168
Views
11
CrossRef citations to date
0
Altmetric
Articles

Towards skin tissue engineering using poly(2-hydroxy ethyl methacrylate)-co-poly(N-isopropylacrylamide)-co-poly(ε-caprolactone) hydrophilic terpolymers

, , &
Pages 691-700 | Received 04 Feb 2018, Accepted 24 Jun 2018, Published online: 12 Feb 2019

References

  • Fang, J.; Niu, H.; Lin, T.; Wang, X. Applications of Eelectrospun Nanofibers. Chinese Sci. Bull. 2008, 53, 2265. doi:10.1007/s11434-008-0319-0
  • Sarvari, R.; Akbari-Alanjaraghi, M.; Massoumi, B.; Beygi-Khosrowshahi, Y.; Agbolaghi, S. Conductive and Biodegradable Scaffolds Based on Five-Arm and Functionalized Star-Like Polyaniline-Polycaprolactone Copolymer with D-Glucose Core. New J. Chem. 2017, 41, 6371–6384. doi:10.1039/C7NJ01063J
  • Sarvari, R.; Sattari, S.; Massoumi, B.; Agbolaghi, S.; Beygi-Khosrowshahi, Y.; Kahaie-Khosrowshahi, A. Composite Electrospun Nanofibers of Reduced Graphene Oxide Grafted with Poly (3-dodecylthiophene) and Poly (3-thiophene ethanol) and Blended with Polycaprolactone. J. Biomat. Sci. Polym. Ed. 2017, 28, 1740–1761. doi:10.1080/09205063.2017.1354167
  • Ramakrishna, S.; Fujihara, K.; Teo, W.-E.; Lim, T.-C.; Ma, Z. An Introduction to Electrospinning and Nanofibers, 11th ed. World Scientific Publishing: Singapore, 2005.
  • Steyaert, I.; Van der Schueren, L.; Rahier, H.; De Clerck, K. An Alternative Solvent System for Blend Electrospinning of Polycaprolactone/Chitosan Nanofibres. In Macromolecular Symposia. WILEY‐VCH: Verlag: Australia, Sydney, 2012; pp. 71–75.
  • Sill, T.J.; von Recum, H.A. Electrospinning: Applications in Drug Delivery and Tissue Engineering. Biomaterials. 2008, 29, 1989–2006. doi:10.1016/j.biomaterials.2008.01.011
  • Pham, Q.P.; Sharma, U.; Mikos, A.G. Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review. Tissue Eng. 2006, 12, 1197–1211. doi:10.1089/ten.2006.12.1197
  • Jang, J.H.; Castano, O.; Kim, H.W. Electrospun Materials as Potential Platforms for Bone Tissue Engineering. Adv. Drug Del. Rev. 2009, 61, 1065–1083. doi:10.1016/j.addr.2009.07.008
  • Holzwarth, J.M.; Ma, P.X. Biomimetic Nanofibrous Scaffolds for Bone Tissue Engineering. Biomaterials. 2011, 32, 9622–9629. doi:10.1016/j.biomaterials.2011.09.009
  • Stevens, M.M. Biomaterials for Bone Tissue Engineering. Mater. Today. 2008, 11, 18–25 doi:10.1016/S1369-7021(08)70086-5
  • Lakard, B.; Ploux, L.; Anselme, K.; Lallemand, F.; Lakard, S.; Nardin, M.; Hihn, J.Y. Effect of Ultrasounds on the Electrochemical Synthesis of Polypyrrole, Application to the Adhesion and Growth of Biological Cells. Bioelectrochemistry. 2009, 75, 148–157. doi:10.1016/j.bioelechem.2009.03.010
  • Ghasemi‐Mobarakeh, L.; Prabhakaran, M.P.; Morshed, M.; Nasr‐Esfahani, M.H.; Baharvand, H.; Kiani, S.; Al‐Deyab, S.S.; Ramakrishna, S. Application of Conductive Polymers, Scaffolds and Electrical Stimulation for Nerve Tissue Engineering. J. Tissue Eng. Regener. Med. 2011, 5, 17–35. doi:10.1002/term.383
  • Huang, L.; Zhuang, X.; Hu, J.; Lang, L.; Zhang, P.; Wang, Y.; Chen, X.; Wei, Y.; Jing, X. Synthesis of Biodegradable and Electroactive Multiblock Polylactide and Aniline Pentamer Copolymer for Tissue Engineering Applications. Biomacromolecules. 2008, 9, 850–858. doi:10.1021/bm7011828
  • Rivers, T.J.; Hudson, T.W.; Schmidt, C.E. Synthesis of a Novel, Biodegradable Electrically Conducting Polymer for Biomedical Applications. Adv. Funct. Mater. 2002, 12, 33–37. doi:10.1002/1616-3028(20020101)12:1<33::AID-ADFM33>3.0.CO;2-E
  • Zhou, D.D.; Cui, X.T.; Hines, A.; Greenberg, R.J. Conducting Polymers in Neural Stimulation Applications. In Implantable Neural Prostheses 2. Springer: New York, 2009; pp. 217–252.
  • Blinova, N.V.; Stejskal, J.; Trchová, M.; Prokeš, J. Control of Polyaniline Conductivity and Contact Angles by Partial Protonation. Polym. Intern. 2008, 57, 66–69. doi:10.1002/pi.2312
  • Cullen, D.K.; Patel, A.R.; Doorish, J.F.; Smith, D.H.; Pfister, B.J. Developing a Tissue-Engineered Neural-Electrical Relay Using Encapsulated Neuronal Constructs on Conducting Polymer Fibers. J. Neural Eng. 2008, 5, 374–384. doi:10.1088/1741-2560/5/4/002
  • Borriello, A.; Guarino, V.; Schiavo, L.; Alvarez-Perez, M.A.; Ambrosio, L. Optimizing PANi Doped Electroactive Substrates as Patches for the Regeneration of Cardiac Muscle. J. Mater. Sci. Mater Med. 2011, 22, 1053–1062. doi:10.1007/s10856-011-4259-x
  • Guo, Y.; Li, M.; Mylonakis, A.; Han, J.; MacDiarmid, A.G.; Chen, X.; Lelkes, P.I.; Wei, Y. Electroactive Oligoaniline-Containing Self-Assembled Monolayers for Tissue Engineering Applications. Biomacromolecules. 2007, 8, 3025–3034. doi:10.1021/bm070266z
  • Prabhakaran, M.P.; Ghasemi-Mobarakeh, L.; Jin, G.; Ramakrishna, S. 2011. Electrospun Conducting Polymer Nanofibers and Electrical Stimulation of Nerve Stem Cells. J. Biosci. Bioeng. 2007, 112, 501–507. doi:10.1016/j.jbiosc.2011.07.010
  • Yu, Q.Z.; Shi, M.M.; Deng, M.; Wang, M.; Chen, H.Z. Morphology and Conductivity of Polyaniline Sub-Micron Fibers Prepared by Electrospinning. Mater. Sci. Eng. B. 2008, 150, 70–76. doi:10.1016/j.mseb.2008.02.008
  • Roncali, J. Conjugated Poly (thiophenes): Synthesis, Functionalization, and Applications. Chem. Rev. 1992, 92, 711–738. doi:10.1021/cr00012a009
  • Cardoso, G.B.; Perea, G.N.; D’Avila, M.A.; Dias, C.G.; Zavaglia, C.A.; Arruda, A.C. Initial Study of Electrospinning PCL/PLLAB. Adv. Mater. Phys. Chem. 2011, 1, 94. doi:10.4236/ampc.2011.13016
  • Salehi, M.; Bastami, F. Characterization of Wet-Electrospun Poly(ε-caprolactone)/Poly(L-lactic) Acid with Calcium Phosphates Coated with Chitosan for Bone Engineering. Regen. Reconstr. Restor. 2016, 1, 69–74. doi:10.22037/rrr.v1i2.11588
  • Boccaccini, R.; Gough, J.E. Tissue Engineering Using Ceramics and Polymers; Woodhead: Cambridge, England, 2007.
  • Hollander, A.P.; Hatton, P.V. Biopolymer Methods in Tissue Engineering; Methods in Molecular Biology; Humana: New York, 2004; Vol. 238.
  • Shadjou, N.; Hasanzadeh, M. Bone Tissue Engineering Using Silica-Based Mesoporous Nanobiomaterials: Recent Progress. Mater. Sci. Eng. C, 2015, 55, 401–409. doi:10.1016/j.msec.2015.05.027
  • Woodruff, M.A.; Hutmacher, D.W. The Return of a Forgotten Polymer-Polycaprolactone in the 21st Century. Prog. Polym. Sci. 2010, 35, 1217–1256. doi:10.1016/j.progpolymsci.2010.04.002
  • Jha, B.S.; Colello, R.J.; Bowman, J.R.; Sell, S.A.; Lee, K.D.; Bigbee, J.W.; Bowlin, G.L.; Chow, W.N.; Mathern, B.E.; Simpson, D.G. Two Pole Air Gap Electrospinning: Fabrication of Highly Aligned, Three-Dimensional Scaffolds for Nerve Reconstruction. Acta Biomater. 2011, 7, 203–215. doi:10.1016/j.actbio.2010.08.004
  • Davaran, S.; Ghamkhari, A.; Alizadeh, E.; Massoumi, B.; Jaymand, M. Novel Dual Stimuli-Responsive ABC Triblock Copolymer: RAFT Synthesis,“Schizophrenic” Micellization, and Its Performance As an Anticancer Drug Delivery Nanosystem. J. Colloid Interface Sci. 2017, 488, 282–293. doi:10.1016/j.jcis.2016.11.002
  • Bidez, P.R.; Li, S.; MacDiarmid, A.G.; Venancio, E.C.; Wei, Y.; Lelkes, P.I. Polyaniline, an Electroactive Polymer, Supports Adhesion and Proliferation of Cardiac Myoblasts. J. Biomater. Sci. Polym. Ed. 2006, 17, 199–212. doi:10.1163/156856206774879180
  • Kanatzidis, M.G. Conductive Polymers. Chem. Eng. News. 1990, 68, 36–54. doi:10.1021/cen-v068n049.p036
  • Street, G.B.; Clarke, T.C. Conducting Polymers: A Review of Recent Work. IBM J. Res. Dev. 1981, 25, 51–57. doi:10.1147/rd.251.0051
  • Shreepathi, S. Dodecylbenzenesulfonic Acid: A Surfactant and Dopant for the Synthesis of Processable Polyaniline and Its Copolymers. Ph.D. Dissertation, von der Fakultätfür Naturwissenschaften der Technischen Universität Chemnitz genehmigte, 2006.
  • Kim, D.H.; Kim, P.; Song, I.; Cha, J.M.; Lee, S.H.; Kim, B.; Suh, K.Y. Guided Three-Dimensional Growth of Functional Cardiomyocytes on Polyethylene Glycol Nanostructures. Langmuir. 2006, 22, 5419–5426. doi:10.1021/la060283u
  • Hutmacher, D.W. Scaffold Design and Fabrication Technologies for Engineering Tissues—State of the Art and Future Perspectives. J. Biomater. Sci. Polym. Ed. 2001, 12(1), 107–124. doi:10.1163/156856201744489
  • Guimard, N.K.; Sessler, J.L.; Schmidt, C.E. Toward a Biocompatible and Biodegradable Copolymer Incorporating Electroactive Oligothiophene Units. Macromolecules. 2008, 42(2), 502–511. doi:10.1021/ma8019859
  • Shi, G.; Zhang, Z.; Rouabhia, M. The Regulation of Cell Functions Electrically Using Biodegradable Polypyrrole– Polylactide Conductors. Biomaterials. 2008, 29, 3792–3798. doi:10.1016/j.biomaterials.2008.06.010
  • Zhao, M.; Forrester, J.V.; McCaig, C.D. A Small, Physiological Electric Field Orients Cell Division. Proc. Nat. Acad. Sci. 1999, 96, 4942–4946. doi:10.1073/pnas.96.9.4942
  • Hardy, J.G.; Geissler, S.A.; Aguilar, D.; Villancio‐Wolter, M.K.; Mouser, D.J.; Sukhavasi, R.C.; Cornelison, R.C.; Tien, L.W.; Preda, R.C.; Hayden, R.S.; et al. Instructive Conductive 3D Silk Foam‐Based Bone Tissue Scaffolds Enable Electrical Stimulation of Stem Cells for Enhanced Osteogenic Differentiation. Macromole. Biosci. 2015, 15, 1490–1496. doi:10.1002/mabi.201500171
  • Massoumi, B.; Davtalab, S.; Jaymand, M.; Entezami, A.A. AB 2 Y-Shaped Miktoarm Star Conductive Polyaniline-Modified Poly (ethylene glycol) and Its Electrospun Nanofiber Blend with Poly (ε-caprolactone). RSC Adv. 2015, 5, 36715–36726. doi:10.1039/C5RA02926K
  • Sarvari, R.; Massoumi, B.; Jaymand, M.; Beygi-Khosrowshahi, Y.; Abdollahi, M. Novel Three-Dimensional, Conducting, Biocompatible, Porous, and Elastic Polyaniline-Based Scaffolds for Regenerative Therapies. RSC Adv. 2016, 6, 19437–19451. doi:10.1039/C6RA00643D
  • Jin, L.; Wang, T.; Feng, Z.Q.; Zhu, M.; Leach, M.K.; Naim, Y.I.; Jiang, Q. Fabrication and Characterization of a Novel Fluffy Polypyrrole Fibrous Scaffold Designed for 3D Cell Culture. J. Mater. Chem. 2012, 22, 18321–18326. doi:10.1039/c2jm32165c

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.