532
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Poly(lactic-co-glycolic acid): The most ardent and flexible candidate in biomedicine!

, , , , &
Pages 1028-1049 | Received 12 Oct 2017, Accepted 05 Nov 2017, Published online: 16 Jan 2018

References

  • Banik, B. L.; Fattahi, P.; Brown, J. L. Polymeric Nanoparticles: The Future of Nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8(2), 271–299.
  • Bennet, D., Kim, S. Polymer Nanoparticles for Smart Drug Delivery. In Application of Nanotechnology in Drug Delivery; Sezer, A. D., ed.; InTech: Rijeka, 2014; p 08.
  • Delplace, V.; Couvreur, P.; Nicolas, J. Recent Trends in the Design of Anticancer Polymer Prodrug Nanocarriers. Polym. Chem. 2014, 5(5), 1529–1544.
  • Twibanire, J. D. A. K.; Grindley, T. B. Polyester Dendrimers: Smart Carriers for Drug Delivery. Polymers 2014, 6(1), 179–213.
  • Oltra, N. S.; Nair, P.; Discher, D. E. From Stealthy Polymersomes; and Filomicelles to “Self” Peptide-Nanoparticles for Cancer Therapy. Ann. Rev. Chem. Biomol. Eng. 2014, 5, 281–299.
  • Zhang, Z.; Tsai, P. C., Ramezanli, T.; Michniak‐Kohn, B. B. Polymeric Nanoparticles‐Based Topical Delivery Systems for the Treatment of Dermatological Diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5(3), 205–218.
  • Elsabahy, M., Wooley, K. L. Design of Polymeric Nanoparticles for Biomedical Delivery Applications. Chem. Soc. Rev. 2012, 41(7), 2545–2561.
  • Roointan, A.; Sharifi-Rad, M.; Badrzadeh, F.; Sharifi-Rad, J. A Comparison between PLGA–PEG; and NIPAAm–MAA Nanocarriers in Curcumin Delivery for hTERT Silencing in Lung Cancer Cell Line. Cell Mol. Biol. 2016, 62(9), 51–56.
  • Danhier, F.; Ansorena, E.; Silva, J. M., Coco, R.; Le Breton, A.; Préat, V. PLGA-Based Nanoparticles: An Overview of Biomedical Applications. J. Controlled Release 2012, 161(2), 505–522.
  • Hua, F. J.; Park, T. G.; Lee, D. S. A Facile Preparation of Highly Interconnected Macroporous Poly(d,l-lactic acid-co-glycolic acid) (PLGA) Scaffolds by Liquid–Liquid Phase Separation of a PLGA–Dioxane–Water Ternary System. Polymer 2003, 44(6), 1911–1920.
  • Makadia, H. K., Siegel, S. J. Poly Lactic-co-glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers 2011, 3(3), 1377–1397.
  • Sharma, S.; Parmar, A.; Kori, S.; Sandhir, R. PLGA-Based Nanoparticles: A New Paradigm in Biomedical Applications. TrAC Trends Anal. Chem. 2016, 80, 30–40.
  • Thomasin, C.; Nam‐Trân, H.; Merkle, H. P.; Gander, B. Drug Microencapsulation by PLA/PLGA Coacervation in the Light of Thermodynamics. 1. Overview and Theoretical Considerations. J. Pharm. Sci. 1998, 87(3), 259–268.
  • Thomasin, C.; Merkle, H. P.; Gander, B. Drug Microencapsulation by PLA/PLGA Coacervation in the Light of Thermodynamics. 2. Parameters Determining Microsphere Formation. J. Pharm. Sci. 1998, 87(3), 269–275.
  • Nie, H.; Lee, L. Y., Tong, H.; Wang, C. H. PLGA/Chitosan Composites from a Combination of Spray Drying and Supercritical Fluid Foaming Techniques: New Carriers for DNA Delivery. J. Controlled Release 2008, 129(3), 207–214.
  • Mu, L., Feng, S. Fabrication, Characterization and In Vitro Release of Paclitaxel (Taxol®) Loaded Poly(lactic-co-glycolic acid) Microspheres Prepared by Spray Drying Technique With Lipid/Cholesterol Emulsifiers. J. Controlled Release 2001, 76(3), 239–254.
  • Lambert, G.; Fattal, E.; Couvreur, P. Nanoparticulate Systems for the Delivery Of Antisense Oligonucleotides. Adv. Drug Delivery Rev. 2001, 47(1), 99–112.
  • Rao, J. P., Geckeler, K. E. Polymer Nanoparticles: Preparation Techniques and Size-Control Parameters. Progress Polym. Sci. 2011, 36(7), 887–913.
  • Ahmad, S. Organic Semiconductors for Device Applications: Current Trends and Future Prospects. J. Polym. Eng. 2014, 34(4), 279–338.
  • Vert, M.; Mauduit, J.; Li, S. Biodegradation of PLA/GA Polymers: Increasing Complexity. Biomaterials 1994, 15(15), 1209–1213.
  • Sah, H.; Thoma, L. A., Desu, H. R., Sah, E.; Wood, G. C. Concepts and Practices used to Develop Functional PLGA-Based Nanoparticulate Systems. Int. J. Nanomed. 2013, 8, 747–765.
  • Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable Polymeric Nanoparticles based Drug Delivery Systems. Colloids Surf. B: Biointerfaces 2010, 75(1), 1–18.
  • Kiss, E.; Kutnyánszky, E.; Bertóti, I. Modification of Poly(lactic/glycolic acid) Surface by Chemical Attachment of Poly(ethylene glycol). Langmuir 2010, 26(3), 1440–1444.
  • Oh, N.; Park, J.-H. Endocytosis and Exocytosis of Nanoparticles in Mammalian Cells. Int. J. Nanomed. 2014, 9(Suppl 1), 51–63.
  • Hickey, J. W.; Santos, J. L., Williford, J. M.; Mao, H. Q. Control of Polymeric Nanoparticle Size to Improve Therapeutic Delivery. J. Controlled Release: Off. J. Controlled Release Soc. 2015, 219, 536–547.
  • He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of Particle Size and Surface Charge on Cellular Uptake and Biodistribution of Polymeric Nanoparticles. Biomaterials 2010, 31(13), 3657–3666.
  • Jeong, Y. I.; Cho, C. S., Kim, S. H., Ko, K. S., Kim, S. I., Shim, Y. H.; Nah, J. W. Preparation of Poly(d,l‐lactide‐co‐glycolide) Nanoparticles without Surfactant. J. Appl. Polym. Sci. 2001, 80(12), 2228–2236.
  • Panagi, Z.; Beletsi, A.; Evangelatos, G.; Livaniou, E.; Ithakissios, D. S.; Avgoustakis, K. Effect of Dose on the Biodistribution and Pharmacokinetics of PLGA and PLGA–mPEG Nanoparticles. Int. J. Pharm. 2001, 221(1), 143–152.
  • Avgoustakis, K.; Beletsi, A.; Panagi, Z.; Klepetsanis, P.; Livaniou, E.; Evangelatos, G.; Ithakissios, D. S. Effect of Copolymer Composition on the Physicochemical Characteristics, In Vitro Stability; and Biodistribution of PLGA-mPEG Nanoparticles. Int J Pharm. 2003, 259(1–2), 115–127.
  • Park, T. G. Degradation of Poly(lactic-co-glycolic acid) Microspheres: Effect of Copolymer Composition. Biomaterials 1995, 16(15), 1123–1130.
  • Engineer, C.; Parikh, J.; Raval, A. Review on Hydrolytic Degradation Behavior of Biodegradable Polymers from Controlled Drug Delivery System. Trends Biomater. Artif. Organs 2011, 25(2), 79–85.
  • Siegel, S. J.; Kahn, J. B., Metzger, K.; Winey, K. I., Werner, K.; Dan, N. Effect of Drug Type on the Degradation Rate of PLGA Matrices. Eur. J. Pharm. Biopharm. 2006, 64(3), 287–293.
  • Vasir, J. K.; Labhasetwar, V. Biodegradable Nanoparticles for Cytosolic Delivery of Therapeutics. Adv. Drug Delivery Rev. 2007, 59(8), 718–728.
  • Acharya, S.; Sahoo, S. K. PLGA Nanoparticles Containing Various Anticancer Agents and Tumour Delivery by EPR Effect. Adv. Drug Delivery Rev. 2011, 63(3), 170–183.
  • Lendlein, A.; Sisson, A. Handbook of Biodegradable Polymers: Isolation, Synthesis, Characterization and Applications; John Wiley & Sons: New York, 2011.
  • Akhter, A.; Hayashi, Y.; Sakurai, Y.; Ohga, N.; Hida, K.; Harashima, H. Ligand Density at the Surface of a Nanoparticle and Different Uptake Mechanism: Two Important Factors for Successful siRNA Delivery to Liver Endothelial Cells. Int. J. Pharm. 2014, 475(1), 227–237.
  • Suk, J. S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Delivery Rev. 2016, 99(Pt A), 28–51.
  • Jain, A. K.; Das, M.; Swarnakar, N. K.; Jain, S. Engineered PLGA Nanoparticles: An Emerging Delivery Tool in Cancer Therapeutics. Crit. Rev. Ther. Drug Carr. Syst. 2011, 28(1), 1–45.
  • Amoozgar, Z., Yeo, Y. Recent Advances in Stealth Coating of Nanoparticle Drug Delivery Systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012, 4(2), 219–233.
  • Amoozgar, Z.; Park, J.; Lin, Q.; Yeo, Y. Low Molecular-Weight Chitosan as a pH-Sensitive Stealth Coating for Tumor-Specific Drug Delivery. Mol. Pharm. 2012, 9(5), 1262–1270.
  • Hu, C.-M. J., Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. Erythrocyte Membrane-Camouflaged Polymeric Nanoparticles as a Biomimetic Delivery Platform. Proc. Natl. Acad. Sci. 2011, 108(27), 10980–10985.
  • Luk, B. T.; Zhang, L. Cell Membrane-Camouflaged Nanoparticles for Drug Delivery. J Control Release 2015, 220(Pt B), 600–607.
  • Rabanel, J. M.; Hildgen, P.; Banquy, X. Assessment of PEG on Polymeric Particles Surface, a Key Step in Drug Carrier Translation. J Control Release 2014, 185, 71–87.
  • Klibanov, A. L.; Maruyama, K.; Torchilin, V. P.; Huang, L. Amphipathic Polyethyleneglycols Effectively Prolong the Circulation Time of Liposomes. FEBS Lett. 1990, 268(1), 235–237.
  • Abuchowski, A.; McCoy, J. R., Palczuk, N. C., van Es, T.; Davis, F. F. Effect of Covalent Attachment of Polyethylene Glycol on Immunogenicity and Circulating Life of Bovine Liver Catalase. J. Biol. Chem. 1977, 252(11), 3582–3586.
  • Gref, R.; Minamitake, Y.; Peracchia, M. T., Trebetskoy, V.; Torchilin, V.; Langer, R. Biodegradable Long-Circulating Polymeric Nanospheres. Science 1994, 263(5153), 1600–1603.
  • Dumitriu, S.; Popa, V. Polymeric nanoparticles for drug delivery. Polym. Biomater. 2013, 1, 1–36.
  • Gref, R.; Lück, M.; Quellec, P.; Marchand, M.; Dellacherie, E.; Harnisch, S.; Blunk, T.; Müller, R. H. ‘Stealth’corona-Core Nanoparticles Surface Modified by Polyethylene Glycol (PEG): Influences of the Corona (PEG Chain Length and Surface Density) and of the Core Composition on Phagocytic Uptake and Plasma Protein Adsorption. Colloids Surf. B: Biointerfaces 2000, 18(3), 301–313.
  • Liu, Y.; Li, K.; Liu, B.; Feng, S. S. A Strategy for Precision Engineering of Nanoparticles of Biodegradable Copolymers for Quantitative Control of Targeted Drug Delivery. Biomaterials 2010, 31(35), 9145–9155.
  • Bazile, D.; Prud’homme, C., Bassoullet, M. T., Marlard, M.; Spenlehauer, G.; Veillard, M. Stealth Me. PEG‐PLA Nanoparticles Avoid Uptake by the Mononuclear Phagocytes System. J. Pharm. Sci. 1995, 84(4), 493–498.
  • Rietscher, R.; Czaplewska, J. A.; Majdanski, T. C.; Gottschaldt, M.; Schubert, U. S.; Schneider, M.; Lehr, C. M. Impact of PEG and PEG-b-PAGE Modified PLGA on Nanoparticle Formation, Protein Loading and Release. Int. J. Pharm. 2016, 500(1), 187–195.
  • Moghimi, S. M.; Szebeni, J. Stealth Liposomes and Long Circulating Nanoparticles: Critical Issues in Pharmacokinetics, Opsonization and Protein-Binding Properties. Progress Lipid Res. 2003, 42(6), 463–478.
  • Kumar, R.; Kulkarni, A.; Nabulsi, J.; Nagesha, D. K.; Cormack, R.; Makrigiorgos, M. G.; Sridhar, S. Facile Synthesis of PEGylated PLGA Nanoparticles Encapsulating Doxorubicin; and its In Vitro Evaluation as Potent Drug Delivery Vehicle. Drug Delivery Trans. Res. 2013, 3(4), 299–308.
  • Park, J.; Fong, P. M.; Lu, J.; Russell, K. S.; Booth, C. J.; Saltzman, W. M.; Fahmy, T. M. PEGylated PLGA Nanoparticles for the Improved Delivery of Doxorubicin. Nanomed. Nanotechnol., Biol., Med. 2009, 5(4), 410–418.
  • Cao, L. B.; Zeng, S.; Zhao, W. Highly Stable PEGylated Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles for the Effective Delivery of Docetaxel in Prostate Cancers. Nanoscale Res. Lett. 2016, 11(1), 305.
  • Byeon, H. J.; Kim, I.; Choi, J. S.; Lee, E. S.; Shin, B. S.; Youn, Y. S. PEGylated Apoptotic Protein-Loaded PLGA Microspheres for Cancer Therapy. Int. J. Nanomed. 2015, 10, 739–748.
  • Xu, S.; Yang, F.; Zhou, X.; Zhuang, Y.; Liu, B.; Mu, Y.; Wang, X.; Shen, H.; Zhi, G.; Wu, D. Uniform PEGylated PLGA Microcapsules with Embedded Fe3O4 Nanoparticles for US/MR Dual-Modality Imaging. ACS Appl. Mater. Interfaces 2015, 7(36), 20460–20468.
  • Aldayel, A. M.; Naguib, Y. W.; O’mary, H. L.; Li, X.; Niu, M.; Ruwona, T. B.; Cui, Z. Acid-Sensitive Sheddable PEGylated PLGA Nanoparticles Increase the Delivery of TNF-α siRNA in Chronic Inflammation Sites. Mol. Ther. Nucleic Acids 2016, 5, e340.
  • Rafiei, P.; Haddadi, A. Docetaxel-Loaded PLGA and PLGA–PEG Nanoparticles for Intravenous Application: Pharmacokinetics and Biodistribution Profile. Int. J. Nanomed. 2017, 12, 935–947.
  • Hatakeyama, H.; Akita, H.; Harashima, H. A Multifunctional Envelope Type Nano Device (MEND) for Gene Delivery to Tumours Based on the EPR Effect: A Strategy for Overcoming the PEG Dilemma. Adv. Drug Delivery Rev. 2011, 63(3), 152–160.
  • Cheng, Z.; Al Zaki, A.; Hui, J. Z.; Muzykantov, V. R.; Tsourkas, A. Multifunctional Nanoparticles: Cost Versus Benefit of Adding Targeting and Imaging Capabilities. Science 2012, 338(6109), 903–910.
  • Field, L. D.; Delehanty, J. B., Chen, Y.; Medintz, I. L. Peptides for Specifically Targeting Nanoparticles to Cellular Organelles: Quo Vadis? Acc. Chem. Res. 2015, 48(5), 1380–1390.
  • Fay, F.; McLaughlin, K. M.; Small, D. M.; Fennell, D. A.; Johnston, P. G.; Longley, D. B.; Scott, C. J. Conatumumab (AMG 655) Coated Nanoparticles for Targeted Pro-Apoptotic Drug Delivery. Biomaterials 2011, 32(33), 8645–8653.
  • Arias, J. L.; Unciti-Broceta, J. D.; Maceira, J.; Del Castillo, T.; Hernández-Quero, J.; Magez, S.; Soriano, M.; García-Salcedo, J. A. Nanobody Conjugated PLGA Nanoparticles for Active Targeting of African Trypanosomiasis. J Control Release 2015, 197, 190–198.
  • Mathew, A.; Fukuda, T.; Nagaoka, Y.; Hasumura, T.; Morimoto, H.; Yoshida, Y.; Maekawa, T.; Venugopal, K.; Kumar, D. S. Curcumin Loaded-PLGA Nanoparticles Conjugated with Tet-1 Peptide for Potential Use in Alzheimer’s Disease. PLOS ONE 2012, 7(3), e32616.
  • Imanparast, F.; Faramarzi, M. A.; Vatannejad, A.; Paknejad, M.; Deiham, B.; Kobarfard, F.; Amani, A.; Doosti, M. mZD7349 Peptide-Conjugated PLGA Nanoparticles Directed Against VCAM-1 for Targeted Delivery of Simvastatin to Restore Dysfunctional HUVECs. Microvascu. Res. 2017, 112, 14–19.
  • Gupta, M.; Chashoo, G.; Sharma, P. R.; Saxena, A. K.; Gupta, P. N.; Agrawal, G. P.; Vyas, S. P. Dual Targeted Polymeric Nanoparticles Based on Tumor Endothelium and Tumor Cells for Enhanced Antitumor Drug Delivery. Mol. Pharm. 2014, 11(3), 697–715.
  • Gao, D. Y.; Lin, T. T.; Sung, Y. C.; Liu, Y. C.; Chiang, W. H., Chang, C. C., Liu, J. Y.; Chen, Y. CXCR4-Targeted Lipid-Coated PLGA Nanoparticles Deliver Sorafenib and Overcome Acquired Drug Resistance in Liver Cancer. Biomaterials 2015, 67, 194–203.
  • Wu, J.; Deng, C.; Meng, F.; Zhang, J.; Sun, H.; Zhong, Z. Hyaluronic Acid Coated PLGA Nanoparticulate Docetaxel Effectively Targets and Suppresses Orthotopic Human Lung Cancer. J. Controlled Release 2016, 259, 76–82.
  • Margarida Cardoso, M.; Peça, I. N., Raposo, C. D., Petrova, K. T.; Teresa Barros, M.; Gardner, R.; Bicho, A. Doxorubicin-loaded galactose-conjugated poly(d,l-lactide-co-glycolide) Nanoparticles as Hepatocyte-Targeting Drug Carrier. J Microencapsulation 2016, 33(4), 315–322.
  • Liang, D.-S.; Su, H. T.; Liu, Y. J.; Wang, A. T.; Qi, X. R. Tumor-Specific Penetrating Peptides-Functionalized Hyaluronic Acid-d-α-tocopheryl Succinate Based Nanoparticles for Multi-Task Delivery to Invasive Cancers. Biomaterials 2015, 71, 11–23.
  • Xiao, B.; Han, M. K., Viennois, E.; Wang, L.; Zhang, M.; Si, X.; Merlin, D. Hyaluronic Acid-Functionalized Polymeric Nanoparticles for Colon Cancer-Targeted Combination Chemotherapy. Nanoscale 2015, 7(42), 17745–17755.
  • Chen, J.; Li, S.; Shen, Q. Folic Acid and Cell-Penetrating Peptide Conjugated PLGA–PEG Bifunctional Nanoparticles for Vincristine Sulfate Delivery. Eur. J. Pharm. Sci. 2012, 47(2), 430–443.
  • Herbig, M. E.; Weller, K. M.; Merkle, H. P. Reviewing Biophysical and Cell Biological Methodologies in Cell-Penetrating Peptide (CPP) Research. Crit. Rev. Ther. Drug Carr. Syst. 2007, 24(3), 203–255.
  • Steinbach, J. M.; Seo, Y.-E.; Saltzman, W. M. Cell Penetrating Peptide-Modified Poly(Lactic-co-Glycolic Acid) Nanoparticles with Enhanced Cell Internalization. Acta Biomater. 2016, 30, 49–61.
  • Wang, H.; Zhao, Y.; Wang, H.; Gong, J.; He, H.; Shin, M. C.; Yang, V. C.; Huang, Y. Low-Molecular-Weight Protamine-Modified PLGA Nanoparticles for Overcoming Drug-Resistant Breast Cancer. J Control Release 2014, 192, 47–56.
  • Fields, R. J.; Quijano, E.; McNeer, N. A.; Caputo, C.; Bahal, R.; Anandalingam, K.; Egan, M. E.; Glazer, P. M.; Saltzman, W. M. Modified Poly(lactic-co-glycolic acid) Nanoparticles for Enhanced Cellular Uptake and Gene Editing in the Lung. Adv. Healthcare Mater. 2015, 4(3), 361–366.
  • Vasconcelos, A.; Vega, E.; Pérez, Y.; Gómara, M. J.; García, M. L.; Haro, I. Conjugation of Cell-Penetrating Peptides with Poly(lactic-co-glycolic acid)-Polyethylene Glycol Nanoparticles Improves Ocular Drug Delivery. Int. J. Nanomed. 2015, 10, 609–631.
  • Yan, L.; Wang, H.; Jiang, Y.; Liu, J.; Wang, Z.; Yang, Y.; Huang, S.; Huang, Y. Cell-Penetrating Peptide-Modified PLGA Nanoparticles for Enhanced Nose-to-Brain Macromolecular Delivery. Macromol. Res. 2013, 21(4), 435–441.
  • Reuter, K. G.; Perry, J. L.; Kim, D.; Luft, J. C.; Liu, R.; DeSimone, J. M. Targeted PRINT Hydrogels: The Role of Nanoparticle Size and Ligand Density on Cell Association, Biodistribution, and Tumor Accumulation. Nano Lett. 2015, 15(10), 6371–6378.
  • Fakhari, A.; Baoum, A.; Siahaan, T. J.; Le, K. B.; Berkland, C. Controlling Ligand Surface Density Optimizes Nanoparticle Binding to ICAM-1. J. Pharm. Sci. 2011, 100(3), 1045–1056.
  • Saha, B.; Evers, T. H.; Prins, M. W. J. How Antibody Surface Coverage on Nanoparticles Determines the Activity and Kinetics of Antigen Capturing for Biosensing. Anal. Chem. 2014, 86(16), 8158–8166.
  • Xiang, Y.; Kiseleva, R.; Reukov, V.; Mulligan, J.; Atkinson, C.; Schlosser, R.; Vertegel, A. Relationship between Targeting Efficacy of Liposomes and the Dosage of Targeting Antibody Using Surface Plasmon Resonance. Langmuir 2015, 31(44), 12177–12186.
  • Lao, Y.-H.; Phua, K. K. L.; Leong, K. W. Aptamer Nanomedicine for Cancer Therapeutics: Barriers and Potential for Translation. ACS Nano 2015, 9(3), 2235–2254.
  • McNeeley, K. M.; Annapragada, A.; Bellamkonda, R. V. Decreased Circulation Time Offsets Increased Efficacy of PEGylated Nanocarriers Targeting Folate Receptors of Glioma. Nanotechnology 2007, 18(38), 385101.
  • Hennig, R.; Pollinger, K.; Veser, A.; Breunig, M.; Goepferich, A. Nanoparticle Multivalency Counterbalances the Ligand Affinity Loss Upon PEGylation. J. Controlled Release 2014, 194, 20–27.
  • Vlashi, E.; Kelderhouse, L. E., Sturgis, J. E.; Low, P. S., Effect of Folate-Targeted Nanoparticle Size on their Rates of Penetration into Solid Tumors. ACS Nano 2013, 7(10), 8573–8582.
  • Fang, R. H.; Hu, C. M. J.; Chen, K. N.; Luk, B. T.; Carpenter, C. W.; Gao, W.; Li, S.; Zhang, D. E.; Lu, W., Zhang, L. Lipid-Insertion Enables Targeting Functionalization of Erythrocyte Membrane-Cloaked Nanoparticles. Nanoscale 2013, 5(19), 8884. DOI: 10.1039/c3nr03064d.
  • Owens, D. E., 3rd.; Peppas, N. A. Opsonization, Biodistribution, & Pharmacokinetics of Polymeric Nanoparticles. Int. J. Pharm. 2006, 307(1), 93–102.
  • Astete, C. E.; Sabliov, C. M. Synthesis and Characterization of PLGA Nanoparticles. J. Biomater. Sci. Polym. Ed. 2006, 17(3), 247–289.
  • Baghaei, B.; Jafari, S. H., Khonakdar, H. A., Saeb, M. R., Wagenknecht, U.; Heinrich, G. A Multioptimization Approach to Assessment of Drug Delivery of PLGA Nanoparticles: Simultaneous Control of Particle Size; and Release Behavior. Int. J. Polym. Mater. Polym. Biomater. 2015, 64(12), 641–652.
  • Konan, Y. N.; Gurny, R.; Allemann, E. Preparation; and Characterization of Sterile; and Freeze-Dried Sub-200 nm Nanoparticles. Int. J. Pharm. 2002, 233(1–2), 239–252.
  • Rahman, Z.; Zidan, A. S., Habib, M. J.; Khan, M. A. Understanding the Quality of Protein Loaded PLGA Nanoparticles Variability by Plackett–Burman Design. Int. J. Pharm. 2010, 389(1), 186–194.
  • Zhou, J.; Patel, T. R.; Sirianni, R. W.; Strohbehn, G.; Zheng, M. Q.; Duong, N.; Schafbauer, T.; Huttner, A. J.; Huang, Y.; Carson, R. E.; et al. Highly Penetrative, Drug-Loaded Nanocarriers Improve Treatment of Glioblastoma. Proc. Natl. Acad. Sci. USA 2013, 110(29), 11751–11756.
  • Taghipour, B.; Yakhchali, M.; Haririan, I.; Tamaddon, A. M.; Samani, S. M. The Effects of Technical and Compositional Variables on the Size and Release Profile of Bovine Serum Albumin from PLGA Based Particulate Systems. Res. Pharm. Sci. 2014, 9(6), 407.
  • Houchin, M.; Topp, E. Physical Properties of PLGA Films During Polymer Degradation. J. Appl. Polym. Sci. 2009, 114(5), 2848–2854.
  • Schliecker, G.; Schmidt, C.; Fuchs, S.; Kissel, T. Characterization of a Homologous Series of d,l-Lactic Acid Oligomers; a Mechanistic Study on the Degradation Kinetics In Vitro. Biomaterials 2003, 24(21), 3835–3844.
  • Yan, N.; Zhang, X.; Cai, Q.; Yang, X.; Zhou, X.; Wang, B.; Deng, X. The Effects of Lactidyl/Glycolidyl Ratio and Molecular Weight of Poly(d,l-Lactide-co-Glycolide) on the Tetracycline Entrapment and Release Kinetics of Drug-Loaded Nanofibers. J. Biomater. Sci. Polym. Ed. 2012, 23(8), 1005–1019.
  • Shi, C.; Liu, P.; Liu, X.; Feng, X.; Fu, D. The Effects of mPEG Proportion and LA/GA Ratio on Degradation and Drug Release Behaviors of PLGA–mPEG Microparticles. Pharmazie 2016, 71(5), 243–246.
  • In Pyo Park, P.; Jonnalagadda, S. Predictors of Glass Transition in the Biodegradable Poly‐Lactide; & Poly‐lactide‐co‐glycolide Polymers. J. Appl. Polym. Sci. 2006, 100(3), 1983–1987.
  • Labhasetwar, V.; Bonadio, J.; Goldstein, S. A.; Levy, R. J. Gene Transfection using Biodegradable Nanospheres: Results in Tissue Culture and a Rat Osteotomy Model. Colloids Surf. B: Biointerfaces 1999, 16(1), 281–290.
  • Zou, W.; Liu, C.; Chen, Z.; Zhang, N. Studies on Bioadhesive PLGA Nanoparticles: A Promising Gene Delivery System for Efficient Gene Therapy to Lung Cancer. Int. J. Pharm. 2009, 370(1), 187–195.
  • Tang, J.; Chen, J. Y.; Liu, J.; Luo, M.; Wang, Y. J.; Wei, X. W.; Gao, X.; Wang, B. L.; Liu, Y. B.; Yi, T., Tong, A. P. Calcium Phosphate Embedded PLGA Nanoparticles: A Promising Gene Delivery Vector with High Gene Loading and Transfection Efficiency. Int. J. Pharm. 2012, 431(1), 210–221.
  • Jeon, S. Y.; Park, J. S., Yang, H. N., Woo, D. G.; Park, K. H. Co-Delivery of SOX9 Genes and Anti-Cbfa-1 siRNA Coated onto PLGA Nanoparticles for Chondrogenesis of Human MSCs. Biomaterials 2012, 33(17), 4413–4423.
  • Bengali, Z.; Pannier, A. K.; Segura, T.; Anderson, B. C.; Jang, J. H.; Mustoe, T. A.; Shea, L. D. Gene Delivery Through Cell Culture Substrate Adsorbed DNA Complexes. Biotechnol. Bioeng. 2005, 90(3), 290–302.
  • Lee, S. H.; Mok, H.; Lee, Y.; Park, T. G. Self-Assembled siRNA–PLGA Conjugate Micelles for Gene Silencing. J. Controlled Release 2011, 152(1), 152–158.
  • Mishra, D.; Kang, H. C.; Bae, Y. H. Reconstitutable Charged Polymeric (PLGA) 2-b-PEI Micelles for Gene Therapeutics Delivery. Biomaterials 2011, 32(15), 3845–3854.
  • Luu, Y.; Kim, K.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, M. Development of a Nanostructured DNA Delivery Scaffold Via Electrospinning of PLGA and PLA–PEG Block Copolymers. J. Controlled Release 2003, 89(2), 341–353.
  • Huang, Y.-C., Riddle, K.; Rice, K. G.; Mooney, D. J. Long-Term In Vivo Gene Expression Via Delivery of PEI–DNA Condensates from Porous Polymer Scaffolds. Human Gene Ther. 2005, 16(5), 609–617.
  • Li, B.; Li, F.; Ma, L.; Yang, J.; Wang, C.; Wang, D.; Gao, C. Poly(lactide-co-glycolide)/Fibrin Gel Construct as a 3D Model to Evaluate Gene Therapy of Cartilage In Vivo. Mol. Pharm. 2014, 11(7), 2062–2070.
  • Jeon, O.; Krebs, M.; Alsberg, E. Controlled and Sustained Gene Delivery from Injectable, Porous PLGA Scaffolds. J. Biomed. Mater. Res. A 2011, 98(1), 72–79.
  • Cohen, H.; Levy, R. J.; Gao, J.; Fishbein, I.; Kousaev, V.; Sosnowski, S.; Slomkowski, S., Golomb, G. Sustained Delivery; and Expression of DNA Encapsulated in Polymeric Nanoparticles. Gene Ther. 2000, 7(22), 1896.
  • Braden, A. R.; Kafka, M. T.; Cunningham, L.; Jones, H.; Vishwanatha, J. K. Polymeric Nanoparticles for Sustained Down-Regulation of Annexin A2 Inhibit Prostate Tumor Growth. J. Nanosci. Nanotechnol. 2009, 9(5), 2856–2865.
  • Khan, A.; Benboubetra, M.; Sayyed, P. Z.; Wooi Ng, K.; Fox, S.; Beck, G.; Benter, I. F., Akhtar, S. Sustained Polymeric Delivery of Gene Silencing Antisense ODNs, siRNA, DNAzymes and Ribozymes: In Vitro and In Vivo Studies. J. Drug Target 2004, 12(6), 393–404.
  • Luby, T. M.; Cole, G.; Baker, L.; Kornher, J. S.; Ramstedt, U.; Hedley, M. L. Repeated Immunization with Plasmid DNA Formulated in Poly(lactide-co-glycolide) Microparticles is Well Tolerated and Stimulates Durable T Cell Responses to the Tumor-Associated Antigen Cytochrome P450 1B1. Clin. Immunol. 2004, 112(1), 45–53.
  • Patil, Y., Panyam, J. Polymeric Nanoparticles for siRNA Delivery and Gene Silencing. Int. J. Pharm. 2009, 367(1–2), 195–203.
  • Oster, C. G.; Kim, N.; Grode, L.; Barbu-Tudoran, L.; Schaper, A. K.; Kaufmann, S. H.; Kissel, T. Cationic Microparticles Consisting of Poly(lactide-co-glycolide) and Polyethylenimine as Carriers Systems for Parental DNA Vaccination. J. Control Release 2005, 104(2), 359–377.
  • Pai Kasturi, S.; Qin, H.; Thomson, K. S.; El-Bereir, S.; Cha, S. C.; Neelapu, S.; Kwak, L. W.; Roy, K. Prophylactic Anti-Tumor Effects in a B Cell Lymphoma Model with DNA Vaccines Delivered on Polyethylenimine (PEI) Functionalized PLGA Microparticles. J. Control Release 2006, 113(3), 261–70.
  • Takashima, Y.; Saito, R.; Nakajima, A.; Oda, M.; Kimura, A.; Kanazawa, T.; Okada, H. Spray-Drying Preparation of Microparticles Containing Cationic PLGA Nanospheres as Gene Carriers for Avoiding Aggregation of Nanospheres. Int. J. Pharm. 2007, 343(1–2), 262–269.
  • Zhang, X. Q.; Intra, J.; Salem, A. K. Comparative Study of Poly(lactic-co-glycolic acid)-Poly Ethyleneimine-Plasmid DNA Microparticles Prepared Using Double Emulsion Methods. J. Microencapsulation 2008, 25(1), 1–12.
  • Prabha, S.; Zhou, W. Z.; Panyam, J.; Labhasetwar, V. Size-Dependency of Nanoparticle-Mediated Gene Transfection: Studies with Fractionated Nanoparticles. Int. J. Pharm. 2002, 244(1), 105–115.
  • Lima, K. M., Rodrigues Junior, J. M. Poly-d,l-lactide-co-glycolide Microspheres as a Controlled Release Antigen Delivery System. Braz. J. Med. Biol. Res. 1999, 32(2), 171–180.
  • Allahyari, M.; Mohit, E. Peptide/Protein Vaccine Delivery System based on PLGA Particles. Human Vac. Immunother. 2016, 12(3), 806–828.
  • Gander, B.; Johansen, P.; Nam-Trân, H.; Merkle, H. P. Thermodynamic Approach to Protein Microencapsulation into Poly(d,l-lactide) by Spray Drying. Int. J. Pharm. 1996, 129(1), 51–61.
  • Morales-Cruz, M.; Flores-Fernández, G. M.; Morales-Cruz, M.; Orellano, E. A.; Rodriguez-Martinez, J. A.; Ruiz, M.; Griebenow, K. Two-Step Nanoprecipitation for the Production of Protein-Loaded PLGA Nanospheres. Results Pharm. Sci. 2012, 2, 79–85.
  • White, L. J.; Kirby, G. T.; Cox, H. C.; Qodratnama, R.; Qutachi, O.; Rose, F. R.; Shakesheff, K. M. Accelerating Protein Release from Microparticles for Regenerative Medicine Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33(5), 2578–2583.
  • Manoharan, C.; Singh, J. Insulin Loaded PLGA Microspheres: Effect of Zinc Salts on Encapsulation, Release, And Stability. J. Pharm. Sci. 2009, 98(2), 529–542.
  • Thomasin, C.; Merkle, H. P.; Gander, B. A. Physico-Chemical Parameters Governing Protein Microencapsulation into Biodegradable Polyesters by Coacervation. Int. J. Pharm. 1997, 147(2), 173–186.
  • Marquette, S.; Peerboom, C.; Yates, A.; Denis, L.; Goole, J.; Amighi, K. Encapsulation of Immunoglobulin G by Solid-in-Oil-in-Water: Effect of Process Parameters on Microsphere Properties. Eur. J. Pharm. Biopharm. 2014, 86(3), 393–403.
  • Kazzaz, J.; Singh, M.; Ugozzoli, M.; Chesko, J.; Soenawan, E.; O’Hagan, D. T. Encapsulation of the Immune Potentiators MPL and RC529in PLG Microparticles Enhances their Potency. J. Control Release 2006, 110(3), 566–573.
  • Mundargi, R. C.; Babu, V. R.; Rangaswamy, V.; Patel, P.; Aminabhavi, T. M. Nano/Micro Technologies for Delivering Macromolecular Therapeutics using Poly(d,l-lactide-co-glycolide) and its Derivatives. J. Control Release 2008, 125(3), 193–209.
  • Chesko, J.; Kazzaz, J.; Ugozzoli, M.; O’Hagan, D. T.; Singh, M. An Investigation of the Factors Controlling the Adsorption of Protein Antigens to Anionic PLG Microparticles. J. Pharm. Sci. 2005, 94(11), 2510–2519.
  • Kissel, T.; Li, Y. X., Volland, C.; Görich, S.; Koneberg, R. Parenteral Protein Delivery Systems Using Biodegradable Polyesters of ABA Block Structure, Containing Hydrophobic Poly(lactide-co-glycolide) A Blocks and Hydrophilic Poly(ethylene oxide) B Blocks. J. Controlled Release 1996, 39(2), 315–326.
  • Jiang, H.; Jin, J. F.; Hu, Y. Q.; Zhu, K. J. Improvement of Protein Loading; and Modulation of Protein Release from Poly(lactide-co-glycolide) Microspheres by Complexation of Proteins with Polyanions. J. Microencapsulation 2004, 21(6), 615–624.
  • Castellanos, I. J.; Crespo, R.; Griebenow, K. Poly(ethylene glycol) as Stabilizer and Emulsifying Agent: A Novel Stabilization Approach Preventing Aggregation and Inactivation of Proteins Upon Encapsulation in Bioerodible Polyester Microspheres. J. Controlled Release 2003, 88(1), 135–145.
  • Cheng, J.; Teply, B. A.; Jeong, S. Y.; Yim, C. H.; Ho, D.; Sherifi, I.; Jon, S.; Farokhzad, O. C.; Khademhosseini, A., Langer, R. S. Magnetically Responsive Polymeric Microparticles for Oral Delivery of Protein Drugs. Pharm. Res. 2006, 23(3), 557–564.
  • Bisht, R.; Rupenthal, I. D. PLGA Nanoparticles for Intravitreal Peptide Delivery: Statistical Optimization, Characterization and Toxicity Evaluation. Pharm. Dev. Technol. 2016, 3, 1–10.
  • Mohammadi-Samani, S.; Taghipour, B. PLGA Micro and Nanoparticles in Delivery of Peptides and Proteins; Problems and Approaches. Pharm. Dev. Technol. 2015, 20(4), 385–393.
  • Jung, T.; Breitenbach, A.; Kissel, T. Sulfobutylated Poly(vinyl alcohol)-Graft-Poly(lactide-co-glycolide) s Facilitate the Preparation of Small Negatively Charged Biodegradable Nanospheres. J. Controlled Release 2000, 67(2), 157–169.
  • Bilati, U.; Allémann, E.; Doelker, E. Poly(d,l-lactide-co-glycolide) Protein-Loaded Nanoparticles Prepared by the Double Emulsion Method—Processing; and Formulation Issues for Enhanced Entrapment Efficiency. J. Microencapsulation 2005, 22(2), 205–214.
  • Leo, E.; Pecquet, S.; Rojas, J.; Couvreur, P.; Fattal, E. Changing the pH of the External Aqueous Phase May Modulate Protein Entrapment; and Delivery from Poly(lactide-co-glycolide) Microspheres Prepared by aw/o/w Solvent Evaporation Method. J. Microencapsulation 1998, 15(4), 421–430.
  • Tian, J.; Sun, X.; Chen, X.; Yu, J.; Qu, L.; Wang, L. The Formulation and Immunisation of Oral Poly(d,l-lactide-co-glycolide) Microcapsules Containing a Plasmid Vaccine Against Lymphocystis Disease Virus in Japanese Flounder (Paralichthys olivaceus). Int. Immunopharmacol. 2008, 8(6), 900–908.
  • Tian, J.; Yu, J. Poly(lactic-co-glycolic acid) Nanoparticles as Candidate DNA Vaccine Carrier for Oral Immunization of Japanese Flounder (Paralichthys olivaceus) Against Lymphocystis Disease Virus. Fish Shellfish Immunol. 2011, 30(1), 109–117.
  • Zhai, P.; Chen, X. B.; Schreyer, D. J. PLGA/Alginate Composite Microspheres for Hydrophilic Protein Delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 56, 251–259.
  • Swed, A.; Cordonnier, T.; Fleury, F.; Boury, F. Protein Encapsulation into PLGA Nanoparticles by a Novel Phase Separation Method Using Non-Toxic Solvents. J. Nanomed. Nanotechnol. 2014, 5(2), 241.
  • Salvador, A.; Igartua, M.; Hernández, R. M.; Pedraz, J. L. Designing Improved Poly Lactic-co-Glycolic Acid Microspheres for a Malarial Vaccine: Incorporation of Alginate and Polyinosinic-Polycytidilic Acid. J. Microencapsulation 2014, 31(6), 560–566.
  • Tafaghodi, M.; Khamesipour, A.; Jaafari, M. R. Immunization Against Leishmaniasis by PLGA Nanospheres Encapsulated with Autoclaved Leishmania major (ALM) and CpG-ODN. Parasitol. Res. 2011, 108(5), 1265–1273.
  • Rubsamen, R. M.; Herst, C. V., Lloyd, P. M.; Heckerman, D. E. Eliciting Cytotoxic T-Lymphocyte Responses from Synthetic Vectors Containing One or Two Epitopes in a C57BL/6 Mouse Model Using Peptide-Containing Biodegradable Microspheres and Adjuvants. Vaccine 2014, 32(33), 4111–4116.
  • Moon, J. J.; Suh, H.; Polhemus, M. E.; Ockenhouse, C. F.; Yadava, A.; Irvine, D. J. Antigen-Displaying Lipid-Enveloped PLGA Nanoparticles as Delivery Agents for a Plasmodium Vivax Malaria Vaccine. PLoS One 2012, 7(2), e31472.
  • Primard, C.; Poecheim, J.; Heuking, S.; Sublet, E.; Esmaeili, F.; Borchard, G. Multifunctional PLGA-Based Nanoparticles Encapsulating Simultaneously Hydrophilic Antigen and Hydrophobic Immunomodulator for Mucosal Immunization. Mol. Pharm. 2013, 10(8), 2996–3004.
  • Jiang, T.; Singh, B.; Li, H. S.; Kim, Y. K.; Kang, S. K.; Nah, J. W.; Choi, Y. J.; Cho, C. S. Targeted Oral Delivery of BmpB Vaccine Using Porous PLGA Microparticles Coated with M Cell Homing Peptide-Coupled Chitosan. Biomaterials 2014, 35(7), 2365–2373.
  • Wang, X.; Zhang, Y.; Xue, W.; Wang, H.; Qiu, X.; Liu, Z. Thermo-Sensitive Hydrogel PLGA–PEG–PLGA as a Vaccine Delivery System for Intramuscular Immunization. J. Biomater. Appl. 2017, 31(6), 923–932.
  • Kirby, D. J.; Rosenkrands, I.; Agger, E. M., Andersen, P.; Coombes, A. G.; Perrie, Y. PLGA Microspheres for the Delivery of a Novel Subunit TB Vaccine. J. Drug Target 2008, 16(4), 282–293.
  • Garinot, M.; Fiévez, V.; Pourcelle, V.; Stoffelbach, F.; des Rieux, A.; Plapied, L.; Theate, I.; Freichels, H.; Jérôme, C.; Marchand-Brynaert, J.; et al. PEGylated PLGA-Based Nanoparticles Targeting M Cells for Oral Vaccination. J. Control Release 2007, 120(3), 195–204.
  • Cruz, L. J.; Tacken, P. J.; Fokkink, R.; Joosten, B.; Stuart, M. C.; Albericio, F.; Torensma, R.; Figdor, C. G. Targeted PLGA Nano- but not Microparticles Specifically Deliver Antigen to Human Dendritic Cells Via DC-SIGN In Vitro. J. Control Release 2010, 144(2), 118–26.
  • Mahapatro, A., Singh, D. K. Biodegradable Nanoparticles are Excellent Vehicle for Site Directed In-Vivo Delivery of Drugs and Vaccines. J. Nanobiotechnol. 2011, 9, 55.
  • Aravind, A.; Varghese, S. H.; Veeranarayanan, S.; Mathew, A.; Nagaoka, Y.; Iwai, S.; Fukuda, T.; Hasumura, T.; Yoshida, Y.; Maekawa, T.; et al. Aptamer-Labeled PLGA Nanoparticles for Targeting Cancer Cells. Cancer Nanotechnol. 2012, 3(1–6), 1–12.
  • Vangara, K. K., Liu, J. L.; Palakurthi, S. Hyaluronic Acid-Decorated PLGA-PEG Nanoparticles for Targeted Delivery of SN-38 to Ovarian Cancer. Anticancer Res. 2013, 33(6), 2425–2434.
  • Guo, J. U. N.; Wu, S. H.; Ren, W. G.; Wang, X. L.; Yang, A. Q. Anticancer Activity of Bicalutamide-Loaded PLGA Nanoparticles in Prostate Cancers. Exp. Ther. Med. 2015, 10(6), 2305–2310.
  • Amjadi, I.; Rabiee, M.; Hosseini, M.-S. Anticancer Activity of Nanoparticles Based on PLGA; and its Co-Polymer: In-Vitro Evaluation. Iran. J. Pharm. Res. IJPR 2013, 12(4), 623–634.
  • Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable Polymeric Nanoparticles based Drug Delivery Systems. Colloids Surf. B Biointerfaces 2010, 75(1), 1–18.
  • Fredenberg, S.; Wahlgren, M.; Reslow, M.; Axelsson, A. The Mechanisms of Drug Release in Poly(lactic-co-glycolic acid)-Based Drug Delivery Systems—A Review. Int. J. Pharm. 2011, 415(1–2), 34–52.
  • Xi, J.; Da, L.; Yang, C.; Chen, R.; Gao, L.; Fan, L.; Han, J. Mn(2+)-Coordinated PDA@DOX/PLGA Nanoparticles as a Smart Theranostic Agent for Synergistic Chemo-Photothermal Tumor Therapy. Int. J. Nanomed. 2017, 12, 3331–3345.
  • Klose, D.; Siepmann, F.; Elkharraz, K.; Siepmann, J. PLGA-Based Drug Delivery Systems: Importance of the Type of Drug; and Device Geometry. Int. J. Pharm. 2008, 354(1–2), 95–103.
  • Ong, B. Y.; Ranganath, S. H.; Lee, L. Y.; Lu, F.; Lee, H. S.; Sahinidis, N. V.; Wang, C. H. Paclitaxel Delivery from PLGA Foams for Controlled Release in Post-Surgical Chemotherapy Against Glioblastoma Multiforme. Biomaterials 2009, 30(18), 3189–3196.
  • Rong, Z. J.; Yang, L. J.; Cai, B. T.; Zhu, L. X.; Cao, Y. L.; Wu, G. F.; Zhang, Z. J. Porous Nano-Hydroxyapatite/Collagen Scaffold Containing Drug-Loaded ADM-PLGA Microspheres for Bone Cancer Treatment. J. Mater. Sci. Mater. Med. 2016, 27(5), 89.
  • Hrynyk, M.; Ellis, J. P.; Haxho, F.; Allison, S.; Steele, J. A.; Abdulkhalek, S.; Neufeld, R. J., Szewczuk, M. R. Therapeutic Designed Poly(lactic-co-glycolic acid) Cylindrical Oseltamivir Phosphate-Loaded Implants Impede Tumor Neovascularization, Growth and Metastasis in Mouse Model of Human Pancreatic Carcinoma. Drug Des. Devel. Ther. 2015, 9, 4573–4586.
  • Esmaeili, F.; Ghahremani, M. H., Esmaeili, B.; Khoshayand, M. R., Atyabi, F.; Dinarvand, R. PLGA Nanoparticles of Different Surface Properties: Preparation; and Evaluation of their Body Distribution. Int. J. Pharm. 2008, 349(1–2), 249–255.
  • Wang, Z.-Q.; Liu, K.; Huo, Z. J.; Li, X. C.; Wang, M.; Liu, P.; Pang, B., Wang, S. J. A Cell-Targeted Chemotherapeutic Nanomedicine Strategy for Oral Squamous Cell Carcinoma Therapy. J. Nanobiotechnol. 2015, 13(1), 63.
  • Wei, K.; Peng, X.; Zou, F. Folate-Decorated PEG–PLGA Nanoparticles with Silica Shells for Capecitabine Controlled and Targeted Delivery. Int. J. Pharm. 2014, 464(1), 225–233.
  • Kocbek, P.; Obermajer, N.; Cegnar, M.; Kos, J.; Kristl, J. Targeting Cancer Cells Using PLGA Nanoparticles Surface Modified with Monoclonal Antibody. J. Control Release 2007, 120(1–2), 18–26.
  • Sims, L. B.; Curtis, L. T., Frieboes, H. B.; Steinbach-Rankins, J. M. Enhanced Uptake and Transport of PLGA-Modified Nanoparticles in Cervical Cancer. J. Nanobiotechnol. 2016, 14, 33.
  • Wang, Y.; Dou, L.; He, H.; Zhang, Y.; Shen, Q. Multifunctional Nanoparticles as Nanocarrier for Vincristine Sulfate Delivery to Overcome Tumor Multidrug Resistance. Mol. Pharm. 2014, 11(3), 885–894.
  • Liu, Q.; Chen, X.; Jia, J.; Zhang, W.; Yang, T.; Wang, L.; Ma, G. pH-Responsive Poly(d,l-lactic-co-glycolic acid) Nanoparticles with Rapid Antigen Release Behavior Promote Immune Response. ACS Nano 2015, 9(5), 4925–4938.
  • Wu, B.; Yu, P.; Cui, C.; Wu, M.; Zhang, Y.; Liu, L.; Wang, C. X.; Zhuo, R. X., Huang, S. W. Folate-Containing Reduction-Sensitive Lipid-Polymer Hybrid Nanoparticles for Targeted Delivery of Doxorubicin. Biomater. Sci. 2015, 3(4), 655–664.
  • Wu, J.; Zhang, J.; Deng, C.; Meng, F.; Cheng, R.; Zhong, Z. Robust, Responsive; and Targeted PLGA Anticancer Nanomedicines by Combination of Reductively Cleavable Surfactant; and Covalent Hyaluronic Acid Coating. ACS Appl. Mater. Interfaces 2017, 9(4), 3985–3994.
  • Yang, H.; Deng, L.; Li, T.; Shen, X.; Yan, J.; Zuo, L.; Wu, C., Liu, Y. Multifunctional PLGA Nanobubbles as Theranostic Agents: Combining Doxorubicin and P-gp siRNA Co-Delivery into Human Breast Cancer Cells and Ultrasound Cellular Imaging. J. Biomed. Nanotechnol. 2015, 11(12), 2124–2136.
  • Cui, Y.; Zhang, M.; Zeng, F.; Jin, H.; Xu, Q.; Huang, Y. Dual-Targeting Magnetic PLGA Nanoparticles for Codelivery of Paclitaxel; and Curcumin for Brain Tumor Therapy. ACS Appl. Mater. Interfaces 2016, 8(47), 32159–32169.
  • Sun, B.; Ranganathan, B.; Feng, S. S. Multifunctional Poly(d,l-lactide-co-glycolide)/Montmorillonite (PLGA/MMT) Nanoparticles Decorated by Trastuzumab for Targeted Chemotherapy of Breast Cancer. Biomaterials 2008, 29(4), 475–486.
  • Sherwani, M. A.; Tufail, S.; Khan, A. A.; Owais, M. Dendrimer-PLGA Based Multifunctional Immuno-Nanocomposite Mediated Synchronous and Tumor Selective Delivery of siRNA and Cisplatin: Potential in Treatment of Hepatocellular Carcinoma. RSC Adv. 2015, 5(49), 39512–39531.
  • Ladewig, K. Drug Delivery in Soft Tissue Engineering. Expert Opin. Drug Delivery 2011, 8(9), 1175–1188.
  • Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P. V. An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering. Int. J. Mol. Sci. 2014, 15(3), 3640–3659.
  • Lee, C.-H.; Chang, S. H.; Chen, W. J.; Hung, K. C.; Lin, Y. H.; Liu, S. J.; Hsieh, M. J.; Pang, J. H. S.; Juang, J. H. Augmentation of Diabetic Wound Healing and Enhancement of Collagen Content Using Nanofibrous Glucophage-Loaded Collagen/PLGA Scaffold Membranes. J. Colloid Interface Sci. 2015, 439, 88–97.
  • Chen, H.; Peng, Y.; Wu, S.; Tan, L. P. Electrospun 3D Fibrous Scaffolds for Chronic Wound Repair. Materials 2016, 9(4), 272.
  • Chang, M. Y.; Yang, Y. J.; Chang, C. H.; Tang, A. C.; Liao, W. Y.; Cheng, F. Y.; Yeh, C. S.; Lai, J. J.; Stayton, P. S. Hsieh, P. C. Functionalized Nanoparticles Provide Early Cardioprotection after Acute Myocardial Infarction. J. Control Release 2013, 170(2), 287–94.
  • Prabhakaran, M. P.; Kai, D.; Ghasemi-Mobarakeh, L.; Ramakrishna, S. Electrospun Biocomposite Nanofibrous Patch for Cardiac Tissue Engineering. Biomed. Mater. 2011, 6(5), 055001.
  • Kim, M. J.; Choi, H. J., Cho, J.; Lee, J. B., Sung, H. J.; Kim, J. K. MG-63 Cell Proliferation with Static or Dynamic Compressive Stimulation on an Auxetic PLGA Scaffold. Int. J. Polym. Sci. 2017, 2017, 6.
  • Yan, B.; Zhang, Z.; Wang, X.; Ni, Y.; Liu, Y.; Liu, T.; Wang, W.; Xing, H.; Sun, Y.; Wang, J.; et al. PLGA–PTMC–Cultured Bone Mesenchymal Stem Cell Scaffold Enhances Cartilage Regeneration in Tissue-Engineered Tracheal Transplantation. Artif. Organs 2017, 41(5), 461–469.
  • Khojasteh, A.; Fahimipour, F.; Eslaminejad, M. B.; Jafarian, M.; Jahangir, S.; Bastami, F.; Tahriri, M.; Karkhaneh, A., Tayebi, L. Development of PLGA-Coated β-TCP Scaffolds Containing VEGF for Bone Tissue Engineering. Mater. Sci. Eng. C 2016, 69, 780–788.
  • Sheikh, F. A.; Ju, H. W.; Moon, B. M.; Lee, O. J.; Kim, J. H.; Park, H. J.; Kim, D. W.; Kim, D. K.; Jang, J. E.; Khang, G.; et al. Hybrid Scaffolds Based on PLGA; and Silk for Bone Tissue Engineering. J. Tissue Eng. Regener. Med. 2016, 10(3), 209–221.
  • Diaz-Gomez, L.; Yang, F.; Jansen, J. A., Concheiro, A.; Alvarez-Lorenzo, C.; García-González, C. A. Low Viscosity-PLGA Scaffolds by Compressed CO2 Foaming for Growth Factor Delivery. RSC Adv. 2016, 6(74), 70510–70519.
  • Han, F.; Li, B.; Yang, H.; Yuan, X. Chitosan-Gelatin Hydrogel/PLGA Scaffold with Dual-Delivery of TGF-β1 and BMP-2 for Osteochondral Defect Repair. J. Controlled Release 2017, 259, e34–e35.
  • Chappell, J. C.; Song, J.; Burke, C. W.; Klibanov, A. L.; Price, R. J. Targeted Delivery of Nanoparticles Bearing Fibroblast Growth Factor-2 by Ultrasonic Microbubble Destruction for Therapeutic Arteriogenesis. Small 2008, 4(10), 1769–1777.
  • Jin, Q.; Ma, P. X.; Giannobile, W. V. Platelet-Derived Growth Factor Delivery via Nanofibrous Scaffolds for Soft-Tissue Repair. Adv. Skin Wound Care 2010, 1, 375–381.
  • Jiang, X.; Lin, H.; Jiang, D.; Xu, G.; Fang, X.; He, L.; Xu, M.; Tang, B.; Wang, Z.; Cui, D.; et al. Co-Delivery of VEGF; and bFGF via a PLGA Nanoparticle-Modified BAM for Effective Contracture Inhibition of Regenerated Bladder Tissue in Rabbits. Sci. Rep. 2016, 6, 20784.
  • Uematsu, K.; Hattori, K.; Ishimoto, Y.; Yamauchi, J.; Habata, T.; Takakura, Y.; Ohgushi, H.; Fukuchi, T.; Sato, M. Cartilage Regeneration Using Mesenchymal Stem Cells and a Three-Dimensional Poly-Lactic-Glycolic Acid (PLGA) Scaffold. Biomaterials 2005, 26(20), 4273–4279.
  • Solouk, A.; Mirzadeh, H.; Amanpour, S. Injectable Scaffold as Minimally Invasive Technique for Cartilage Tissue Engineering: In Vitro and In Vivo Preliminary Study. Progress Biomater. 2014, 3, 143–151.
  • Gu, Y.; Chen, P.; Yang, Y.; Shi, K.; Wang, Y.; Zhu, W., Zhu, G. Chondrogenesis of Myoblasts in Biodegradable Poly-Lactide-co-Glycolide Scaffolds. Mol. Med. Rep. 2013, 7(3), 1003–1009.
  • Thi Hiep, N.; Chan Khon, H.; Dai Hai, N.; Byong-Taek, L.; Van Toi, V.; Thanh Hung, L. Biocompatibility of PCL/PLGA-BCP Porous Scaffold for Bone Tissue Engineering Applications. J. Biomater. Sci., Polym. Ed. 2017, 28(9), 864–878.
  • Lanao, R. P. F.; Jonker, A. M., Wolke, J. G., Jansen, J. A., van Hest, J. C.; Leeuwenburgh, S. C. Physicochemical Properties; and Applications of Poly(lactic-co-glycolic acid) for Use in Bone Regeneration. Tissue Eng. Part B: Rev. 2013, 19(4), 380–390.
  • Ngiam, M.; Liao, S.; Patil, A. J., Cheng, Z.; Chan, C. K.; Ramakrishna, S. The Fabrication of Nano-Hydroxyapatite on PLGA and PLGA/Collagen Nanofibrous Composite Scaffolds and their Effects in Osteoblastic Behavior for Bone Tissue Engineering. Bone 2009, 45(1), 4–16.
  • Pan, Z., Ding, J. Poly(lactide-co-glycolide) Porous Scaffolds for Tissue Engineering and Regenerative Medicine. Interface Focus 2012, 2(3), 366–377.
  • Zlokovic, B. V. The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. Neuron 2008, 57(2), 178–201.
  • Honjo, K.; Black, S. E.; Verhoeff, N. P. Alzheimer’s Disease, Cerebrovascular Disease, and the Beta-Amyloid Cascade. Can. J. Neurol. Sci. 2012, 39(6), 712–728.
  • Hwang, S. R.; Kim, K. Nano-Enabled Delivery Systems Across the Blood-Brain Barrier. Arch Pharm. Res. 2014, 37(1), 24–30.
  • Pardridge, W. M. The Blood-Brain Barrier: Bottleneck in Brain Drug Development. NeuroRx 2005, 2(1), 3–14.
  • Kreuter, J. Mechanism of Polymeric Nanoparticle-Based Drug Transport Across the Blood-Brain Barrier (BBB). J. Microencapsulation 2013, 30(1), 49–54.
  • Kreuter, J. Drug Delivery to the Central Nervous System by Polymeric Nanoparticles: What do We Know? Adv. Drug Delivery Rev. 2014, 71, 2–14.
  • Lalatsa, A.; Schatzlein, A. G.; Uchegbu, I. F. Strategies to Deliver Peptide Drugs to the Brain. Mol. Pharm. 2014, 11(4), 1081–1093.
  • Snyder, E. L.; Dowdy, S. F. Recent Advances in the Use of Protein Transduction Domains for the Delivery of Peptides, Proteins and Nucleic Acids In Vivo. Exp. Opin. Drug Delivery 2005, 2(1), 43–51.
  • Zou, L. L.; Ma, J. L., Wang, T.; Yang, T. B.; Liu, C. B. Cell-Penetrating Peptide-Mediated Therapeutic Molecule Delivery into the Central Nervous System. Curr. Neuropharmacol. 2013, 11(2), 197–208.
  • Zhou, J.; Patel, T. R., Fu, M.; Bertram, J. P.; Saltzman, W. M., Octa-Functional PLGA Nanoparticles for Targeted and Efficient siRNA Delivery to Tumors. Biomaterials 2012, 33(2), 583–591.
  • Tian, X. H.; Wei, F.; Wang, T. X.; Wang, P.; Lin, X. N.; Wang, J.; Wang, D., Ren, L. In Vitro; and In Vivo Studies on Gelatin-Siloxane Nanoparticles Conjugated with SynB Peptide to Increase Drug Delivery to the Brain. Int. J. Nanomed. 2012, 7, 1031–1041.
  • Bidwell, G. L., 3rd; Perkins, E.; Hughes, J.; Khan, M.; James, J. R.; Raucher, D. Thermally Targeted Delivery of a c-Myc Inhibitory Polypeptide Inhibits Tumor Progression and Extends Survival in a Rat Glioma Model. PLoS One 2013, 8(1), e55104.
  • Gelperina, S.; Maksimenko, O.; Khalansky, A.; Vanchugova, L.; Shipulo, E.; Abbasova, K.; Berdiev, R.; Wohlfart, S.; Chepurnova, N., Kreuter, J. Drug Delivery to the Brain Using Surfactant-Coated Poly(lactide-co-glycolide) Nanoparticles: Influence of the Formulation Parameters. Eur. J. Pharm. Biopharm 2010, 74(2), 157–163.
  • Chaturvedi, M.; Molino, Y.; Sreedhar, B.; Khrestchatisky, M.; Kaczmarek, L. Tissue Inhibitor of Matrix Metalloproteinases-1 Loaded Poly(lactic-co-glycolic acid) Nanoparticles for Delivery Across the Blood-Brain Barrier. Int. J. Nanomed. 2014, 9, 575–588.
  • Chang, J.; Jallouli, Y.; Kroubi, M.; Yuan, X. B.; Feng, W.; Kang, C. S.; Pu, P. Y., Betbeder, D. Characterization of Endocytosis of Transferrin-Coated PLGA Nanoparticles by the Blood-Brain Barrier. Int. J. Pharm. 2009, 379(2), 285–292.
  • Lalani, J.; Raichandani, Y.; Mathur, R.; Lalan, M.; Chutani, K.; Mishra, A. K.; Misra, A. Comparative Receptor Based Brain Delivery of Tramadol-Loaded Poly(lactic-co-glycolic acid) Nanoparticles. J. Biomed. Nanotechnol. 2012, 8(6), 918–927.
  • Tosi, G.; Badiali, L.; Ruozi, B.; Vergoni, A. V.; Bondioli, L.; Ferrari, A.; Rivasi, F.; Forni, F., Vandelli, M. A. Can Leptin-Derived Sequence-Modified Nanoparticles be Suitable Tools for Brain Delivery? Nanomedicine 2012, 7(3), 365–382.
  • Geldenhuys, W.; Wehrung, D.; Groshev, A.; Hirani, A.; Sutariya, V. Brain-Targeted Delivery of Doxorubicin using Glutathione-Coated Nanoparticles for Brain Cancers. Pharm. Dev. Technol. 2015, 20(4), 497–506.
  • Lei, C.; Cui, Y.; Zheng, L.; Chow, P. K. H.; Wang, C. H. Development of a Gene/Drug Dual Delivery System for Brain Tumor Therapy: Potent Inhibition via RNA Interference and Synergistic Effects. Biomaterials 2013, 34(30), 7483–7494.
  • Wang, B.; Lv, L.; Wang, Z.; Zhao, Y.; Wu, L.; Fang, X.; Xu, Q.; Xin, H. Nanoparticles Functionalized with Pep-1 as Potential Glioma Targeting Delivery System Via Interleukin 13 Receptor Alpha2-Mediated Endocytosis. Biomaterials 2014, 35(22), 5897–5907.
  • Chhabra, R.; Grabrucker, A. M.; Veratti, P.; Belletti, D.; Boeckers, T. M.; Vandelli, M. A.; Forni, F.; Tosi, G., Ruozi, B. Characterization of Lysosome-Destabilizing DOPE/PLGA Nanoparticles Designed for Cytoplasmic Drug Release. Int. J. Pharm. 2014, 471(1–2), 349–357.
  • Khanal, S.; Adhikari, U.; Rijal, N. P.; Bhattarai, S. R.; Sankar, J.; Bhattarai, N. pH-Responsive PLGA Nanoparticle for Controlled Payload Delivery of Diclofenac Sodium. J. Funct. Biomater. 2016, 7(3), 21.
  • Chang, G.; Li, C.; Lu, W.; Ding, J. N-Boc-Histidine-Capped PLGA–PEG–PLGA as a Smart Polymer for Drug Delivery Sensitive to Tumor Extracellular pH. Macromol. Biosci. 2010, 10(10), 1248–1256.
  • Qiao, M.; Chen, D.; Ma, X.; Liu, Y. Injectable Biodegradable Temperature-Responsive PLGA–PEG–PLGA Copolymers: Synthesis and Effect of Copolymer Composition on the Drug Release from the Copolymer-Based Hydrogels. Int. J. Pharm. 2005, 294(1), 103–112.
  • Mieler, J. J. K.; Jiang, B.; Perez-Luna, V.; Brey, E.; Mieler, W. F.; PLGA Nanospheres Encapsulated Within Thermo-Responsive Hydrogel for Ocular Delivery of Dexamethasone Sodium Phosphate. Invest. Ophthalmol. Visual Sci. 2011, 52(14), 467–467.
  • Bisht, R.; Jaiswal, J. K., Oliver, V. F., Eurtivong, C.; Reynisson, J.; Rupenthal, I. D. Preparation and Evaluation of PLGA Nanoparticle-Loaded Biodegradable Light-Responsive Injectable Implants as a Promising Platform for Intravitreal Drug Delivery. J. Drug Delivery Sci. Technol. 2017, 40, 142–156.
  • Fan, J.; He, Q.; Liu, Y.; Zhang, F.; Yang, X.; Wang, Z.; Lu, N.; Fan, W.; Lin, L.; Niu, G. Light-Responsive Biodegradable Nanomedicine Overcomes Multidrug Resistance via NO-Enhanced Chemosensitization. ACS Appl. Mater. Interfaces 2016, 8(22), 13804–13811.
  • Bose, R. J.; Arai, Y.; Ahn, J. C.; Park, H.; Lee, S. H. Influence of Cationic Lipid Concentration on Properties of Lipid–Polymer Hybrid Nanospheres for Gene Delivery. Int. J. Nanomed. 2015, 10, 5367.
  • Dehaini, D.; Fang, R. H.; Luk, B. T.; Pang, Z.; Hu, C. M. J.; Kroll, A. V.; Yu, C. L.; Gao, W.; Zhang, L. Ultra-Small Lipid–Polymer Hybrid Nanoparticles for Tumor-Penetrating Drug Delivery. Nanoscale 2016, 8(30), 14411–14419.
  • Ghotbi, Z.; Haddadi, A.; Hamdy, S.; Hung, R. W., Samuel, J.; Lavasanifar, A. Active Targeting of Dendritic Cells with Mannan-Decorated PLGA Nanoparticles. J. Drug Target 2011, 19(4), 281–292.
  • Karra, N.; Nassar, T.; Ripin, A. N., Schwob, O.; Borlak, J.; Benita, S. Antibody Conjugated PLGA Nanoparticles for Targeted Delivery of Paclitaxel Palmitate: Efficacy and Biofate in a Lung Cancer Mouse Model. Small 2013, 9(24), 4221–4236.
  • Hovanessian, A. G.; Soundaramourty, C.; El Khoury, D.; Nondier, I.; Svab, J.; Krust, B. Surface Expressed Nucleolin is Constantly Induced in Tumor Cells to Mediate Calcium-Dependent Ligand Internalization. PLoS One 2010, 5(12), e15787.
  • Weigum, S. E.; Sutton, M.; Barnes, E.; Miller, S.; Betancourt, T. Targeting Hepatocellular Carcinoma with Aptamer-Functionalized PLGA/PLA-PEG Nanoparticles Proc. SPIE, 2014, 9166.
  • Gu, F.; Langer, R.; Farokhzad, O. C. Formulation/Preparation of Functionalized Nanoparticles for In Vivo Targeted Drug Delivery. Methods Mol. Biol. 2009, 544, 589–598.
  • Osipova, N.; Maksimenko, O.; Gelperina, S.; Melnikov, P.; Baklaushev, V. Penetration of PLGA Nanoparticles into the Intracranial Rat C6 Glioma: Influence of Surfactant Coating. Engineering Conferences International, 2016.
  • Harguindey, A.; Domaille, D. W., Fairbanks, B. D., Wagner, J.; Bowman, C. N.; Cha, J. N. Synthesis and Assembly of Click-Nucleic-Acid-Containing PEG-PLGA Nanoparticles for DNA Delivery. Adv. Mater. 2017, 29(24), 1700743.
  • Ranjbar-Mohammadi, M.; Zamani, M.; Prabhakaran, M. P., Bahrami, S. H.; Ramakrishna, S. Electrospinning of PLGA/Gum Tragacanth Nanofibers Containing Tetracycline Hydrochloride for Periodontal Regeneration. Mater. Sci. Eng. C 2016, 58, 521–531.
  • Chang, J.; Paillard, A.; Passirani, C.; Morille, M.; Benoit, J. P., Betbeder, D.; Garcion, E. Transferrin Adsorption onto PLGA Nanoparticles Governs their Interaction with Biological Systems from Blood Circulation to Brain Cancer Cells. Pharm. Res. 2012, 29(6), 1495–1505.
  • Patil, Y.; Sadhukha, T.; Ma, L.; Panyam, J. Nanoparticle-Mediated Simultaneous and Targeted Delivery of Paclitaxel and Tariquidar Overcomes Tumor Drug Resistance. J. Control Release 2009, 136(1), 21–29.
  • Erbetta, C. D. A. C.; Alves, R. J.; Resende, J. M.; de Souza Freitas, R. F.; de Sousa, R. G. Synthesis and Characterization of Poly(d,l-lactide-co-glycolide) Copolymer. J. Biomater. Nanobiotechnol. 2012, 3(2), 208.
  • Agrawal, C.; Ray, R. B. Biodegradable Polymeric Scaffolds for Musculoskeletal Tissue Engineering. J. Biomed. Mater. Res. Part A 2001, 55(2), 141–150.
  • You, Y.; Min, B. M.; Lee, S. J.; Lee, T. S.; Park, W. H. In Vitro Degradation Behavior of Electrospun Polyglycolide, Polylactide, and Poly(lactide‐co‐glycolide). J. Appl. Polym. Sci. 2005, 95(2), 193–200.
  • Zimmermann, J.; Jürgensen, N.; Morfa, A. J.; Wang, B.; Tekoglu, S.; Hernandez-Sosa, G. Poly(lactic-co-glycolic acid) (PLGA) as Ion-Conducting Polymer for Biodegradable Light-Emitting Electrochemical Cells. ACS Sust. Chem. Eng. 2016, 4(12), 7050–7055.
  • Sarazin, P.; Roy, X.; Favis, B. D. Controlled Preparation and Properties of Porous Poly(l-lactide) Obtained from a Co-Continuous Blend of Two Biodegradable Polymers. Biomaterials 2004, 25(28), 5965–5978.
  • You, Y.; Lee, S. W.; Youk, J. H.; Min, B. M.; Lee, S. J.; Park, W. H. In Vitro Degradation Behaviour of Non-Porous Ultra-Fine Poly(glycolic acid)/Poly(l-lactic acid) Fibres and Porous Ultra-Fine Poly(glycolic acid) Fibres. Polym. Degrad. Stab. 2005, 90(3), 441–448.
  • Fansheng Kong, L. G.; Ximin, L.; Ning, H.; Fang, Z. Mannan-Modified PLGA Nanoparticles for Targeted Gene Delivery. Int. J. Photoenergy 2012, 2012, 1–7.
  • Frede, A.; Neuhaus, B.; Klopfleisch, R.; Walker, C.; Buer, J.; Müller, W.; Epple, M., Westendorf, A. M. Colonic Gene Silencing Using siRNA-Loaded Calcium Phosphate/PLGA Nanoparticles Ameliorates Intestinal Inflammation In Vivo. J. Controlled Release 2016, 222, 86–96.
  • Park, J. S.; Yang, H. N.; Yi, S. W.; Kim, J. H.; Park, K. H. Neoangiogenesis of Human Mesenchymal Stem Cells Transfected with Peptide-Loaded and Gene-Coated PLGA Nanoparticles. Biomaterials 2016, 76, 226–237.
  • Xie, Q.; Jia, L. N.; Xu, H. Y.; Hu, X. G.; Wang, W.; Jia, J. Fabrication of Core-Shell PEI/pBMP2-PLGA Electrospun Scaffold for Gene Delivery to Periodontal Ligament Stem Cells. Stem Cells Int. 2016, 2016, 11.
  • Seok, H.; Noh, J. Y.; Lee, D. Y.; Kim, S. J.; Song, C. S.; Kim, Y. C. Effective Humoral Immune Response from a H1N1 DNA Vaccine Delivered to the Skin by Microneedles Coated with PLGA-Based Cationic Nanoparticles. J Control Release 2017.
  • Du, J.; Sun, Y.; Li, F. H.; Du, L. F.; Duan, Y. R. Enhanced Delivery of Biodegradable mPEG-PLGA-PLL Nanoparticles Loading Cy3-Labelled PDGF-BB siRNA by UTMD to Rat Retina. J. Biosci. 2017, 42(2), 299–309.
  • Derman, S.; Mustafaeva, Z. A., Abamor, E. S., Bagirova, M.; Allahverdiyev, A. Preparation, Characterization and Immunological Evaluation: Canine Parvovirus Synthetic Peptide Loaded PLGA Nanoparticles. J. Biomed. Sci. 2015, 22, 89.
  • Silva, A. L.; Rosalia, R. A.; Sazak, A.; Carstens, M. G.; Ossendorp, F.; Oostendorp, J.; Jiskoot, W. Optimization of Encapsulation of a Synthetic Long Peptide in PLGA Nanoparticles: Low-Burst Release is Crucial for Efficient CD8 + T Cell Activation. Eur. J. Pharm. Biopharm. 2013, 83(3), 338–345.
  • Choi, Y. H.; Heo, S. C.; Kwon, Y. W.; Kim, H. D.; Kim, S. H. L.; Jang, I. H.; Kim, J. H.; Hwang, N. S. Injectable PLGA Microspheres Encapsulating WKYMVM Peptide for Neovascularization. Acta Biomater. 2015, 25, 76–85.
  • Rosas, J. E.; Hernandez, R. M., Gascon, A. R., Igartua, M.; Guzman, F.; Patarroyo, M. E.; Pedraz, J. L. Biodegradable PLGA Microspheres as a Delivery System for Malaria Synthetic Peptide SPf66. Vaccine 2001, 19(31), 4445–4451.
  • Arruda, D. C.; de Oliveira, T. D.; Cursino, P. H. F.; Maia, V. S. C.; Berzaghi, R.; Travassos, L. R.; Tada, D. B. Inhibition of melanoma metastasis by dual-peptide PLGA NPS. Biopolymers, 2017, 108:e23029
  • Cruz, J.; Flórez, J.; Torres, R.; Urquiza, M.; Gutiérrez, J. A.; Guzmán, F.; Ortiz, C. C. Antimicrobial Activity of a New Synthetic Peptide Loaded in Polylactic Acid or Poly(lactic-co-glycolic) Acid Nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157: H7 and Methicillin Resistant Staphylococcus aureus (MRSA). Nanotechnology 2017, 28(13), 135102.
  • Malinovskaya, Y.; Melnikov, P.; Baklaushev, V.; Gabashvili, A.; Osipova, N.; Mantrov, S.; Ermolenko, Y.; Maksimenko, O.; Gorshkova, M.; Balabanyan, V.; et al. Delivery of Doxorubicin-Loaded PLGA Nanoparticles into U87 Human Glioblastoma Cells. Int. J. Pharm. 2017, 524(1), 77–90.
  • Reardon, P. J.; Parhizkar, M.; Harker, A. H.; Browning, R. J.; Vassileva, V.; Stride, E.; Pedley, R. B.; Edirisinghe, M., Knowles, J. C. Electrohydrodynamic Fabrication of Core–Shell PLGA Nanoparticles with Controlled Release of Cisplatin for Enhanced Cancer Treatment. Int. J. Nanomed. 2017, 12, 3913.
  • Guo, Y.; He, W.; Yang, S.; Zhao, D.; Li, Z.; Luan, Y. Co-Delivery of Docetaxel and Verapamil by Reduction-Sensitive PEG–PLGA–SS–DTX Conjugate Micelles to Reverse the Multi-Drug Resistance of Breast Cancer. Colloids Surf. B: Biointerfaces 2017, 151, 119–127.
  • Shen, X.; He, W.; Yang, S.; Zhao, D.; Li, Z.; Luan, Y. Magnetic/Fluorescent Hybrid PLGA Nanoparticles for Doxorubicin/VEGF siRNA Co-Delivery and Tumor Imaging. J. Controlled Release 2017, 259, e160–e161.
  • Singh, A.; Thotakura, N.; Kumar, R.; Singh, B.; Sharma, G.; Katare, O. P.; Raza, K. PLGA-Soya Lecithin Based Micelles for Enhanced Delivery of Methotrexate: Cellular Uptake, Cytotoxic and Pharmacokinetic Evidences. Int. J. Biol. Macromol. 2017, 95, 750–756.
  • Lih, E.; Park, K. W.; Chun, S. Y.; Kim, H.; Kwon, T. G.; Joung, Y. K.; Han, D. K. Biomimetic Porous PLGA Scaffolds Incorporating Decellularized Extracellular Matrix for Kidney Tissue Regeneration. ACS Appl. Mater. Interfaces 2016, 8(33), 21145–21154.
  • Qutachi, O.; Vetsch, J. R.; Gill, D.; Cox, H.; Scurr, D. J.; Hofmann, S.; Müller, R.; Quirk, R. A.; Shakesheff, K. M.; Rahman, C. V. Injectable and Porous PLGA Microspheres that form Highly Porous Scaffolds at Body Temperature. Acta Biomater. 2014, 10(12), 5090–5098.
  • Tang, Y.; Chen, L.; Zhao, K.; Wu, Z.; Wang, Y.; Tan, Q. Fabrication of PLGA/HA (Core)-Collagen/Amoxicillin (Shell) Nanofiber Membranes Through Coaxial Electrospinning for Guided Tissue Regeneration. Comp. Sci. Technol. 2016, 125, 100–107.
  • Liao, S.; Wang, W.; Uo, M.; Ohkawa, S.; Akasaka, T.; Tamura, K.; Cui, F., Watari, F. A Three-Layered Nano-Carbonated Hydroxyapatite/Collagen/PLGA Composite Membrane for Guided Tissue Regeneration. Biomaterials 2005, 26(36), 7564–7571.
  • Park, J. S.; Park, K.-H. Light Enhanced Bone Regeneration in an Athymic Nude Mouse Implanted with Mesenchymal Stem Cells Embedded in PLGA Microspheres. Biomater. Res. 2016, 20, 4.
  • Gutierro, I.; Hernandez, R. M.; Igartua, M.; Gascon, A. R.; Pedraz, J. L. Size Dependent Immune Response after Subcutaneous, Oral and Intranasal Administration of BSA Loaded Nanospheres. Vaccine 2002, 21(1–2), 67–77.
  • Carcaboso, A. M.; Hernandez, R. M.; Igartua, M.; Rosas, J. E.; Patarroyo, M. E.; Pedraz, J. L. Potent, Long Lasting Systemic Antibody Levels and Mixed Th1/Th2 Immune Response after Nasal Immunization with Malaria Antigen Loaded PLGA Microparticles. Vaccine 2004, 22(11–12), 1423–1432.
  • Thomas, C.; Gupta, V.; Ahsan, F. Particle Size Influences the Immune Response Produced by Hepatitis B Vaccine Formulated in Inhalable Particles. Pharm. Res. 2010, 27(5), 905–919.
  • Joshi, V. B.; Geary, S. M.; Salem, A. K. Biodegradable Particles as Vaccine Delivery Systems: Size Matters. AAPS J. 2013, 15(1), 85–94.
  • Fredriksen, B. N.; Grip, J. PLGA/PLA Micro- and Nanoparticle Formulations Serve as Antigen Depots and Induce Elevated Humoral Responses after Immunization of Atlantic salmon (Salmo salar L.). Vaccine 2012, 30(3), 656–667.
  • Wischke, C.; Zimmermann, J.; Wessinger, B.; Schendler, A.; Borchert, H. H.; Peters, J. H.; Nesselhut, T., Lorenzen, D. R. Poly(I:C) Coated PLGA Microparticles Induce Dendritic Cell Maturation. Int. J. Pharm. 2009, 365(1–2), 61–68.
  • Jaganathan, K. S.; Vyas, S. P. Strong Systemic and Mucosal Immune Responses to Surface-Modified PLGA Microspheres Containing Recombinant Hepatitis B Antigen Administered Intranasally. Vaccine 2006, 24(19), 4201–4211.
  • Pandit, S.; Cevher, E.; Zariwala, M. G., Somavarapu, S.; Alpar, H. O. Enhancement of Immune Response of HBsAg Loaded Poly(l-lactic acid) Microspheres against Hepatitis B Through Incorporation of Alum and Chitosan. J. Microencapsulation 2007, 24(6), 539–552.
  • Martinez Gomez, J. M.; Csaba, N.; Fischer, S.; Sichelstiel, A.; Kündig, T. M.; Gander, B.; Johansen, P. Surface Coating of PLGA Microparticles with Protamine Enhances their Immunological Performance Through Facilitated Phagocytosis. J. Control Release 2008, 130(2), 161–167.
  • Han, R.; Zhu, J.; Yang, X.; Xu, H. Surface Modification of Poly(d,l-lactic-co-glycolic acid) Nanoparticles with Protamine Enhanced Cross-Presentation of Encapsulated Ovalbumin by Bone Marrow-Derived Dendritic Cells. J. Biomed. Mater. Res. A 2011, 96(1), 142–149.
  • Slutter, B.; Bal, S.; Keijzer, C.; Mallants, R.; Hagenaars, N.; Que, I.; Kaijzel, E.; van Eden, W.; Augustijns, P.; Löwik, C.; Bouwstra, J. Nasal Vaccination with N-Trimethyl Chitosan and PLGA Based Nanoparticles: Nanoparticle Characteristics Determine Quality and Strength of the Antibody Response in Mice against the Encapsulated Antigen. Vaccine 2010, 28(38), 6282–6291.
  • Ma, T.; Wang, L.; Yang, T.; Ma, G.; Wang, S. M-Cell Targeted Polymeric Lipid Nanoparticles Containing a Toll-Like Receptor agonist to Boost Oral Immunity. Int. J. Pharm. 2014, 473(1–2), 296–303.
  • Saluja, S. S.; Hanlon, D. J.; Sharp, F. A.; Hong, E.; Khalil, D.; Robinson, E.; Tigelaar, R.; Fahmy, T. M., Edelson, R. L. Targeting Human Dendritic Cells Via DEC-205 using PLGA Nanoparticles Leads to Enhanced Cross-Presentation of a Melanoma-Associated Antigen. Int. J. Nanomed. 2014, 9, 5231–5246.
  • Cruz, L. J.; Rosalia, R. A.; Kleinovink, J. W.; Rueda, F.; Löwik, C. W.; Ossendorp, F. Targeting nanoparticles to CD40, DEC-205 or CD11c Molecules on Dendritic Cells for Efficient CD8(+) T Cell Response: A Comparative Study. J. Control Release 2014, 192, 209–218.
  • Conway, M. A.; Madrigal-Estebas, L.; McClean, S.; Brayden, D. J.; Mills, K. H. Protection Against Bordetella pertussis Infection Following Parenteral or Oral Immunization with Antigens Entrapped in Biodegradable Particles: Effect of Formulation and Route of Immunization on Induction of Th1 and Th2 Cells. Vaccine 2001, 19(15–16), 1940–1950.
  • Hamdy, S.; Haddadi, A.; Hung, R. W.; Lavasanifar, A. Targeting Dendritic Cells with Nano-Particulate PLGA Cancer Vaccine Formulations. Adv. Drug Delivery Rev. 2011, 63(10–11), 943–955.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.