299
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Application of polymeric nanofibers in medical designs, part I: Skin and eye

Pages 521-531 | Received 24 Nov 2016, Accepted 20 Dec 2016, Published online: 12 Apr 2017

References

  • Nikalje, A. P. Nanotechnology and its applications in medicine. Nikalje. Med. Chem. 2015, 5(2), 81.
  • Ai, J.; Biazar, E.; Jafarpour, M.; Montazeri, M.; Majdi, A.; Aminifard, S.; Zafari, M.; Akbari, H. R.; Rad, H. Nanotoxicology—Nanoparticles safety at biomedical designs. Int. J. Nanomed. 2011, 6, 1117.
  • Che, G.; Lakshmi, B. B.; Martin, C. R.; Fisher, E. R. Chemical vapour based synthesis of carbon nanotubes and nanofibers using a template method. Chem. Mater. 1998, 10, 260.
  • Cui, H.; Zhou, O.; Stoner, B. R. Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 2000, 88, 6072.
  • Doshi, J.; Reneker, D. H. Electospinning process and application of electrospun fibers. J. Electrostat. 1995, 35, 151.
  • Reneker, D. H.; Chun, I. Nanometer diameter fibers of polymer produced by electrospinning. Nanotechnology 1996, 7, 216.
  • Ameri, B. R.; Biazar, E. Development of oriented nanofibrous silk guide for repair of nerve defects. Int. J. Polym. Mater. Polym. Biomater. 2016, 65(2), 91.
  • Biazar, E.; Baradaran, A. R.; Heidari, S.; Tavakolifard, S. Oriented nanofibrous silk as a natural scaffold for ocular epithelial Regeneration. J. Biomat. Sci.-Polym. E 2015, 26(16), 1139.
  • Ai, J.; Heidari, S.; Ghorbani, F.; Ejazi, F.; Biazar, E.; Asefnejad, A.; Pourshamsian, K.; Montazeri, M. Fabrication of coated-collagen electrospun PHBV Nanofiber film by plasma method and its cellular study. J. Nanomater. 2011, 2011, 1.
  • Baradaran, A. R.; Biazar, E.; Heidari, S. Cellular response of limbal stem cells on PHBV/gelatin nanofibrous scaffold for ocular epithelial regeneration. Int. J. Polym Mater Polym. Biomater. 2015, 64, 879.
  • Biazar, E.; Heidari, S. Rat sciatic nerve regeneration across a 30-mm defect bridged by a nanofibrous PHBV and Schwann cell as artificial nerve graft. Cell Commun. Adhes. 2013, 20(1–2), 41.
  • Berndt, P.; Fields, G. B.; Tirrell, M. Synthetic lipidation of peptides and amino acids: Monolayer structure and properties. J. Am. Chem. Soc. 1995, 117, 9515.
  • Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz, A. Supramolecular materials: Self-organized nanostructures. Science 1997, 275, 384.
  • Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001, 294, 1684.
  • Ayres, C. E.; Jha, B.; Sell, S.; Bowlin, G. L.; Simpson, D. G. Nanotechnology in the design of soft tissue scaffolds: Innovations in structure and function. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 20.
  • Hong, Y. S.; Legge, R. L.; Zhang, S.; Chen, P. Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16–II and EAK16–IV. Biomacromolecules 2003, 4, 1433.
  • Hua, F. J.; Kim, G. E.; Lee, J. D.; Son, Y. K.; Lee, D. S. Macroporous poly(L-lactide) scaffold. 1. Preparation of a macroporous scaffold by liquid–liquid phase separation of a PLLA–dioxane–water system. J. Biomed. Mater. Res. 2002, 63, 161.
  • Nam, Y. S.; Park, T. G. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 1999, 20, 1783.
  • Zhang, R.; Ma, P. X. Synthetic nanofibrillar extracellular matrices with predesigned macroporous architetures. J. Biomed. Mater. Res. 2000, 52, 430.
  • Jian, F.; HaiTao, N.; Tong, L.; XunGai, W. Applications of electrospun nanofibers. Chin. Sci. Bull. 2008, 53(15), 2265.
  • Clark, R. A. F.; Singer, A. J. Wound repair: basic biology to tissue engineering. In: Lanza, R. P., Langer, R., Vacanti, J. eds. Principles of Tissue Engineering, 2nd ed., Academic Press: San Diego, 2000; p. 855.
  • Williams, P. L.; Gray, H. Gray’s Anatomy. 37th ed., Churchill Livingstone: Edinburgh, 1989; p. 1598.
  • Seal, B. L.; Otero, T. C.; Panitch, A. Polymeric biomaterials for tissue and organ regeneration. Mater. Sci. Eng. R 2001, 34, 147.
  • Sundaramurthi, D.; Krishnan, U. M.; Sethuraman, S. Electrospun nanofibers as scaffolds for skin tissue engineering. Polym Rev. 2014, 54, 348.
  • Parenteau, N. L.; Hardin-Young, J.; Ross, R. N. Skin. In: Lanza, R. P., Langer, R., Vacanti, J. eds. Principles of Tissue Engineering, 2nd ed., Academic Press: San Diego, 2000, p. 879.
  • Hosseinkazemi, H.; Biazar, E.; Bonakdar, S.; Ebadi, M. T.; Shokrgozar, M. A.; Rabiee, M. Modification of PCL electrospun nanofibrous mat with Calendula officinalis extract for improved interaction with cells. Int. J. Polym. Mater. Polym. Biomater. 2015, 64(9), 459.
  • Sahebalzamani, A.; Biazar, E.; Shahrezaei, M.; Hosseinkazemi, H.; Rahiminavaieet, H. Surface modification of PHBV nanofibrous mat by laminin protein and its cellular study. Int. J. Polym. Mater. Polym. Biomater. 2015, 64(3), 149.
  • Sahebalzamani, A.; Biazar, E. Modification of poly caprolactone nanofibrous mat by laminin protein and its cellular study. J. Biomater. Tissue Eng. 2014, 4, 423.
  • Tavirani, R.; Biazar, E.; Ai, J.; Heidari, S.; Asefnejad, A. Fabrication of collagen-coated poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) nanofiber by chemical and physical methods. Orient. J. Chem. 2011, 27(2), 385.
  • Montazeri, M.; Rashidi, N.; Biazar, E.; Rad, H.; Sahebalzamani, M.; Heidari, S.; Majdi, A. Compatibility of cardiac muscle cells on coated-gelatin electro-spun polyhydroxybutyrate /valerate nano fibrous film. Biosci. Biotechnol. Res ASIA 2011, 8(2), 515.
  • Matthews, J. A.; Wnek, G. E.; Simpson, D. G.; Bowlin, G. L. Electrospinning of collagen nanofibers. Biomacromolecules 2002, 3, 232.
  • Rho, K. S.; Jeong, L.; Lee, G.; Seo, B. M.; Park, Y. J.; Hong, S. D.; Roh, S.; Cho, J. J.; Park, W. H.; Min, B. M. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 2006, 27, 1452.
  • Powell, H. M.; Supp, D. M.; Boyce, S. T. Influence of electrospun collagen on wound contraction of engineered skin substitutes. Biomaterials 2008, 29, 834.
  • Wang, Y.; Zhang, C.; Zhang, Q.; Li, P. Composite electrospun nanomembranes of fish scale collagen peptides/chito-oligosaccharides:antibacterial properties and potential for wound dressing. Int. J. Nanomed. 2011, 6, 667.
  • Rnjak-Kovacina, J.; Wise, S. G.; Li, Z.; Maitz, P. K. M.; Young, C. J.; Wang, Y.; Weiss, A. S. Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering. Acta Biomater. 2012, 8, 3714.
  • Zhou, T.; Wang, N.; Xue, Y.; Ding, T.; Liu, X.;, Mo, X.; Sun, J. Development of biomimetic tilapia collagen nanofibers for skin regeneration through inducing keratinocytes differentiation and collagen synthesis of dermal fibroblasts. ACS Appl. Mater. Interfaces 2015, 7(5), 3253.
  • Powell, H. M.; Boyce, S. T. Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermalepidermal skin substitutes. J. Biomed. Mater. Res. 2008, 84, 1078.
  • Zhang, Y. Z.; Venugopal, J.; Huang, Z. M.; Lim, C. T.; Ramakrishna, S. Crosslinking of the electrospun gelatin nanofibers. Polymer 2006, 47, 2911.
  • Rujitanaroj, P.; Pimpha, N.; Supaphol, P. Wound dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 2008, 49, 4723.
  • Min, B. M.; Lee, G.; Kim, S. H.; Nam, Y. S.; Lee, T. S.; Park, W. H. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 2004, 25, 1289.
  • Zhong, S. P.; Zhang, Y. Z.; Lim, C. T. Tissue scaffolds for skin wound healing and dermal reconstruction. Nanomed. Nanobiotechnol. 2010, 2, 510.
  • Sundaramurthi, D.; Vasanthan, K. S.; Kuppan, P.; Krishnan, U. M.; Sethuraman, S. Electrospun nanostructured chitosan–poly(vinyl alcohol) scaffolds: A biomimetic extracellular matrix as dermal substitute. Biomed. Mater. 2012, 7(4), 045005.
  • Tchemtchoua, V. T.; Atanasova, G.; Aqil, A.; Filée, P.; Garbacki, N.; Vanhooteghem, O.; Deroanne, C.; Noël, A.; Jérome, C.; Nusgens, B. Development of a chitosan nanofibrillar scaffold for skin repair and regeneration. Biomacromolecules 2011, 12, 3194.
  • Zhou, Y.; Yang, D.; Chen, X.; Xu, Q.; Lu, F.; Nie, J. Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 2008, 9, 349.
  • Biazar, E.; Heidari, S. Effects of chitosan cross linked nanofibrous PHBV scaffold combined with mesenchymal stem cells on healing of full-thickness skin defects. J. Biomed. Nanotechnol. 2013, 9(9), 1471.
  • Wnek, G. E.; Carr, M. E.; Simpson, D. G.; Bowlin, G. Electrospinning of collagen nanofibers. Nano Lett. 2003, 3, 232.
  • Barnes, C. P.; Sell, S. A.; Boland, E. D.; Simpson, D. G.; Bowlin, G. L. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv. Drug Deliv. Rev. 2007, 59, 1413.
  • Baier Leach, J.; Bivens, K. A.; Patrick, C. W. J.; Schmidt, C. E. Photocrosslinked hyaluronic acid hydrogels: Natural, biodegradable tissue engineering scaffolds. Biotechnol. Bioeng. 2003, 82, 578.
  • Uppal, R.; Ramaswamy, G. N.; Arnold, C.; Goodband, R.; Wang, Y. Hyaluronic acid nanofiber wound dressing—Production, characterization, and in vivo behavior. J. Biomed. Mater. Res. 2011, 97B, 20.
  • Biazar, E. Polyhydroxyalkanoates as potential biomaterials for neural tissue regeneration. Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 898.
  • Zeinali, R.; Biazar, E.; Heidari, S.; Rezaei, M. T.; Asadipour, K. Regeneration of full-thickness skin defects using umbilical cord blood stem cells loaded into modified porous scaffolds. ASAIO J. 2014, 60, 106.
  • Chong, E. J.; Phan, T. T.; Lim, I. J.; Zhang, Y. Z.; Bay, B. H. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound-healing and layered dermal reconstitution. Acta Biomater. 2007, 3, 321.
  • Khil, M. S.; Cha, D. I.; Kim, H. Y.; Kim, I. S.; Bhattarai, N. Electrospun nanofibrous polyurethane membrane as wound dressing. J. Biomed. Mater. Res. B. 2003, 67B, 675.
  • Kumbar, S. G.; Nukavarapu, S. P.; James, R.; Nair, L. S.; Laurencin, C. T. Electrospun Poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 2008, 29, 4100.
  • Gu, S. Y.; Wang, Z. M.; Ren, J.; Zhang, C. Y. Electrospinning of gelatin and gelatin/poly(L-lactide) blend and its characteristic for wound dressing. Mater. Sci. Eng. C 2009, 29, 1822.
  • Kuppan, P.; Vasanthan, K. S.; Sundaramurthi, D.; Krishnan, U. M.; Sethuraman, S. Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: Effects of topography, mechanical, and chemical stimuli. Biomacromolecules 2011, 12, 3156.
  • Biazar, E.; Heidari, S.; Sahebalzamani, A.; Hamidi, M.; Ebrahimi, M. The healing effect of unrestricted somatic stem cells loaded in nanofibrous polyhydroxybutyrate-co-hydroxyvalerate scaffold on full-thickness skin defects. J. Biomater. Tissue Eng. 2014, 4, 20.
  • Heidari, S.; Biazar, E.; Rezaei, M.; Rahmati, M.; Ronaghi, A.; Ebrahimi, M.; Rad, H.; Sahebalzamani, A.; Rakhshan, A.; Afsordeh, K. The healing effect of unrestricted somatic stem cells loaded in collagen-modified nanofibrous PHBV scaffold on full-thickness skin defects. Artif. Cell Nanomed. B. 2014, 42, 210.
  • Biazar, E. Use of umbilical cord and cord blood-derived stem cells for tissue repair and regeneration. Expert Opin. Biol. Ther. 2013, 13(12), 1653.
  • Asran, A. S.; Razghandi, K.; Aggarwal, N.; Michler, G. H.; Groth, T. Nanofibers from blends of polyvinyl alcohol and polyhydroxy butyrate as potential scaffold material for tissue engineering of skin. Biomacromolecules 2010, 11, 3413.
  • Kim, S. E.; Heo, D. N.; Lee, J. B.; Kim, J. R.; Park, S. H.; Jeon, S. H.; Kwon, I. K. Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed. Mater. 2009, 4(4), 044106.
  • Babaeijandaghi, F.; Shabani, I.; Seyedjafari, E.; Naraghi, Z. S.; Vasei, M.; Haddadi-Asl, V.; Hesari, K. K.; Soleimani, M. Accelerated epidermal regeneration and improved dermal reconstruction achieved by polyethersulfone nanofibers. Tissue Eng. A 2010, 16, 3527.
  • Xie, J.; MacEwan, M. R.; Ray, W. Z.; Liu, W.; Siewe, D. Y.; Xia, Y. Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano 2010, 4, 5027.
  • Venugopal, J.; Zhang, Y.; Ramakrishna, S. In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif. Organs 2006, 30, 440.
  • Choi, J. S.; Leong, K. W.; Yoo, H. S. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials 2008, 29, 587.
  • Guadalupe, E.; Ramos, D.; Shelke, N. B.; James, R.; Gibney, C.; Kumbar, S. G. Bioactive polymeric nanofiber matrices for skin regeneration. J. Appl. Polym. Sci. 2015, 132. doi:10.1002/app.41879
  • Pan, J. F.; Liu, N. H.; Sun, H.; Xu, F. Preparation and characterization of electrospun PLCL/poloxamer nanofibers and dextran/gelatin hydrogels for skin tissue engineering. PLoS One 2014, 9(11), e112885.
  • Bonvallet, P. P.; Schultz, M. J.; Mitchell, E. H.; Bain, J. L.; Culpepper, B. K.; Thomas, S. J.; Bellis, S. L. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds. PLoS One 2015, 10(3), e0122359.
  • Jin, G.; Li, Y.; Prabhakaran, M. P.; Tian, W.; Ramakrishna, S. In vitro and in vivo evaluation of the wound healing capability of electrospun gelatin/PLLCL nanofibers. J. Bioact. Compat. Polym. 2014, 29(6), 628.
  • Grafahrend, D.; Heffels, K. H.; Moller, M.; Klee, D.; Groll, J. Electrospun biofunctionalized fibers as tailored in vitro substrates for keratinocyte cell culture. Macromol. Biosci. 2010, 10, 1022.
  • Jin, G.; Prabhakaran, M. P.; Kai, D.; Ramakrishna, S. Controlled release of multiple epidermal induction factors through 5 core–shell nanofibers for skin regeneration. Eur. J. Pharm. Biopharm. 2013, 85, 689.
  • Ravichandran, R.; Venugopal, J. R.; Sundarrajan, S.; Mukherjee, S.; Forsythe, J.; Ramakrishna, S. Click chemistry approach for fabricating PVA/gelatin nanofibers for the differentiation of ADSCs to keratinocytes. J. Mater. Sci. Mater. Med. 2013, 24, 2863.
  • Levin, L. A.; Ritch, R.; Richards, J. E.; Borras, T. Stem cell therapy for ocular disorders. Arch. Ophthalmol. 2004, 122, 621.
  • Klyce, S. D.; Beuerman, R. W. Structure and function of the cornea. In: Kaufman, H. E., Barron, B. A., McDonald, M. B., Waltman, S. R. ed., The Cornea, Churchill Livingstone: New York, 1988, p. 3.
  • Ang, L. P. K.; Tan, D. T. H.; Beuerman, R. W.; Lavker, R. M. Ocular surface epithelial stem cells: implications for ocular surface homeostasis. In: Pflugfelder, S. C. Beuerman, R. W. Stern, M. E. ed., Dry Eye and Ocular Surface Disorders, Marcel Dekker: New York, 2004, p. 225.
  • Kenyon, K. R.; Tseng, S. C. Limbal autograft transplantation for ocular surface disorders. Ophthalmology 1989, 96, 709.
  • Kenyon, K. R. Limbal autograft transplantation for chemical and thermal burns. Dev. Ophthalmol. 1989, 18, 53.
  • Sangwan, V. S. Limbal stem cells in health and disease. Biosci. Rep. 2001, 21, 385.
  • Tsai, R. J.; Li, L. M.; Chen, J. K. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N. Engl. J. Med. 2000, 343, 86.
  • Tseng, S. C.; Tsai, R. J. Limbal transplantation for ocular surface reconstruction. Fortschr. Ophthalmol. 1991, 88, 236.
  • Shimazaki, J.; Yang, H. Y.; Tsubota, K. Limbal autograft transplantation for recurrent and advanced pterygia. Ophthal. Surg. Lasers 1996, 27, 917.
  • Zajicov, A.; Pokorn, K.; Lencov, A.; Krulov, M.; Svobodov, E.; Kubinov, S.; Zajicov, A.; Pokorn, K.; Lencov, A.; Krulov, M.; Svobodov, E.; Kubinov, S.; Sykov, E.; Pradny, M.; Michalek, J.; Svobodov, J.; Munzarov, M.; Holan, V. Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds. Cell Transplant. 2010, 19, 1281.
  • Holan, V.; Chudickova, M.; Trosan, P.; Svobodova, E.; Krulova, M.; Kubinova, S.; Sykova, E.; Sirc, J.; Michalek, J.; Juklickova, M.; Munzarova, M.; Zajicova, A. Cyclosporine A-loaded and stem cell-seeded electrospun nanofibers for cell-based therapy and local immunosuppression. J Control Release 2011, 156, 406.
  • Holan, V.; Javorkova, E. Mesenchymal stem cells, nanofiber scaffolds and ocular surface reconstruction. Stem Cell Rev. Rep. 2013, 9, 609.
  • Holan, V.; Javorkova, E.; Trosan, P. The growth and delivery of mesenchymal and limbal stem cells using copolymer polyamide 6/12 nanofiber scaffolds. Methods Mol. Biol. 2013, 1014, 187.
  • Holan, V.; Javorkova, E.; Cejka, C.; Trosan, P.; Zajicova, A. Treatment of alkali-injured corneas by nanofibers seeded with mesenchymal stem cells or loaded with cyclosporine A. Acta Ophthalmol. 2014, 92(253). doi:10.1111/j.1755-3768.2014.S038.x
  • Baradaran, A. R.; Biazar, E.; Heidari, S. Cellular response of limbal stem cells on poly(hydroxybuthyrate-co-hydroxyvalerate) porous scaffolds for ocular surface bioengineering. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 815.
  • Baradaran, A. R.; Biazar, E.; Heidari, S. Cellular response of stem cells on nanofibrous scaffold for ocular surface bioengineering. ASAIO J. 2015, 61(5), 605.
  • Baradaran, A. R.; Biazar, E.; Heidari, S. Cellular response of limbal stem cells on polycaprolactone nanofibrous scaffolds for ocular epithelial regeneration. Curr. Eye Res. 2015. doi:10.3109/02713683.2015.1019004.
  • Momenzadeh, D.; Baradaran-Rafii, A.; Heidari, K. S.; Ebrahimi, M.; Biazar, E. Electrospun mat with eyelid fat-derived stem cells as a scaffold for ocular epithelial regeneration. Artif. Cell Nanomed. B. 2016, 2, 1.
  • Tandon, R.; Singh, H.; Mohanty, S.; Gupta, D.; Jassal, M.; Agarwal, A. Ex-vivo cultivation of limbal epithelial cells and corneal stromal cells on electrospun plasma treated poly-ϵ-caprolactone scaffolds for ocular surface reconstruction. IOVS J. 2014, 55, 5181.
  • Syed-Picard, N. F.; Mann, M.; Funderburgh, M. L.; Lathrop, K. L.; Funderburgh, J. L. Dental pulp stem cells for corneal stroma regeneration. IOVS J. 2014, 55, 5186.
  • Biazar, E.; Khorasani, M. T.; Montazeri, N.; Pourshamsian, K.; Daliri, M.; Rezaei, M. T.; Jabarvand, M. B.; Khoshzaban, A.; Heidari, S. K.; Jafarpour, M.; Roviemiab, Z. Types of neural guides and using nanotechnology for peripheral nerve reconstruction. Int. J. Nanomed. 2010, 5, 839.
  • Biazar, E.; Heidari, S. Gelatin-modified nanofibrous PHBV tube as artificial nerve graft for rat sciatic nerve regeneration. Int. J. Polym Mater Polym. Biomater. 2014, 63(6), 330.
  • Biazar, E.; Heidari, S.; Sahebalzamani, A.; Heidari, M. Design of oriented porous PHBV scaffold as a neural guide. Int. J. Polym Mater Polym. Biomater. 2014, 63, 753.
  • Biazar, E.; Heidari, S.; Pouya, M. Behavioral evaluation of regenerated rat sciatic nerve by a nanofibrous PHBV conduit filled with Schwann cell as artificial nerve graft. Cell Commun. Adhes. 2013, 20(5), 93–103.
  • Biazar, E.; Heidari, S. Chitosan-cross linked nanofibrous PHBV nerve guide for rat sciatic nerve regeneration across a defect bridge. ASAIO J. 2013, 59, 651.
  • Karimi, M.; Biazar, E.; Heidari, S.; Ronaghi, A.; Doostmohamadpour, J.; Janfada, A.; Montazeri, A. Rat sciatic nerve reconstruction across a 30 mm defect bridged by an oriented porous PHBV tube with schwann cell as artificial nerve graft. ASAIO J. 2014, 60, 224.
  • Biazar, E.; Heidari, S.; Pouya, M.; Rad, H.; Omrani, M. N.; Azarbakhsh, M.; Hooshmand, S. Nanofibrous nerve conduits for repair of 30-mm-long sciatic nerve defects. Neural Regen. Res. 2013, 8(24), 2266.
  • Biazar, E.; Heidari, S.; Pouya, M. Efficacy of nanofibrous conduits in repair of long segment sciatic nerve defects. Neural Regen. Res. 2013, 8(27), 2501.
  • Xu, G.; Nie, D. Y.; Wang, W. Z.; Zhang, P. H.; Shen, J.; Ang, B. T.; Liu, G. H.; Luo, X. G.; Chen, N. L.; Xiao, Z. C. Optic nerve regeneration in polyglycolic acid–chitosan conduits coated with recombinant L1-Fc. Neuroreport 2004, 15(14), 2167.
  • Uzunalli, G.; Soran, Z.; Erkal, T. S.; Dagdas, Y. S.; Dinc, E.; Hondur, A. M.; Bilgihan, K.; Aydin, B.; Guler, M. O.; Tekinay, A. B. Bioactive self-assembled peptide nanofibers for corneal stroma regeneration. Acta Biomater. 2014, 10, 1156.
  • Heidari, S.; Rostampour, M.; Khosropour, G.; Bandbon, A.; Baradaran, A. R.; Biazar, E. Derivation of epithelial-like cells from eyelid fat-derived stem cells in thermosensitive hydrogel. J. Biomat. Sci.-Polym. E 2016, 27(4), 339.
  • Ellis-Behnke, R. G.; Liang, Y. X.; You, S. W.; Tay, D. K. C.; Zhang, S.; So, K. F.; Schneider, G. E. Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc. Natl. Acad. Sci. USA 2006, 103(13), 5054.
  • Tysseling-Mattiace, V. M.; Sahni, V.; Niece, K. L.; Birch, D.; Czeisler, C.; Fehlings, M. G.; Stupp, S. I.; Kessler, J. A. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J. Neurosci. 2008, 28, 3814.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.