi, A.; Jamali, F. Active ingredient consistency of commercially available glucosamine sulfate products. J. Rheumatol. 2002, 29, 2407–2409.
  • Cheng, X.; Kaplan, L. A. Simultaneous analyses of neutral carbohydrates and amino sugars in freshwaters with HPLC–PAD. J. Chromatogr. Sci. 2003, 41, 434–438.
  • Metaxatos, A.; Panagiotopoulos, C.; Ignatiades, L. Monosaccharide and aminoacid composition of mucilage material produced from a mixture of four phytoplanktonic taxa. J. Exp. Marine Biol. Ecol. 2003, 294, 203–217.
  • Tehrani, A. H.; Zadhoush, A.; Karbasi, S.; Sadeghi-Aliabadi, H. Scaffold percolative efficiency: In vitro evaluation of the structural criterion for electrospun mats. J. Mater. Sci. Mater. Med. 2010, 21, 2989–2998.
  • Tehrani, A. H.; Zadhoush, A.; Karbasi, S.; Khorasani, S. N. Experimental investigation of the governing parameters in the electrospinning of poly(3-hydroxybutyrate) scaffolds: Structural characteristics of the pores. J. Appl. Polym. Sci. 2010, 118, 2682–2689.
  • Shundalau, M.; Chybirai, P. S.; Komyak, A. I.; Zazhogin, A. P.; Ksenofontov, M. A.; Umreiko, D. S. Modeling of structures and calculation of IR vibrational spectra of N,N-dimethylformamide dimers by density functional theory. J. Appl. Spectrosc. 2011, 78, 326–336.
  • Anderson, J.; Nicolosi, R.; Borzelleca, J. Glucosamine effects in humans: A review of effects on glucose metabolism, side effects, safety considerations and efficacy. Food Chem. Toxicol. 2005, 43, 187–201.
  • Sadd, M. H. Elasticity: Theory, Applications, and Numerics; Academic Press, San Diego, CA, 2009; pp. 113–133.
  • Stockwell, R. A. Biology of cartilage cells. CUP Arch. 1979, 7, 25–28.
  • Sindhu, R., Balakrishnan, A.; Binod, P.; Ashok, P. Production and characterization of poly-3-hydroxybutyrate from crude glycerol by Bacillus sphaericus NII 0838 and improving its thermal properties by blending with other polymers. Braz. Arch. Biol. Technol. 2011, 54, 783–794.
  • Sharma, A., Kaur, S.; Mahajan, C. G.; Tripathi, S. K.; Saini, G. S. S. Fourier transform infrared spectral study of N,N′-dimethylformamide–water–rhodamine 6G mixture. Mol. Phys. 2007, 105, 117–123.
  • Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. A. Introduction to Spectroscopy; Cengage Learning, 2008; pp. 15–18.
  • Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. A. Introduction to Spectroscopy; Cengage Learning, Boston, 2008; pp. 381–390.
  • Dash, S.; Murthy, P. N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67, 217–223.
  • Libo, Y.; Reza, F. Pharmacokinetic profiles of two tablet formulations of Piroxicam. J. Pharm. Sci. 1996, 85, 170–176.
  • Freitas, M.; Marchetti, J. Nimesulide PLA microspheres as a potential sustained release system for the treatment of inflammatory diseases. Int. J. Pharm. 2005, 295, 201–211.
  • Sasazaki, Y.; Seedhom, B.; Shore, R. Morphology of the bovine chondrocyte and of its cytoskeleton in isolation and in situ: Are chondrocytes ubiquitously paired through the entire layer of articular cartilage? Rheumatology 2008, 47, 1641–1646.
  • Feng, G.; Li, L.; Liu, H.; Song, Y.; Huang, F.; Tu, C.; Shen, B.; Gong, Q.; Li, T.; Liu, L.; Zeng, J.; Kong, Q.; Yi, M.; Gupte, M.; Ma, P. X.; Pei, F. Hypoxia differentially regulates human nucleus pulposus and annulus fibrosus cell extracellular matrix production in 3D scaffolds. Osteoarthritis Cartilage 2013, 21, 582–588.
  • Woodfield, T. B.; Malda, J.; de Wijn, J.; Péters, F.; Riesle, J.; van Blitterswijk, C. A. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 2004, 25, 4149–4161.
  • Svensson, A.; Nicklasson, E.; Harrah, T.; Panilaitis, B.; Kaplan, D. L.; Brittberg, M.; Gatenholm, P. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 2005, 26, 419–431.
  • Guilak, F.; Mow, V. C. The mechanical environment of the chondrocyte: A biphasic finite element model of cell–matrix interactions in articular cartilage. J. Biomech. 2000, 33, 1663–1673.
  • Black, J.; Hastings, G. Handbook of Biomaterial Properties; Springer Science & Business Media, New York, 2013; pp. 40–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.