344
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Polymeric nanomicelles for cancer theragnostics

, & ORCID Icon
Pages 119-130 | Received 25 Oct 2016, Accepted 18 Mar 2017, Published online: 18 Jul 2017

References

  • Sanna, V.; Pala, P.; Dessì, G.; Manconi, P.; Mariani, A.; Dedola, S.; Rassu, M.; Crosio, C.; Laccarino, C.; Sechi, M. Single-step green synthesis and characterization of gold-conjugated polyphenol nanoparticles with antioxidant and biological activities. Int. J. Nanomed. 2014, 9, 4935–4951.
  • Singh, R.; Lillard, J. W. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009, 86, 215–223.
  • Katragadda, U.; Fan, W.; Wang, Y.; Teng, Q.; Tan, C. Combined delivery of paclitaxel and tanespimycin via micellar nanocarriers: Pharmacokinetics, efficacy and metabolomic analysis. PLoS ONE 2013, 8, e58619.
  • Wu, Y.; Sefaha, K.; Liua, H.; Wanga, R.; Tana, W. DNA aptamer–micelle as an efficient detection/delivery vehicle toward cancer cells. PNAS 2010, 107, 5–10.
  • Kim, S.; Shi, Y.; Kim, J. Y.; Park, K.; Cheng, J.-X. Overcoming the barriers in micellar drug delivery: Loading efficiency, in vivo stability, and micelle–cell interaction. Expert Opin. Drug Deliv. 2010, 7, 49–62.
  • Lin, C.-Y.; Hsiao-Ching, T.; Heng-Ruei, S.; Ming-Fang, W.; Cheng-Ying, C.; Win-Li, L. Ultrasound sonication with microbubbles disrupts blood vessels and enhances tumor treatments of anticancer nanodrug. Int. J. Nanomed. 2012, 7, 2143–2152.
  • Juan-Juan, Y.; Sonali, S.; Stepan, P. S.; Zhi-Xin, W.; Zhi-Wei, Z.; Yangde, Z.; Peixuan, G.; Chen-Zhong, L.; Jagat, R. K.; Tianxin, Y.; Shyam, S. M.; Wanqing, L.; Wei, D.; Jian-Cheng, W.; Qi, L.; Xueji, Z.; Jun, T.; Lee, J.; Jun, L.; Ming, Q. W.; Xiaotian, L.; Shu-Feng, Z. Synthesis and biological evaluation of novel folic acid receptor-targeted, b-cyclodextrin-based drug complexes for cancer treatment. PLoS ONE 2013, 8, e62289.
  • Karvea, S.; Wernera, M. E.; Sukumar, R.; Cummings, N. D.; Coppa, J. A.; Wang, E. C.; Lic, C.; Sethia, M.; Chend, R. C.; Pacolde, M. E.; Wang, A. Z. Revival of the abandoned therapeutic wortmannin by nanoparticle drug delivery. PNAS 2012, 109, 8230–8235.
  • Bhirde, A. A.; Kapoor, A.; Liu, G.; Iglesias-Bartolome, R.; Jin, A.; Zhang, G.; Xing, R.; Lee, S.; Leapman, R. D.; Gutkind, J. S.; Chen, X. Nuclear mapping of nano-drug delivery systems in dynamic cellular environments. ACS Nano 2012, 6, 4966–4972.
  • Spänkuch, B.; Steinhauser, I.; Wartlick, H.; Kurunci-Csacsko, E.; Strebhardt, K. I.; Langer, K. Downregulation of Plk1 expression by receptor-mediated uptake of antisense oligonucleotide-loaded nanoparticles. Neoplasia 2008, 10, 223–234.
  • Chen, Y.; Yang, L.; Huang, S.; Li, Z.; Zhang, L.; He, J.; Xu, Z.; Liu, L.; Cao, Y.; Sun, L. Delivery system for DNAzymes using arginine-modified hydroxyapatite nanoparticles for therapeutic application in a nasopharyngeal carcinoma model. Int. J. Nanomed. 2013, 8, 3107–3118.
  • Prijic, S.; Prosen, L.; Cemazar, M.; Scancar, J.; Romih, R.; Lavrencak, J.; Bregar, V. B.; Coer, A.; Krzan, M.; Znidarsic, A.; Sersa, G. Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials 2012, 33, 4379–4391.
  • Kievit, F. M.; Veiseh, O.; Fang, C.; Bhattarai, N.; Lee, D.; Ellenbogen, R. G.; Zhang, M.; Zhang, M. Chlorotoin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano 2012, 4, 4587–4594.
  • Li, W.; Li, H.; Li, J.; Wang, H.; Zhao, H.; Zhang, L.; Xia, Y.; Ye, Z.; Gao, J.; Dai, J.; Wang, H.; Guo, Y. Self-assembled supramolecular nano vesicles for safe and highly efficient gene delivery to solid tumors. Int. J. Nanomed. 2012, 7, 4661–4677.
  • Zhang, Y.; Chen, Y.; Han, D.; Ocsoy, I.; Tan, W. Aptamers selected by cell-SELEX for application in cancer studies. Bioanalysis 2010, 2, 907–918.
  • Meng, L.; Yang, L.; Zhao, X.; Zhang, L.; Zhu, H.; Liu, C.; Tan, W. Targeted delivery of chemotherapy agents using a liver cancer-specific aptamer. PLoS ONE 2012, 7, e33434.
  • Hasan, W.; Chu, K.; Gullapalli, A.; Dunn, S. S.; Enlow, E. M.; Luft, J. C.; Tian, S.; Napier, M. E.; Pohlhaus, P. D.; Rolland, J. P.; DeSimone, J. M. Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett. 2012, 12, 287–292.
  • Butt, A. M.; Mohd Amin, M. C.; Katas, H. Synergistic effect of pH-responsive folate functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs. Int. J. Nanomed. 2015, 10, 1321–1334.
  • Danafar, H.; Davaran, S.; Rostamizadeh, K.; Valizadeh, H.; Hamidi, M. Biodegradable mPEG/PCL core-shell micelles: Preparation and characterization as a sustained release formulation for curcumin. Adv. Pharm. Bull. 2014, 4, 501–510.
  • Callahan, D. J.; Liu, W.; Li, X.; Dreher, M. R.; Hassouneh, W.; Kim, M.; Marszalek, P.; Chilkoti, A. Triple stimulus-responsive polypeptide nanoparticles that enhance intratumoral spatial distribution. Nano Lett. 2012, 2, 2165–2170.
  • Lian, H.; Sun, J.; Yu, Y. P.; Liu, Y. H.; Cao, W.; Wang, Y. J. Supramolecular micellar nano-aggregates based on a novel chitosan/vitamin E succinate copolymer for paclitaxel selective delivery. Int. J. Nanomed. 2011, 6, 3323–3334.
  • Tang, R.; Ji, W.; Panus, D.; Palumbo, R. N.; Wang, C. Block copolymer micelles with acid-labile ortho ester sidechains: Synthesis, characterization, and enhanced drug delivery to human glioma cells. J. Control Release 2011, 151, 18–27.
  • Liu, X.; Cui, W.; Li, B.; Hong, Z. Targeted therapy for glioma using cyclic RGD-entrapped polyionic complex nanomicelles. Int. J. Nanomed. 2012, 7, 2853–2862.
  • Rubinstein, I.; Soos, I.; Onyuksel, H. Intracellular delivery of VIP-grafted sterically stabilized phospholipid mixed nanomicelles in human breast cancer cells. Chem. Biol. Interact. 2008, 171, 190–194.
  • Onyuksel, H.; Mohanty, P. S.; Rubinstein, I. Vip-grafted sterically stabilized phospholipid nanomicellar 17-allylamino-17-demethoxy geldanamycin: A novel targeted nanomedicine for breast cancer. Int. J. Pharm. 2009, 365, 157–161.
  • Liu, K. K.; Zheng, W. W.; Wang, C. C.; Chiu, Y. C.; Cheng, C. L.; Lo, Y. S.; Chen, C.; Chao, J. I. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology 2010, 21, 315106.
  • Rios-Doria, J.; Carie, A.; Costich, T.; Burke, B.; Skaff, H.; Panicucci, R.; Sill, K. A versatile polymer micelle drug delivery system for encapsulation and in vivo stabilization of hydrophobic anticancer drugs. J. Drug Deliv. 2012, 2012, 951741.
  • Tan, C.; Wang, Y.; Fan, W. Exploring polymeric micelles for improved delivery of anticancer agents: Recent developments in preclinical studies. Pharmaceutics 2013, 5, 201–219.
  • Jin, J.; Sui, B.; Gou, J.; Liu, J.; Tang, X.; Xu, H.; Zhang, Y.; Jin, X. PSMA ligand conjugated PCL-PEG polymeric micelles targeted to prostate cancer cells. PLoS ONE 2014, 9, e112200.
  • Liu, P.; Situ, J. Q.; Li, W. S.; Shan, C. L.; You, J.; Yuan, H.; Hu, F. Q.; Du, Y. Z. High tolerated paclitaxel nano-formulation delivered by poly (lactic-co-glycolic acid)-g-dextran micelles to efficient cancer therapy. Nanomedicines 2015, 11, 855–866.
  • Bushman, J.; Vaughan, A.; Sheihet, L.; Zhang, Z.; Costache, M.; Kohn, J. Functionalized nanospheres for targeted delivery of paclitaxel. J. Control. Release 2013, 171, 315–321.
  • Snima, K. S.; Jayakumar, R.; Unnikrishnan, A. G.; Nair, S. V.; Lakshmanan, V.-K. O-Carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells. Carbohydr. Polym. 2012, 89, 1003–1007.
  • Snima, K. S.; Jayakumar, R.; Lakshmanan, V.-K. In vitro and in vivo biological evaluation of O-carboxymethyl chitosan encapsulated metformin nanoparticles for pancreatic cancer therapy. Pharm. Res. 2014, 31(12), 3361–3370.
  • Snima, K. S.; Nair, R. S.; Nair, S. V.; Kamath, C. R.; Lakshmanan, V. K. Combination of anti-diabetic drug metformin and boswellic acid nanoparticles: A novel strategy for pancreatic cancer therapy. J. Biomed. Nanotechnol. 2015, 11(1), 93–104.
  • Snima, K. S.; Arunkumar, P.; Nair, S. V.; Jayakumar, R.; Lakshmanan, V.-K. Silymarin encapsulated PLGA nanoparticles: A prospective candidate for prostate cancer therapy. J. Biomed. Nanotechnol. 2013, 9, 1–12.
  • Uthaman, S.; Snima, K. S.; Annapoorna, M.; Ravindranath, K. C.; Shanti, V. N.; Lakshmanan, V.-K. Novel boswellic acids nanoparticles induces cell death in prostate cancer cells. J. Nat. Prod. 2012, 5, 100–108.
  • Cherian, A. M.; Nair, S. V.; Lakshmanan, V.-K. The role of nanotechnology for prostate cancer theranostic applications. J. Nanosci. Nanotechnol. 2014, 14, 841–852.
  • Shao, J.; Griffin, R. J.; Galanzha, E. I.; Kim, J.-W.; Koonce, N.; Webber, J.; Mustafa, T.; Biris, A. S.; Nedosekin, D. A.; Zharov, V. P. Photothermal nanodrugs: Potential of TNF-gold nanospheres for cancer theranostics. Sci. Rep. 2013, 3, 1293.
  • Bocci, G.; Fioravanti, A.; Orlandi, P.; Desidero, T. D.; Natale, G.; Fanelli, G.; Viacava, P.; Naccarato, A. G.; Francia, G.; Danesi, R. Metronomic ceramide analogs inhibit angiogenesis in pancreatic cancer through up-regulation of caveolin-1 and thrombospondin-1 and down-regulation of cyclin D1. Neoplasia 2012, 14, 833–845.
  • Lin, J.; Yu, Y.; Shigdar, S.; Fang, D. Z.; Du, J. R.; Wei, M. Q.; Danks, A.; Liu, K.; Duan, W. Enhanced antitumor efficacy and reduced systemic toxicity of sulfatide-containing nanoliposomal doxorubicin in a xenograft model of colorectal cancer. PLoS ONE 2012, 7, e49277.
  • Inoue, S.; Ding, H.; Portilla-Arias, J.; Hu, J.; Kond, B.; Fujita, M.; Espinoza, A.; Suhane, S.; Riley, M.; Gates, M.; Patil, R.; Penichet, M. L.; Ljubimov, A. V.; Black, K. L.; Holle, E.; Ljubimova, J. Y. Polymalic acid–based nanobiopolymer provides efficient systemic breast cancer treatment by inhibiting both HER2/neu receptor synthesis and activity. Cancer Res. 2011, 71, 1454–1464.
  • Ding, H.; Helguera, G.; Rodríguez, J. A.; Markmana, J.; Luria-Pérezb, R.; Gangaluma, P.; Portilla-Ariasa, J.; Inouea, S.; Daniels-Wellsb, T. R.; Black, K.; Holler, E.; Penichet, M. L.; Ljubimova, J. L. Polymalic acid nanobioconjugate for simultaneous inhibition of tumor growth and immunostimulation in HER2/neu-positive breast cancer. J. Control. Release 2013, 171, 322–329.
  • Chandran, S.; Praveen, G.; Snima, K. S.; Nair, S. V.; Pavithran, K.; Chennazhi, K.; Lakshmanan, V.-K. Potential use of drug loaded nano composite scaffolds for the treatment of ovarian cancer. J. Curr. Drug Deliv. 2013, 10, 326–335.
  • Anitha, A.; Uthaman, S.; Nair, S. V.; Jayakumar, R.; Lakshmanan, V.-K. Enhanced delivery system of flutamide loaded chitosan-dextran sulphate nanoparticles for prostate cancer. J. Biomed. Nanotechnol. 2013, 3, 335–347.
  • Snima, K. S.; Sreelakshmi, K. V.; Renu, G.; Nair, S. V.; Subramanian, K. R. V.; Lakshmanan, V.-K. Development of activated carbon-ceria nanocomposite materials for prostate cancer. Therapy Adv. Sci. Eng. Med. 2013, 5, 1132–1136.
  • Renu, G.; Rani, V. V. D.; Nair, S. V.; Subramanian, K. R. V.; Lakshmanan, V.-K. Development of cerium oxide nanoparticles and its cytotoxicity in prostate cancer cells. Adv. Sci. Lett. 2012, 6, 17–25.
  • Lakshmanan, V.-K.; Bumgardner, J. D.; Nair, S. V.; Jayakumar, R. Chitosan-based nanoparticles in cancer therapy. Adv. Polym. Sci. 2011, 243, 55–91.
  • Karuppath, S.; Snima, K. S.; Ravindranath, K. C.; Nair, S. V.; Lakshmanan, V.-K. Anti-proliferative effect of Tinospora cordifolia nanoparticles in prostate cancer cells. J. Bionanosci. 2016, 10, 127–133.
  • Nandan, C. D.; Reshmi, P.; Utham, S.; Snima, K. S.; Unni, A. K. K.; Kamath, C. R.; Nair, S. V.; Lakshmanan, V.-K. Therapeutic properties of Boswellic acid nanoparticles in prostate tumor-bearing BALB/c mice model. J. Nanopharm. Drug Deliv. 2013, 1, 30–37.
  • Nair, R. S.; Snima, K. S.; Kamath, R. C.; Nair, S. V.; Lakshmanan, V.-K. Synthesis and characterization of Careya arborea nanoparticles for assessing its in vitro efficacy in pancreatic cancer cells. J. Nat. Prod. 2015, 8, 09–15.
  • Mohandas, A.; Snima, K. S.; Jayakumar, R.; Lakshmanan, V.-K. Chitosan based AGR2 siRNA nanoparticle delivery system for prostate cancer cells. J. Chitin Chitosan Sci. 2013, 1, 1–5.
  • Sua, R.; Konga, T.; Zhanga, B.; Songa, Q.; Chenga, G. TiO2/Si core/shell nanowires array as molecule carriers. Proc. Environ. Sci. 2011, 8, 492–497.
  • Xu, J.; Singh, A.; Amiji, M. M. Redox-responsive targeted gelatin nanoparticles for delivery of combination wt-p53 expressing plasmid DNA and gemcitabine in the treatment of pancreatic cancer. BMC Cancer 2014, 14, 75.
  • Kenny, G. D.; Bienemann, A. S.; Tagalakis, A. D.; Pugh, J. A.; Welser, K.; Campbell, F.; Tabor, A. B.; Hailes, H. C.; Gill, S. S.; Lythgoe, M. F.; McLeod, C. W.; White, E. A.; Hart, S. L. Multifunctional receptor-targeted nanocomplexes for the delivery of therapeutic nucleic acids to the brain. Biomaterials 2013, 34, 9190–9200.
  • Li, G.; Hu, Z.; Yin, H.; Zhang, Y.; Huang, X.; Wang, S.; Li, W. A novel dendritic nanocarrier of polyamidoamine-polyethylene glycol-cyclic RGD for “smart” small interfering RNA delivery; and in vitro antitumor effects by human ether-à-go-go-related gene silencing in anaplastic thyroid carcinoma cells. Int. J. Nanomed. 2013, 8, 1293–1306.
  • Zou, S.; Cao, N.; Cheng, D.; Zheng, R.; Wang, J.; Zhu, K.; Shuai, X. Enhanced apoptosis of ovarian cancer cells via nanocarrier-mediated codelivery of siRNA and doxorubicin. Int. J. Nanomed. 2012, 7, 3823–3835.
  • Biswas, S.; Deshpande, P. P.; Navarro, G.; Dodwadkar, N. S.; Torchilin, V. P. Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery. Biomaterials 2013, 34, 1289–1301.
  • Chen, Y.; Wang, W.; Lian, G.; Qian, C.; Wang, L.; Zeng, L.; Liao, C.; Liang, B.; Huang, B.; Huang, K.; Shuai, X. Development of an MRI-visible nonviral vector for siRNA delivery targeting gastric cancer. Int. J. Nanomed. 2012, 7, 359–368.
  • Taratula, O.; Garbuzenko, O. B.; Kirkpatrick, P.; Pandya, I.; Savla, R.; Pozharova, V. P.; He, H.; Minko, T. Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J Control. Release 2009, 140, 284–293.
  • Mitra, M.; Kandalam, M.; Rangasamy, J.; Shankar, B.; Maheswari, U. K.; Swaminathan, S.; Krishnakumar, S. Novel epithelial cell adhesion molecule antibody conjugated polyethyleneimine-capped gold nanoparticles for enhanced and targeted small interfering RNA delivery to retinoblastoma cells. Mol. Vis. 2013, 19, 1029–1038.
  • Wu, C.; Gong, F.; Pang, P.; Shen, M.; Zhu, K.; Cheng, D.; Liu, Z.; Shan, H. An RGD-modified MRI-visible polymeric vector for targeted siRNA delivery to hepatocellular carcinoma in nude mice. PLoS ONE 2013, 8, e66416.
  • Saraswathy, M.; Gong, S. Recent developments in the co-delivery of siRNA and small molecule anticancer drugs for cancer treatment. Mater. Today 2014, 17, 298–306.
  • Meng, H.; Mai, W. X.; Zhang, H.; Xue, M.; Xia, T.; Lin, S.; Wang, X.; Zhao, Y.; Ji, Z.; Zink, J. I.; Nel, A. E. Co-delivery of an optimal drug/siRNA combination using mesoporous silica nanoparticle to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 2013, 7, 994–1005.
  • Subramanian, N.; Kanwar, J. R.; Athalya, P. K.; Janakiraman, N.; Khetan, V.; Kanwar, R. K.; Eluchuri, S.; Krishnakumar, S. EpCAM aptamer mediated cancer cell specific delivery of EpCAM siRNA using polymeric nanocomplex. J. Biomed. Sci. 2015, 22, 4.
  • Shawna, B. C.; George, A. V.; Craig, A. M.; Vamsee, K. C.; Kristen, S.; Robert, L. M.; Alison, C. D.; Brian, S. J. B.; Jeffrey, M. H. Characterization of a novel novobiocin analogue as a putative C terminal inhibitor of heat shock protein 90 in prostate cancer cells. Prostate 2010, 70, 27–36.
  • Floc’h, N.; Kinkade, C. W.; Kobayashi, T.; Aytes, A.; Lefebvre, C.; Mitrofanova, A.; Cardiff, R. D.; Califano, A.; Shen, M. M.; Abate-Shen, C. Dual targeting of the Akt/mTOR signaling pathway inhibits castration-resistant prostate cancer in a genetically engineered mouse model. Cancer Res. 2012, 72, 4483–4493.
  • Sette, A.; Spadavecchia, J.; Landoulsi, J.; Casale, S.; Haye, B.; Crociani, O.; Arcangeli, A. Development of novel anti-Kv 11.1 antibody-conjugated PEG–TiO2 nanoparticles for targeting pancreatic ductal adenocarcinoma cells. J. Nanopart. Res. 2013, 15, 2111.
  • Maya, S.; Sarmento, B.; Lakshmanan, V.-K.; Menon, D.; Jayakumar, R. Actively targeted cetuximab conjugated γ-poly (glutamic acid)-docetaxel nanomedicines for EGFR over expressing colon cancer cells. J. Biomed. Nanotechnol. 2014, 10, 1416–1428.
  • Maya, S.; Sarmento, B.; Lakshmanan, V.-K.; Menon, D.; Seabra, V.; Jayakumar, R. Chitosan cross-linked docetaxel l loaded EGF receptor targeted nanoparticles for lung cancer cells. Int. J. Biol. Macromol. 2014, 69, 532–541.
  • Naznin-Ara, M.; Hyodo, M.; Ohga, N.; Hida, K.; Harashima, H. Development of a novel DNA aptamer ligand targeting to primary cultured tumor endothelial cells by a cell-based SELEX method. PLoS ONE 2012, 7, e50174.
  • Kang, H. O.; Donoghue, M. B.; Liu, H.; Tan, W. A liposome-based nanostructure for aptamer directed delivery. Chem. Commun (Camb). 2010, 46, 249–251.
  • Liu, Q.; Jin, C.; Wang, Y.; Fang, X.; Zhang, X.; Chen, Z.; Tan, W. Aptamer-conjugated nanomaterials for specific cancer cell recognition and targeted cancer therapy. NPG Asia Mater. 2014, 6, e95.
  • Zhu, J.; Huang, H.; Dong, S.; Ge, L.; Zhang, Y. Progress in aptamer-mediated drug delivery vehicles for cancer targeting and its implications in addressing chemotherapeutic challenges. Theranostics 2014, 4, 931–944.
  • Pack, D. W.; Hoffman, A. S.; Stayton, P. S. P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005, 4, 581–593.
  • Crystal, R. G. Transfer of genes to humans: Early lessons and obstacles to success. Science 1995, 270, 404–410.
  • Scherer, F.; Anton, M.; Schillinger, U. Magnetofection: Enhancing; and targeting gene delivery by magnetic force in vitro; and in vivo. Gene Ther. 2002, 9, 102–109.
  • Castillo-Rodrıguez, R. A.; Arango-Rodríguez, M. L.; Escobedo, L.; Hernandez-Baltazar, D.; Gompel, A.; Forgez, P.; Martínez-Fong, D. Suicide HSVtk gene delivery by neurotensin polyplex nanoparticles via the bloodstream and GCV treatment specifically inhibit the growth of human MDA-MB-231 triple negative breast cancer tumors xenografted in athymic mice. PLoS ONE 2014, 9, e97151.
  • Hatakeyama, H.; Akita, H.; Kogure, K.; Oishi, M.; Nagasaki, Y.; Kihira, Y.; Ueno, M.; Kobayashi, H.; Kikuchi, H.; Harashima, H. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther. 2007, 14, 68–77.
  • Shao, Z.; Shao, J.; Tan, B.; Guan, S.; Liu, Z.; Zhao, Z.; He, F.; Zhao, J. Targeted lung cancer therapy: Preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. Int. J. Nanomed. 2015, 10, 1223–1233.
  • DeSano, J. T.; Xu, L. MicroRNA regulation of cancer stem cells and therapeutic implications. AAPS J. 2009, 11, 682–692.
  • Chen, Y.; Zhu, X.; Zhang, X.; Liu, B.; Huang, L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Am. Soc. Gene Cell Therapy 2010, 18, 1650–1656.
  • Tivnan, A.; Orr, W. S.; Gubala, V.; Nooney, R.; Williams, D. E.; McDonagh, C.; Prenter, S.; Harvey, H.; Domingo-Fernández, R.; Bray, I. M.; Piskareva, O.; Ng, C. Y.; Lode, H. N.; Davidoff, A. M.; Stallings, R. L. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS ONE 2012, 7, e38129.
  • Huang, X.; Schwind, S.; Yu, B.; Santhanam, R.; Wang, H.; Hoellerbauer, P.; Mims, A.; Klisovic, R.; Walker, A. R.; Chan, K. K.; Blum, W.; Perrotti, D.; Byrd, J. C.; Bloomfield, C. D.; Caligiuri, M. A.; Lee, R. J.; Garzon, R.; Muthusamy, N.; Lee, L. J.; Marcucci, G. Targeted delivery of microRNA-29b by transferrin conjugated anionic lipopolyplex nanoparticles: A novel therapeutic strategy in acute myeloid leukemia. Clin. Cancer Res. 2013, 19, 2355–2367.
  • Kota, J.; Chivukula, R. R.; O’Donnell, K. A.; Wentzel, E. A.; Montgomery, C. L.; Hwang, H.-W.; Chang, T.-C.; Vivekanandan, P.; Torbenson, M.; Clark, K. R.; Mendell, J. R.; Mendell, J. T. Therapeutic delivery of miR-26a inhibits cancer cell proliferation and induces tumor-specific apoptosis. Cell 2009, 12, 1005–1017.
  • Chenna, V.; Hu, C.; Pramanik, D.; Aftab, B. T.; Karikari, C.; Campbell, N. R.; Hong, S.-M.; Zhao, M.; Rudek, M. A.; Khan, S. R.; Rudin, C. M.; Maitra, A. A polymeric nanoparticle encapsulated small-molecule inhibitor of hedgehog signaling of (NanoHHI) bypasses secondary mutational resistance to smoothened antagonists. Mol. Cancer Ther. 2012, 11, 165–173.
  • Thampi, G. R.; Godwin, S. E.; Harish, G. Design and characterization of nanoparticulate drug delivery system of an anticancer drug: Imatinib mesylate. Indian J. Res. Pharm. Biotechnol. 2014, 2, 1082–1087.
  • Banerjee, S.; Sahoo, A. K.; Chattopadhyay, A.; Ghosh, S. S. Recombinant IκBα-loaded curcumin nanoparticles for improved cancer therapeutics. Nanotechnology 2014, 25, 345102.
  • Kawano, T.; Murata, M.; Piao, J. S.; Narahara, S.; Hamano, N.; Kang, J.-H.; Hashizume, M. Systemic delivery of protein nanocages bearing CTT peptides for enhanced imaging of MMP-2 expression in metastatic tumor models. Int. J. Mol. Sci. 2015, 16, 148–158.
  • Won, Y-W.; Yoon, S-M.; Sonn, C. H.; Lee, K-M.; Kim, Y.-H. Nano self-assembly of recombinant human gelatin conjugated with α-tocopheryl succinate for Hsp90 inhibitor, 17-AAG, delivery. ACS Nano 2011, 5, 3839–3848.
  • Qi, W.-W.; Yu, H.-Y.; Guo, H.; Lou, J.; Wang, Z.-M.; Liu, P.; Sapin-Minet, A.; Maincent, P.; Hong, X.-C.; Hu, X.-M.; Xiao, Y.-L. Doxorubicin-loaded glycyrrhetinic acid modified recombinant human serum albumin nanoparticles for targeting liver tumor chemotherapy. Mol. Pharm. 2015, 12, 675–683.
  • Lu, Y.; Zhang, Z.; Yan, Z.; Chen, L.; Deng, W.; Lotze, M.; Wang, Z.; Lin, X.; Li, L. Y. Recombinant GnRH-p53 protein sensitizes breast cancer cells to 5-fluorouracil-induced apoptosis in vitro and in vivo. Apoptosis 2013, 10, 1214–1223.
  • Ito, A.; Honda, H.; Kobayashi, T. Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: A novel concept of ‘‘heat-controlled necrosis’’ with heat shock protein expression. Cancer Immunol. Immunother. 2006, 55, 320–328.
  • Chandrasekaran, G.; Hwang, E. C..; Kang, T. W.; Kwon, D. D.; Park, K.; Lee, J. J.; Lakshmanan, V. K. Computational modeling of complete HOXB13 protein for predicting the functional effect of SNPs and the associated role in hereditary prostate cancer. Sci. Rep. 2017, 7, 43830. doi:10.1038/srep43830.
  • Chandrasekaran, G.; Hwang, E. C.; Kang, T. W.; Kwon, D. D.; Park, K.; Lee, J. J.; Lakshmanan, V. K. In silico analysis of the deleterious nsSNPs (missense) in the homeobox domain of human HOXB13 gene responsible for hereditary prostate cancer. Chem. Biol. Drug Des. 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.