193
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and micellar characterization of novel pH-sensitive thiol-ended triblock copolymer via combination of RAFT and ROP processes

, ORCID Icon &
Pages 297-307 | Received 17 Oct 2017, Accepted 19 Feb 2018, Published online: 04 Apr 2018

References

  • Massoumi, B.; Poorgholy, N.; Jaymand, M. Multistimuli Responsive Polymeric Nanosystems for Theranostic Applications. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 38–47. DOI: 10.1080/00914037.2016.1180622.
  • Poorgholy, N.; Massoumi, B.; Jaymand, M. A Novel Starch-Based Stimuli-Responsive Nanosystem for Theranostic Applications. Int. J. Biol. Macromol. 2017, 97, 654–661. DOI: 10.1016/j.ijbiomac.2017.01.063.
  • Mahmoodzadeh, F.; Abbasian, M.; Jaymand, M. A Novel Dual Stimuli-Responsive Thiol-End Capped ABC Triblock Copolymer: Synthesis. Polym. Int. 2017. DOI: 10.1002/pi.5428.
  • Ott, C.; Hoogenboom, R.; Hoeppener, S.; Wouters, D.; Gohy, J. F.; Schubert, U. S. Tuning the Morphologies of Amphiphilic Metallo-Supramolecular Triblock Terpolymers: From Spherical Micelles to Switchable Vesicles. Soft Matter 2009, 5, 84–91. DOI: 10.1039/b813161a.
  • Davaran, S.; Ghamkhari, A.; Alizadeh, E.; Massoumi, B.; Jaymand, M. Novel Dual Stimuli-Responsive ABC Triblock Copolymer: RAFT Synthesis, “Schizophrenic” Micellization, and Its Performance as an Anticancer Drug Delivery Nanosystem. J. Colloid Interface Sci. 2017, 488, 282–293. DOI: 10.1016/j.jcis.2016.11.002.
  • York, A. W.; Kirkland, S. E.; McCormick, C. L. Advances in the Synthesis of Amphiphilic Block Copolymers Via RAFT Polymerization: Stimuli-Responsive Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2008, 60, 1018–1036. DOI: 10.1016/j.addr.2008.02.006.
  • Li, S.; Su, Y.; Dan, M.; Zhang, W. Thermo-Responsive ABA Triblock Copolymer of PVEA-b-PNIPAM-b-PVEA Showing Solvent-Tunable LCST in a Methanol-Water Mixture. Polym. Chem. 2014, 5, 1219–1228. DOI: 10.1039/c3py01219k.
  • Wei, T.; Chen, C.; Liu, J.; Liu, C.; Posocco, P.; Liu, X.; Cheng, Q.; Huo, S.; Liang, Z.; Fermeglia, M.; Pricl, S.; X.-Liang, J.; Rocchi, P.; Peng, L.. Anticancer Drug Nanomicelles Formed by Self-Assembling Amphiphilic Dendrimer to Combat Cancer Drug Resistance. Proc. Natl. Acad. Sci. USA 2015, 112, 2978–2983. DOI: 10.1073/pnas.1418494112.
  • Abbasian, M.; Mahmoodzadeh, F.; Salehi, R.; Amirshaghaghi, A. Chemo-Photothermal Therapy of Cancer Cells Using Gold Nanorod-Cored Stimuli-Responsive Triblock Copolymer. New J. Chem. 2017, 41, 12777–12788. DOI: 10.1039/C7NJ02504A.
  • Ahmadkhani, L.; Akbarzadeh, A.; Abbasian, M. Development and characterization Dual Responsive Magnetic Nanocomposites for Targeted Drug Delivery Systems. Artif. Cells Nanomed. Biotechnol. 2017, 1–12. DOI: 10.1080/21691401.2017.1360323.
  • Qu, Y.; Huo, F.; Li, Q.; He, X.; Li, S.; Zhang, W. In Situ Synthesis of Thermo-Responsive ABC Triblock Terpolymer Nano-Objects by Seeded RAFT Polymerization. Polym. Chem. 2014, 5, 5569–5577. DOI: 10.1039/c4py00510d.
  • Canning, S. L.; Smith, G. N.; Armes, S. P.. A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2016, 49, 1985–2001. DOI: 10.1021/acs.macromol.5b02602.
  • Zhou, C.; Hillmyer, M. A.; Lodge, T. P. Efficient Formation of Multicompartment Hydrogels by Stepwise Self-Assembly of Thermoresponsive ABC Triblock Terpolymers. J. Am. Chem. Soc. 2012, 134, 10365–10368. DOI: 10.1021/ja303841f.
  • Vancoillie, G.; Brooks, W. L. A.; Mees, M. A.; Sumerlin, B. S.; Hoogenboom, R. Synthesis of Novel Boronic Acid-Decorated Poly(2-Oxazoline)s Showing Triple-Stimuli Responsive Behavior. Polym. Chem. 2016, 7, 6725–6734. DOI: 10.1039/C6PY01437B.
  • Change, C.; Wei, H.; Feng, J.; Wang, Z. C.; Wu, X. J.; Wu, D. Q.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X. Temperature and pH Double Responsive Hybrid Cross-Linked Micelles Based on P(NIPAAm-co-MPMA)-b-P(DEA): RAFT Synthesis and “Schizophrenic” Micellization. Macromolecules 2009, 42, 4838–4844. DOI: 10.1021/ma900492v.
  • Chen, J.; Liu, M.; Gong, H.; Huang, Y.; Chen, C. Synthesis and Self-Assembly of Thermoresponsive PEG-b-PNIPAM-b-PCL ABC Triblock Copolymer through the Combination of Atom Transfer Radical Polymerization, Ring-Opening Polymerization, and Click Chemistry. J. Phys. Chem. B 2011, 115, 14947–14955. DOI: 10.1021/jp208494w.
  • Peng, S.; Bhushan, B. Smart Polymer Brushes and Their Emerging Applications. RSC Adv. 2012, 2, 8557. DOI: 10.1039/c2ra20451g.
  • Abbasian, M.; Mahmoodzadeh, F. Synthesis of Chitosan-Graft-Poly (Acrylic Acid) Using 4-Cyano-4- [(Phenylcarbothioyl) Sulfanyl] Pentanoic Acid … Synthesis of Chitosan-Graft-Poly (Acrylic Acid) Using 4-Cyano-4- [(Phenylcarbothioyl) Sulfanyl] Pentanoic. J. Polym. Mater. 2015, 32, 527–541.
  • Wiradharma, N.; Zhang, Y.; Venkataraman, S.; Hedrick, J. L.; Yang, Y. Y. Self-Assembled Polymer Nanostructures for Delivery of Anticancer Therapeutics. Nano Today 2009, 4, 302–317. DOI: 10.1016/j.nantod.2009.06.001.
  • Pourjavadi, A.; Mazaheri Tehrani, Z.; Jokar, S. Chitosan Based Supramolecular Polypseudorotaxane as a pH-Responsive Polymer and Their Hybridization with Mesoporous Silica-Coated Magnetic Graphene Oxide for Triggered Anticancer Drug Delivery. Polymer (UK) 2015, 76, 52–61. DOI: 10.1016/j.polymer.2015.08.050.
  • S. Ghosh Roy, De, P. Facile RAFT Synthesis of Side-Chain Amino Acids Containing pH-Responsive Hyperbranched and Star Architectures. Polym. Chem. 2014, 5, 6365–6378. DOI: 10.1039/C4PY00766B.
  • Du, J.; Armes, S. P. pH-Responsive Vesicles Based on a Hydrolytically Self-Cross-Linkable Copolymer. J. Am. Chem. Soc. 2005, 127, 12800–12801. DOI: 10.1021/ja054755n.
  • Han, X.; Zhang, X.; Zhu, H.; Yin, Q.; Liu, H.; Hu, Y. Effect of Composition of PDMAEMA-b-PAA Block Copolymers on Their pH- and Temperature-Responsive Behaviors. Langmuir 2013, 29, 1024–1034. DOI: 10.1021/la3036874.
  • del Rosario Rodríguez-Hidalgo, M.; Soto-Figueroa, C.; Vicente, L. Dissipative Particle Dynamics Study of the Structural Inversion Process of pH-Responsive Polymeric Micelles. Macromol. Theory Simul. 2014, 23, 49–58. DOI: 10.1002/mats.201300131.
  • Lu, G.; Wu, D.; Fu, R. Studies on the Synthesis and Antibacterial Activities of Polymeric Quaternary Ammonium Salts from Dimethylaminoethyl Methacrylate. React. Funct. Polym. 2007, 67, 355–366. http://www.sciencedirect.com/science/article/pii/S1381514807000259 (accessed August 15, 2017).
  • Zeynabad, F. B.; Salehi, R.; Alizadeh, E.; Kafil, H. S.; Hassanzadeh, A. M.; Mahkam, M. pH-Controlled Multiple-Drug Delivery by a Novel Antibacterial Nanocomposite for Combination Therapy. RSC Adv. 2015, 5, 105678–105691. DOI: 10.1039/C5RA22784D.
  • Xue, Y.; Xiao, H.; Zhang, Y. Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts. Int. J. Mol. Sci. 2015, 16, 3626–3655. DOI: 10.3390/ijms16023626.
  • Lu, B.; Tarn, M. D.; Pamme, N.; Georgiou, T. K. Tailoring pH-Responsive Acrylic Acid Microgels with Hydrophobic Crosslinks for Drug Release. J. Mater. Chem. B 2015, 3, 4524–4529. DOI: 10.1039/C5TB00222B.
  • Begum, R.; Farooqi, Z. H.; Khan, S. R. Poly(N-isopropylacrylamide-Acrylic acid) Copolymer Microgels for Various Applications: A Review. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 841–852. DOI: 10.1080/00914037.2016.1180607.
  • Entezami, A. A.; Abbasian, M. Recent Advances in Synthesis of New Polymers by living Free Radical Polymerization. Iranian Polym. J. 2006, 15, 583–611. http://www.sid.ir/En/VEWSSID/J_pdf/81320060706.pdf (accessed August 15, 2017).
  • Jaymand, M.; Hatamzadeh, M.; Omidi, Y. Modification of Polythiophene by the Incorporation of Processable Polymeric Chains: Recent Progress in Synthesis and Applications. Progress Polym. Sci. 2015, 47, 26–69. DOI: 10.1016/j.progpolymsci.2014.11.004.
  • Taktak, F.; Bütün, V. Novel Zwitterionic ABA-Type Triblock Copolymer for pH- and Salt-Controlled Release of Risperidone. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 151–161. DOI: 10.1080/00914037.2015.1099100.
  • Abbasian, M.; Mahmoodzadeh, F. Synthesis of Antibacterial Bionanocomposites by RAFT Polymerization and Chemical Reduction Methods. J. Elast. 2016, 49, 173–193. DOI: 10.1177/0095244316644858.
  • Derry, M. J.; Fielding, L. A.; Armes, S. P. Polymerization-Induced Self-Assembly of Block Copolymer Nanoparticles Via RAFT Non-Aqueous Dispersion Polymerization. Progress Polym. Sci. 2016, 52, 1–18. DOI: 10.1016/j.progpolymsci.2015.10.002.
  • Garrett, E. T.; Pei, Y.; Lowe, A. B. Microwave-Assisted Synthesis of Block Copolymer Nanoparticles Via RAFT with Polymerization-Induced Self-Assembly in Methanol. Polym. Chem. 2016, 7, 297–301. DOI: 10.1039/C5PY01672J.
  • Fairbanks, B. D.; Gunatillake, P. A.; Meagher, L. Biomedical Applications of Polymers Derived by Reversible Addition-Fragmentation Chain-Transfer (RAFT). Adv. Drug Deliv. Rev. 2015, 91, 141–152. DOI: 10.1016/j.addr.2015.05.016.
  • Chen, L.; Peng, Z.; Zeng, Z.; She, Y.; Wei, J.; Chen, Y. Hairy Polymeric Nanocapsules with pH-Responsive Shell and Thermoresponsive Brushes: Tunable Permeability for Controlled Release of Water-Soluble Drugs. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 2202–2216. DOI: 10.1002/pola.27233.
  • You, Y.; Hong, C.; Pan, C. Functionalization of Carbon Nanotubes with Well‐Defined Functional Polymers Via Thiol‐Coupling Reaction. Macromol. Rapid Commun. 2006, 27, 2001–2006. http://onlinelibrary.wiley.com/doi/10.1002/marc.200600573/full (accessed August 15, 2017).
  • Kast, C. E.; Bernkop-Schnurch, A. Thiolated Polymers * Thiomers : Development and In Vitro Evaluation of Chitosan Thioglycolic Acid Conjugates. Biomaterials 2001, 22, 2345–2352. http://www.sciencedirect.com/science/article/pii/S014296120000421X (accessed August 15, 2017).
  • Rizzi, S. C.; Hubbell, J. A. Recombinant Protein-co-PEG Networks as Cell-Adhesive and Proteolytically Degradable Hydrogel Matrixes. Part I: Development and Physicochemical Characteristics. Biomacromolecules 2005, 6, 1226–1238. DOI: 10.1021/bm049614c.
  • Johnson, P. A.; Levicky, R. Polymercaptosiloxane Anchor Films for Robust Immobilization of Biomolecules to Gold Supports. Langmuir 2003, 19, 10288–10294. DOI: 10.1021/la035102s.
  • Ko, H.; Son, S.; Bae, S.; J.-Kim, H.; G.-Yi, R.; Park, J. H. Near-Infrared Light-Triggered Thermochemotherapy of Cancer Using a Polymer–Gold Nanorod Conjugate. Nanotechnology 2016, 27, 175102. DOI: 10.1088/0957-4484/27/17/175102.
  • Zhang, Y.; Ang, C. Y.; Zhao, Y. Polymeric Nanocarriers Incorporating Near-Infrared Absorbing Agents for Potent Photothermal Therapy of Cancer. Polym. J. 2015, 48, 1–15. DOI: 10.1038/pj.2015.117.
  • Parida, S.; Maiti, C.; Rajesh, Y.; Dey, K. K.; Pal, I.; Parekh, A.; Patra, R.; Dhara, D.; Dutta, P. K.; Mandal, M. Gold Nanorod Embedded Reduction Responsive Block Copolymer Micelle-Triggered Drug Delivery Combined with Photothermal Ablation for Targeted Cancer Therapy. Biochim. Biophys. Acta – Gen. Subj. 2017, 1861, 3039–3052. DOI: 10.1016/j.bbagen.2016.10.004.
  • Andersson, M.; Elihn, K.; Fromell, K.; Caldwell, K. D. Surface Attachment of Nanoparticles Using Oligonucleotides. Colloids Surfaces B Biointerfaces 2004, 34, 165–171. DOI: 10.1016/j.colsurfb.2003.12.007.
  • Suchaoin, W.; de Sousa, I. P.; Netsomboon, K.; Rohrer, J.; Abad, P. H.; Laffleur, F.; Matuszczak, B.; Bernkop-Schnürch, A. Mucoadhesive Polymers: Synthesis and In Vitro Characterization of Thiolated Poly (Vinyl Alcohol). Int. J. Pharm. 2016, 503, 141–149. http://www.sciencedirect.com/science/article/pii/S037851731630196X (accessed August 15, 2017).
  • Bonengel, S.; Haupstein, S.; Perera, G.; Bernkop-Schnürch, A. Thiolated and S-Protected Hydrophobically Modified Cross-Linked Poly(Acrylic Acid) - A New Generation of Multifunctional Polymers. Eur. J. Pharm. Biopharm. 2014, 88, 390–396. DOI: 10.1016/j.ejpb.2014.06.009.
  • Gao, J.; Huang, X.; Liu, H.; Zan, F.; Ren, J. Colloidal Stability of Gold Nanoparticles Modified with Thiol Compounds: Bioconjugation and Application in Cancer Cell Imaging, Langmuir 2012, 28, 4464–4471. DOI: 10.1021/la204289k.
  • Zeynabad, F. B.; Salehi, R.; Mahkam, M. Design of pH-Responsive Antimicrobial Nanocomposite as Dual Drug Delivery System for Tumor Therapy. Appl. Clay Sci. 2017, 141, 23–35. DOI: 10.1016/j.clay.2017.02.015.
  • Sun, Y.; Li, Y.; Huang, H.; Wang, Y.; Sa, Z.; Wang, J.; Chen, X. PH-Sensitive Poly(itaconic acid)-Poly(Ethylene Glycol)-Poly(L-Histidine) Micelles for Drug Delivery. J. Macromol. Sci. Part A Pure Appl. Chem. 2015, 52, 925–933. DOI: 10.1080/10601325.2015.1080102.
  • Massoumi, B.; Ghandomi, F.; Abbasian, M. Surface Functionalization of Graphene Oxide with Poly (2-Hydroxyethyl Methacrylate) - Graft-Poly (e-Caprolactone) and Its Electrospun Nanofibers with Gelatin. Appl. Phys. A 2016, 112, 1–13. DOI: 10.1007/s00339-016-0538-1.
  • Fachrul Razi, T. M.; Sawada, I.; Ohmukai, Y.; Matsuyama, H. M. Surface Functionalization by Grafting (2-Dimethylamino)ethyl Methacrylate Methyl Chloride Quaternary Salt (DMAEMAq) onto Hollow Fiber Polyethersulfone (PES) Membranes for Improvement of Antibiofouling Properties. Solvent Extract. Res. Dev. 2012, 19, 101–115.
  • Hayashi, M.; Okunaga, K. I.; Nishida, S.; Kawamura, K.; Eda, K. Oxidative Transformation of Thiols to Disulfides Promoted by Activated Carbon-Air System. Tetrahedron Lett. 2010, 51, 6734–6736. DOI: 10.1016/j.tetlet.2010.10.070.
  • García Ruano, J. L.; Parra, A.; Alemán, J. Efficient Synthesis of Disulfides by Air Oxidation of Thiols Under Sonication. Green Chem. 2008, 10, 706. DOI: 10.1039/b800705e.
  • Basu Ray, G.; Chakraborty, I.; Moulik, S. P. Pyrene Absorption Can be a Convenient Method for Probing Critical Micellar Concentration (cmc) and indexing Micellar Polarity. J. Colloid Interface Sci. 2006, 294, 248–254. DOI: 10.1016/j.jcis.2005.07.006.
  • Massoumi, B.; Ramezani, M.; Jaymand, M.; Ahmadinejad, M. Multi-Walled Carbon Nanotubes-g-[Poly(Ethylene Glycol)-b-Poly(??-Caprolactone)]: Synthesis, Characterization, and Properties. J. Polym. Res. 2015, 22, 11. DOI: 10.1007/s10965-015-0863-7.
  • Loh, X. Poly (DMAEMA‐co‐PPGMA): Dual‐responsive “reversible” micelles. J. Appl. Polym. Sci. 2013, 127, 992–1000. http://onlinelibrary.wiley.com/doi/10.1002/app.37530/full (accessed August 15, 2017).
  • Lee, S. C.; Kim, K. J.; Jeong, Y. K.; Chang, J. H.; Choi, J. pH-Induced Reversible Complexation of Poly(Ethylene Glycol) and Poly(Epsilon-Caprolactone)-b-Poly(Methacrylic Acid) Copolymer Micelles. Macromolecules 2005, 38, 9291–9297. DOI: 10.1021/ma051380h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.