665
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Curcumin loaded fish scale collagen-HPMC nanogel for wound healing application: Ex-vivo and In-vivo evaluation

, PhD, , , &
Pages 165-174 | Received 27 Oct 2017, Accepted 15 Jan 2018, Published online: 05 Feb 2018

References

  • Singh, M.; Govindarajan, R.; Nath, V.; Rawat, A. K. S.; Mehrotra, S. Antimicrobial, Wound Healing and Antioxidant Activity of Plagiochasma Appendiculatum Lehm. et Lind. J. Ethnopharmacol. 2006, 107(1), 67–72. DOI: 10.1016/j.jep.2006.02.007.
  • Muzzarelli, R. A. A. Chitins and Chitosans for the Repair of Wounded Skin, Nerve, Cartilage and Bone. Carbohydr. Polym. 2009, 76, 167–182. DOI: 10.1016/j.carbpol.2008.11.002.
  • Eming, S. A.; Martin, P.; Tomic-Canic, M. Wound Repair and Regeneration: Mechanisms, Signaling, and Translation. Sci. Transl. Med. 2014, 6(265), 265sr6–265sr6. DOI: 10.1126/scitranslmed.3009337.
  • Moghaddam, K. M.; Iranshahi, M.; Yazdi, M. C.; Shahverdi, A. R. The Combination Effect of Curcumin with Different Antibiotics Against Staphylococcus aureus. Int. J. Green Pharm. 2009, 3(2), 141–143. DOI: 10.4103/0973-8258.54906.
  • Khanna, N. M. Turmeric - Nature’s Precious Gift. Curr. Sci. 1999, 76(10), 1351–1356.
  • Sidhu, G. S.; Singh, A. K.; Thaloor, D.; Banaudha, K. K.; Patnaik, G. K.; Srimal, R. C.; Maheshwari, R. K. Enhancement of Wound Healing by Curcumin in Animals. Wound Repair Regen. 1998, 6(2), 167–177. DOI: 10.1046/j.1524-475x.1998.60211.x.
  • Duvoix, A.; Blasius, R.; Delhalle, S.; Schnekenburger, M.; Morceau, F.; Henry, E.; Dicato, M.; Diederich, M. Chemopreventive and Therapeutic Effects of Curcumin. Cancer Lett. 2005, 223, 181–190. DOI: 10.1016/j.canlet.2004.09.041.
  • Khar, A.; Ali, A. M.; Pardhasaradhi, B. V.; Begum, Z.; Anjum, R. Antitumor Activity of Curcumin is Mediated through the Induction of Apoptosis in AK-5 Tumor Cells. FEBS Lett. 1999, 445(1), 165–168. DOI: 10.1016/s0014-5793(99)00114-3.
  • Chan, M. M.; Huang, H. I.; Fenton, M. R.; Fong, D. In Vivo Inhibition of Nitric Oxide Synthase Gene Expression by Curcumin, a Cancer Preventive Natural Product with Anti-Inflammatory Properties. Biochem. Pharmacol. 1998, 55(12), 1955–1962. DOI: 10.1016/s0006-2952(98)00114-2.
  • Huang, M.-T.; Smart, R. C.; Wong, C.-Q.; Conney, A. H. Inhibitory Effect of Curcumin, Chlorogenic Acid, Caffeic Acid, and Ferulic Acid on Tumor Promotion in Mouse Skin by 12-O-Tetradecanoylphorbol-13-Acetate. Cancer Res. 1988, 48(21), 5941 LP-5946.
  • Sreejayan, N.; Rao, M. N. Free Radical Scavenging Activity of Curcuminoids. Arzneimittelforschung 1996, 46(2), 169–171.
  • Maiti, K.; Mukherjee, K.; Gantait, A.; Saha, B. P.; Mukherjee, P. K. Curcumin-Phospholipid Complex: Preparation, Therapeutic Evaluation and Pharmacokinetic Study in Rats. Int. J. Pharm. 2007, 330(1–2), 155–163. DOI: 10.1016/j.ijpharm.2006.09.025.
  • Lin, J. K.; Pan, M. H.; Lin-Shiau, S. Y. Recent Studies on the Biofunctions and Biotransformations of Curcumin. Biofactors 2000, 13(1–4), 153–158. DOI: 10.1002/biof.5520130125.
  • Pan, M. H.; Huang, T. M.; Lin, J. K. Biotransformation of Curcumin through Reduction and Glucuronidation in Mice. Drug Metab. Dispos. 1999, 27(4), 486–494.
  • Sinico, C.; Fadda, A. Vesicular Carriers for Dermal Drug Delivery. Expert Opin. Drug Deliv. 2009, 6(8), 813–825. DOI: 10.1517/17425240903071029.
  • Nielsen, F. S.; Petersen, K. B.; Müllertz, A. Bioavailability of Probucol from Lipid and Surfactant Based Formulations in Minipigs: Influence of Droplet Size and Dietary State. Eur. J. Pharm. Biopharm. 2008, 69(2), 553–562. DOI: 10.1016/j.ejpb.2007.12.020.
  • Schwendener, R. A.; Schott, H. Lipophilic 1-Beta-D-Arabinofuranosyl Cytosine Derivatives in Liposomal Formulations for Oral and Parenteral Antileukemic Therapy in the Murine L1210 Leukemia Model. J. Cancer Res. Clin. Oncol. 1996, 122(12), 723–726. DOI: 10.1007/bf01209119.
  • Gursoy, R. N.; Benita, S. Self-Emulsifying Drug Delivery Systems (SEDDS) for Improved Oral Delivery of Lipophilic Drugs. Biomed. Pharmacother. 2004, 58, 173–182. DOI: 10.1016/j.biopha.2004.02.001.
  • Panchatcharam, M.; Miriyala, S.; Gayathri, V. S.; Suguna, L. Curcumin Improves Wound Healing by Modulating Collagen and Decreasing Reactive Oxygen Species. Mol. Cell Biochem. 2006, 290(1–2), 87–96. DOI: 10.1007/s11010-006-9170-2.
  • Gopinath, D.; Ahmed, M. R.; Gomathi, K.; Chitra, K.; Sehgal, P. K.; Jayakumar, R. Dermal Wound Healing Processes with Curcumin Incorporated Collagen Films. Biomaterials 2004, 25(10), 1911–1917. DOI: 10.1016/s0142-9612(03)00625-2.
  • Barui, S.; Saha, S.; Mondal, G.; Haseena, S.; Chaudhuri, A. Simultaneous Delivery of Doxorubicin and Curcumin Encapsulated in Liposomes of Pegylated RGDK-Lipopeptide to Tumor Vasculature. Biomaterials 2014, 35(5), 1643–1656. DOI: 10.1016/j.biomaterials.2013.10.074.
  • Naksuriya, O.; Okonogi, S.; Schiffelers, R. M.; Hennink, W. E. Curcumin Nanoformulations: A Review of Pharmaceutical Properties and Preclinical Studies and Clinical Data Related to Cancer Treatment. Biomaterials [Internet] 2014, 35(10), 3365–3383. DOI: 10.1016/j.biomaterials.2013.12.090.
  • Kim, S.; Stébé, M.-J.; Blin, J.-L.; Pasc, A. pH-Controlled Delivery of Curcumin from a Compartmentalized Solid Lipid Nanoparticle@Mesostructured Silica Matrix. J. Mater. Chem. B 2014, 2(45), 7910–7917. DOI: 10.1039/c4tb01133c.
  • Rahman, M. H.; Ramanathan, M.; Sankar, V. Preparation, Characterization and In Vitro Cytotoxicity Assay of Curcumin Loaded Solid Lipid Nanoparticle in IMR32 Neuroblastoma Cell Line. Pak. J. Pharm. Sci. 2014, 27(5), 1281–1285.
  • Sari, T. P.; Mann, B.; Kumar, R.; Singh, R. R. B.; Sharma, R.; Bhardwaj, M.; Athira, S. Preparation and n of Nanoemulsion Encapsulating Curcumin. Food Hydrocoll. 2015, 43:540–546.
  • Anuchapreeda, S.; Fukumori, Y.; Okonogi, S.; Ichikawa, H. Preparation of Lipid Nanoemulsions Incorporating Curcumin for Cancer Therapy. J. Nanotechnol. 2012, 2012, Article ID 270383, 11 pages. DOI: 10.1155/2012/270383.
  • Mahavi, B. B.; Venella, K. S.; Masana, P.; Madipoju, B. Enhanced Transdermal Drug Penetration of Curcumin via Ethosomes. Malaysian J. Pharm. Sci. 2013, 11(1), 49–58.
  • Zhao, Y. Z.; Lu, C. T.; Zhang, Y.; Xiao, J.; Zhao, Y. P.; Tian, J. L.; Xu, Y. Y.; Feng, Z. G.; Xu, C. Y. Selection of High Efficient Transdermal Lipid Vesicle for Curcumin Skin Delivery. Int. J. Pharm. [Internet] 2013, 454(1), 302–309. DOI: 10.1016/j.ijpharm.2013.06.052.
  • Sankar, P.; Telang, A. G.; Suresh, S.; Kesavan, M.; Kannan, K.; Kalaivanan, R.; Sarkar, S. N. Immunomodulatory Effects of Nanocurcumin in Arsenic-Exposed Rats. Int. Immunopharmacol. 2013, 17(1), 65–70. DOI: 10.1016/j.intimp.2013.05.019.
  • Bisht, S.; Feldmann, G.; Soni, S.; Ravi, R.; Karikar, C.; Maitra, A.; Maitra, A. Polymeric Nanoparticle-Encapsulated Curcumin (“Nanocurcumin”): A Novel Strategy for Human Cancer Therapy. J. Nanobiotechnol. 2007, 5(1), 3. DOI: 10.1186/1477-3155-5-3.
  • Jain, K.; Sood, S.; Gowthamarajan, K. Modulation of Cerebral Malaria by Curcumin as an Adjunctive Therapy. Braz. J. Infect. Dis. 2013, 17, 579–591. DOI: 10.1016/j.bjid.2013.03.004.
  • Osborne, D. W.; Middleton, C. A.; Rogers, R. L. Alcohol-Free Microemulsions. J. Dispers. Sci. Technol. 1988, 9(4), 415–423. DOI: 10.1080/01932698808943999.
  • Pathan, I. B.; Mallikarjuna Setty, C. Nanoemulsion System for Transdermal Delivery of Tamoxifen Citrate: Design, Characterization, Effect of Penetration Enhancers and In Vivo Studies. Dig. J. Nanomater. Biostruct. 2012, 7(4), 1373–1387.
  • Ruszczak, Z. Effect of Collagen Matrices on Dermal Wound Healing. Adv. Drug Deliv. Rev. 2003, 55(12), 1595–1611. DOI: 10.1016/j.addr.2003.08.003.
  • Maeda, M.; Tani, S.; Sano, A.; Fujioka, K. Microstructure and Release Characteristics of the Minipellet, a Collagen-Based Drug Delivery System for Controlled Release of Protein Drugs. J. Control. Release 1999, 62(3), 313–324. DOI: 10.1016/s0168-3659(99)00156-x.
  • Doillon, C. J.; Whyne, C. F.; Berg, R. A.; Olson, R. M.; Silver, F. H. Fibroblast-Collagen Sponge Interactions and the Spatial Deposition of Newly Synthesized Collagen Fibers In Vitro and In Vivo. Scan Electron Microsc. 1984, (Pt 3), 1313–1320.
  • Stsg, G.; Sites, D.; Horch, R. E.; Bjo, G. Comparison of the Effect of a Collagen Dressing and a Polyurethane Dressing on the Healing of Split Thickness Skin. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1998, 32, 407–413. DOI: 10.1080/02844319850158499.
  • Ruszczak, Z.; Schwartz, R. A. Collagen Uses in Dermatology - An Update. Dermatology 1999, 199, 285–289. DOI: 10.1159/000018305.
  • Chvapil, M. Collagen Sponge: Theory and Practice of Medical Applications. J. Biomed. Mater. Res. 1977, 11(5), 721–741. DOI: 10.1002/jbm.820110508.
  • Kittiphattanabawon, P.; Benjakul, S.; Visessanguan, W.; Nagai, T.; Tanaka, M. Characterisation of Acid-Soluble Collagen from Skin and Bone of Bigeye Snapper (Priacanthus tayenus). Food Chem. 2005, 89(3), 363–372. DOI: 10.1016/j.foodchem.2004.02.042.
  • Muthukumar, T.; Prabu, P.; Ghosh, K.; Sastry, T. P. Fish Scale Collagen Sponge Incorporated with Macrotyloma Uniflorum Plant Extract as a Possible Wound/Burn Dressing Material. Colloids Surf. B Biointerfaces [Internet] 2014, 113, 207–212. DOI: 10.1016/j.colsurfb.2013.09.019.
  • Lawrence, M. J.; Rees, G. D. Microemulsion-Based Media as Novel Drug Delivery Systems. Adv. Drug Deliv. Rev. 2000, 45(1), 89–121. DOI: 10.1016/s0169-409x(00)00103-4.
  • Pathan, I. B.; Mallikarjuna Setty, C. Enhancement of Transdermal Delivery of Tamoxifen Citrate Using Nanoemulsion Vehicle. Int. J. PharmTech Res. 2011, 3(1), 287–297.
  • Boonme, P.; Krauel, K.; Graf, A.; Rades, T.; Junyaprasert, V. B. Characterization of Microemulsion Structures in the Pseudoternary Phase Diagram of Isopropyl Palmitate/Water/Brij 97:1-Butanol. AAPS PharmSciTech [Internet] 2006, 7(2), E45. DOI: 10.1208/pt070245. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2750287&tool=pmcentrez&rendertype=abstract\nhttp://www.springerlink.com/content/01448810n37j6531.
  • Demartine, M. L.; Cussler, E. L. Predicting Subjective Spreadability, Viscosity, and Stickiness. J. Pharm. Sci. 1975, 64(6), 976–982. DOI: 10.1002/jps.2600640618.
  • Fang, J. Y.; Sung, K. C.; Lin, H. H.; Fang, C. L. Transdermal Iontophoretic Delivery of Diclofenac Sodium from Various Polymer Formulations: In Vitro and In Vivo Studies. Int. J. Pharm. 1999, 178(1), 83–92. DOI: 10.1016/s0378-5173(98)00361-5.
  • Jing, Z.; Lina, D.; Miao, L.; Boming, L.; Weinan, Z.; Yiguang, J. Transdermal Enhancement Effect and Mechanism of Iontophoresis for Non-Steroidal Anti-Inflammatory Drugs. Int. J. Pharm. 2014, 466(1–2), 76–82. DOI: 10.1016/j.ijpharm.2014.03.013.
  • Tramontina, F.; Conte, S.; Gonçalves, D.; Gottfried, C.; Portela, L. V.; Vinade, L.; Salbego, C.; Gonçalves, C. A.. Developmental Changes in S100B Content in Brain Tissue, Cerebrospinal Fluid, and Astrocyte Cultures of Rats. Cell Mol. Neurobiol. 2002, 22(3), 373–378.
  • Naz, Z.; Ahmad, F. J. Curcumin-Loaded Colloidal Carrier System: Formulation Optimization, Mechanistic Insight, Ex Vivo and In Vivo Evaluation. Int. J. Nanomed. 2015, 10:4293–4307. DOI: 10.2147/ijn.s82788.
  • Agren, M. S.; Mertz, P. M.; Franzen, L. A Comparative Study of Three Occlusive Dressings in the Treatment of Full-Thickness Wounds in Pigs. J. Am. Acad Dermatol. 1997, 36(1), 53–58.
  • Shivhare, Y.; Singour, P. K.; Patil, U. K.; Pawar, R. S. Wound Healing Potential of Methanolic Extract of Trichosanthes dioica Roxb (Fruits) in Rats. J. Ethnopharmacol. 2010, 127(3), 614–619. DOI: 10.1016/j.jep.2009.12.015.
  • Pople, P. V.; Singh, K. K. Development; & Evaluation of Topical Formulation Containing Solid Lipid Nanoparticles of Vitamin A. AAPS PharmSciTech. 2006, 7(4), E63–E69. DOI: 10.1208/pt070491.
  • Mutalik, S.; Udupa, N. Glibenclamide Transdermal Patches: Physicochemical, Pharmacodynamic, and Pharmacokinetic Evaluations. J. Pharm. Sci. 2004, 93(6), 1577–1594. DOI: 10.1002/jps.20058.
  • Shafiq-un-Nabi, S.; Shakeel, F.; Talegaonkar, S.; Ali, J.; Baboota, S.; Ahuja, A.; Khar, R. K.; Ali, M. Formulation Development and Optimization Using Nanoemulsion Technique: A Technical Note. AAPS PharmSciTech 2007, 8(2), Article 28. DOI: 10.1208/pt0802028.
  • Magnusson, E.; Rosén, C.; Nilsson, L. Freeze-Thaw Stability of Mayonnaise Type Oil-in-Water Emulsions. Food Hydrocoll. 2011, 25(4), 707–715. DOI: 10.1016/j.foodhyd.2010.08.024.
  • Shakeel, F.; Ramadan, W. Transdermal Delivery of Anticancer Drug Caffeine from Water-in-Oil Nanoemulsions. Colloids Surf. B Biointerfaces 2010, 75(1), 356–362. DOI: 10.1016/j.colsurfb.2009.09.010.
  • Kreilgaard, M.; Pedersen, E. J.; Jaroszewski, J. W. NMR Characterisation and Transdermal Drug Delivery Potential of Microemulsion Systems. J. Control. Release 2000, 69, 421–433. DOI: 10.1016/s0168-3659(00)00325-4.
  • Hua, L.; Weisan, P.; Jiayu, L.; Ying, Z. Preparation, Evaluation, and NMR Characterization of Vinpocetine Microemulsion for Transdermal Delivery. Drug Dev. Ind. Pharm. 2004, 30(6), 657–666. DOI: 10.1081/ddc-120039183.
  • Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M. J. Nano-Emulsions. Curr. Opin. Colloid Interface Sci. 2005, 10(3–4), 102–110. DOI: 10.1016/j.cocis.2005.06.004.
  • Baboota, S.; Shakeel, F.; Ahuja, A.; Ali, J.; Shafiq, S. Design, Development and Evaluation of Novel Nanoemulsion Formulations for Transdermal Potential of Celecoxib. Acta Pharm. 2007, 57(3), 315–332. DOI: 10.2478/v10007-007-0025-5.
  • Desai, K. G. H. Enhanced Skin Permeation of Rofecoxib Using Topical Microemulsion Gel. Drug Dev. Res. 2004, 63(1), 33–40. DOI: 10.1002/ddr.10386.
  • Paudel, K. S.; Milewski, M.; Swadley, C. L.; Brogden, N. K.; Ghosh, P.; Stinchcomb, A. L. Challenges and Opportunities in Dermal/Transdermal Delivery. Ther. Deliv. 2010, 1(1), 109–131. DOI: 10.4155/tde.10.16.
  • Williams, A.; Barry, B. Skin Absorption Enhancers RID C-4859–2009. Crit. Rev. Ther. Drug Carrier Syst. 1992, 9(3–4), 305–353.
  • Larrucea, E.; Arellano, A.; Santoyo, S.; Ygartua, P. Combined Effect of Oleic Acid and Propylene Glycol on the Percutaneous. Eur. J. Pharm. Biopharm. 2001, 52(2), 113–119. DOI: 10.1016/s0939-6411(01)00158-8.
  • Sood, S.; Jain, K.; Gowthamarajan, K. Optimization of Curcumin Nanoemulsion for Intranasal Delivery Using Design of Experiment and its Toxicity Assessment. Colloids Surf. B Biointerfaces [Internet] 2014, 113:330–337. DOI: 10.1016/j.colsurfb.2013.09.030.
  • Patino, M. G.; Neiders, M. E.; Andreana, S.; Noble, B.; Cohen, R. E. Collagen as an Implantable Material in Medicine and Dentistry. J. Oral Implantol. 2002, 28:220–225. DOI: 10.1563/1548-1336(2002)028<0220:caaimi>2.3.co;2.
  • Redlich, M.; Cooperman, H.; Yakovlev, H.; Feferman, R.; Shoshan, S. Exogenous Non-Crosslinked Collagen Enhances Granulation Tissue Formation in Dermal Excision Wounds in Guinea Pigs. Matrix Biol. 1998, 17(8–9), 667–671. DOI: 10.1016/s0945-053x(98)90117-2.
  • Krausz, A. E.; Adler, B. L.; Cabral, V.; Navati, M.; Doerner, J.; Charafeddine, R. A.; Chandra, D.; Liang, H.; Gunther, L.; Clendaniel, A. Curcumin-Encapsulated Nanoparticles as Innovative Antimicrobial and Wound Healing Agent. Nanomed. Nanotechnol. Biol. Med. 2015, 11(1), 195–206. DOI: 10.1016/j.nano.2014.09.004.
  • Draize, J. H.; Woodard, G.; Calvery, H. O. Methods for the Study of Irritation and Toxicity of Substances Applied Topically to the Skin and Mucous Membranes. J. Pharmacol. Exp. Ther. 1944, 82:377–390.
  • Biruss, B.; Valenta, C. The Advantage of Polymer Addition to a Non-Ionic Oil in Water Microemulsion for the Dermal Delivery of Progesterone. Int. J. Pharm. 2008, 349(1–2), 269–273. DOI: 10.1016/j.ijpharm.2007.08.003.
  • Kantarci, G.; Ozgüney, I.; Karasulu, H. Y.; Arzik, S.; Güneri, T. Comparison of Different Water/Oil Microemulsions Containing Diclofenac Sodium: Preparation, Characterization, Release Rate, and Skin Irritation Studies. AAPS PharmSciTech [Internet] 2007, 8(4), E91. DOI: 10.1208/pt0804091. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2750677@tool=pmcentrez@rendertype=abstract.
  • Chinsriwongkul, A.; Opanasopit, P.; Ngawhirunpat, T.; Rojanarata, T.; Sila-On, W.; Ruktanonchai, U. Oleic Acid Enhances all-Trans Retinoic Acid Loading in Nano-Lipid Emulsions. PDA J. Pharm. Sci. Technol. [Internet] 2010, 64(2), 113–123. Available from: http://journal.pda.org/content/64/2/113.full.pdf+html
  • Pati, F.; Adhikari, B.; Dhara, S. Isolation and Characterization of Fish Scale Collagen of Higher Thermal Stability. Bioresour. Technol. [Internet] 2010, 101(10), 3737–3742. DOI: 10.1016/j.biortech.2009.12.133.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.