223
Views
9
CrossRef citations to date
0
Altmetric
Articles

Smart magnetic self-assembled micelle: an effective nanocarrier for thermo-triggered paclitaxel delivery

, &
Pages 741-749 | Received 20 Apr 2018, Accepted 24 Jun 2018, Published online: 10 Oct 2018

References

  • Kakizawa, Y.; Kataoka, K. Block Copolymer Micelles for Delivery of Gene and Related Compounds. Adv. Drug Deliv. Rev. 2002, 54, 203–222.
  • Xiao, C. S.; Tian, H. Y.; Zhuang, X. L.; Chen, X. S.; Jing, X. B. Recent Developments in Intelligent Biomedical Polymers. Sci. China Ser. B-Chem. 2009, 52, 117–130.
  • Bo, G.; XiaoYi, S.; YongFeng, Z.; DeYue, Y. Supramolecular Self-Assembly and Controllable Drug Release of Thermosensitive Hyperbranched Multiarm Copolymers. Sci. China Chem. 2010, 53, 487–494.
  • Kataoka, K.; Harada, A.; Nagasaki, Y. Block Copolymer Micelles for Drug Delivery: Design, Characterization and Biological Significance. Adv. Drug Deliv. Rev. 2001, 47, 113–131.
  • Shuai, X.; Ai, H.; Nasongkla, N.; Kim, S.; Gao, J. Micellar Carriers Based on Block Copolymers of Poly(epsilon-caprolactone) and Poly(ethylene glycol) for Doxorubicin Delivery. J. Control Release 2004, 98, 415–426.
  • Satturwar, P.; Eddine, M.N.; Ravenelle, F.; Leroux, J. C. pH-Responsive Polymeric Micelles of Poly(ethylene glycol)-b-poly(alkyl(meth)acrylate-co-methacrylic acid): Influence of the Copolymer Composition on Self-Assembling Properties and Release Of Candesartan Cilexetil. J. Pharm. Biopharm. 2007, 65, 379–387.
  • Na, K.; Lee, K. H.; Bae, Y. H. pH-Sensitivity and pH-Dependent Interior Structural Change of Self-Assembled Hydrogel Nanoparticles of Pullulan Acetate/Oligo-Sulfonamide Conjugate. J. Control Release 2004, 97, 513–525.
  • Lefaux, C. J.; Zimberlin, J. A.; Dobrynin, A. V.; Mather, P. T. Polyelectrolyte Spin Assembly: Influence of Ionic Strength on the Growth Of Multilayered Thin Films. J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 3654–3666.
  • Kohori, F.; Sakai, K.; Aoyagi, T.; Yokoyama, M.; Sakurai, Y.; Okano, T. Preparation and Characterization of Thermally Responsive Block Copolymer Micelles Comprising Poly(N-isopropylacrylamide-b-DL-lactide). J. Control Release 1998, 55, 87–98.
  • Chung, J. E.; Yokoyama, M.; Yamato, M.; Aoyagi, T.; Sakurai, Y.; Okano, T. Thermo-Responsive Drug Delivery from Polymeric Micelles Constructed Using Block Copolymers of Poly(N-isopropylacrylamide) and Poly(butylmethacrylate). J. Control Release 1999, 62, 115–127.
  • Choi, C. Y., Chae, S. Y.; Nah, J. W. Theromosensititve Poly (N- isopropylacrylamide)-b-poly (ε-caprolactone) Nanoparticles for Efficient Drug Delivery System. Polymer 2006, 47, 4571–4580.
  • Sofia, K.; Anatol, K.; Jukka, L.; Bengt, K. Ultraviolet Light Treatment of Thin High-Density Polyethylene Films Monitored with a Quartz Crystal Microbalance. J. Appl. Polym. Sci. 2004, 92, 2833–2839.
  • Kim, B. S.; Qiu, J. M.; Wang, J. P.; Taton, T. A. Magnetomicelles: Composite Nanostructures from Magnetic Nanoparticles and Cross-Linked Amphiphilic Block Copolymers. Nano Lett. 2005, 5, 1987–1991.
  • Kong, G.; Dewhirst, M. W. Hyperthermia and Liposomes. Int. J. Hyperthermia 1999, 15, 345–370.
  • Rapoport, N. Physical Stimuli-Responsive Polymeric Micelles for Anti-Cancer Drug Delivery. Prog. Polym. Sci. 2007, 32, 962–990.
  • Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A Review of Stimuli-Responsive Nanocarriers for Drug and Gene Delivery. J. Control Release 2008, 126, 187–204.
  • Yang, H. M.; Reisfeld, R. Doxorubicin Conjugated with a Monoclonal Antibody Directed to a Human Melanoma-Associated Proteoglycan Suppresses the Growth Of Established Tumor Xenografts in Nude Mice. Proc. Natl. Acad. Sci. USA 1988, 85, 1189–1193.
  • Thédrez, P.; Saccavini, J. C.; Nolibé, D.; Simoen, J. P.; Guerreau, D.; Gestin, J. F.; Kremer, M.; Chatal, J. F. Biodistribution of Indium-111-Labeled OC 125 Monoclonal Antibody After Intraperitoneal Injection in Nude Mice Intraperitoneally Grafted with Ovarian Carcinoma. Cancer Res. 1989, 49, 3081–3086.
  • Palmer, T. N.; Caride, V. J.; Caldecourt, M. A.; Twickler, J.; Abdullah, V. The mechanism of liposome accumulation in infarction. Biochim. Biophys Acta 1984, 797, 363–368.
  • Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review. J. Control Release 2000, 65, 271–284.
  • Qu, T.; Wang, A.; Yuan, J.; Shi, J.; Gao, Q. Preparation and Characterization of Thermo-Responsive Amphiphilic Triblock Copolymer and Its Self-Assembled Micelle for Controlled Drug Release. Coll. Surf B. Biointerfaces 2009, 72, 94–100.
  • Chung, J.-E.; Yokoyama, M.; Okano, T. Inner Core Segment Design for Drug Delivery Control of Thermo-Responsive Polymeric Micelles. J. Contr. Rel. 2000, 65, 93–103.
  • Yang, M.; Ding, Y.-T.; Zhang, L.-Y.; Qian, X.-P.; Jiang, X.-Q.; Liu, B.-R. Novel Thermosensitive Polymeric Micelles for Docetaxel Delivery. J. Biomed. Mater Res. A. 2007, 81A, 847–857.
  • Wei, H.; Cheng, C.; Chang, C.; Chen, W.-Q.; Cheng, S.-X.; Zhang, X.-Z.; Zhou, R.-X. Synthesis and Applications of Shell Cross-Linked Thermoresponsive Hybrid Micelles Based on Poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate). Langmuir 2008, 24, 4564–4570.
  • Wei, H; Wu, D.-Q.; Li, Q.; Chang, C.; Zhou, J.-P.; Zhang, X.-Z.; Zhuo, R.-X. Preparation of Shell Cross-Linked Thermoresponsive Micelles as well as Hollow Spheres Based on P(NIPAAm-co-HMAAm-co-MPMA)-b-PCL. J. Phys. Chem. C. 2008, 112, 15329–15334.
  • Zhang, M.; Jin, X.; Gou, G. Preparation and Characterization of Magnetic Thermosensitive Fluorouracil Micelles. J. Biomater. Sci. Polym. Ed. 2016, 27, 773–791.
  • Ai, F.-R.; Yao, A.-H.; Huang, W.-H. Preparation and Characterization Of Composite Microspheres with Magnetic And Temperature Dual Stimuli-Responsive Properties. Chem. J. Chinese U. 2010, 31, 1701–1705.
  • Khoee, S.; Hemati, K. Synthesis of Magnetite/Polyamino-Ester Dendrimer Based on PCL/PEG Amphiphilic Copolymers Via Convergent Approach for Targeted Diagnosis And Therapy. Polymer 2013, 54, 5574–5585.
  • Huang, S.-R.; Lin, K.-F.; Lee, C.-F. Synthesis and Properties of Thermoresponsive Magnetic Polymer Composites and Their Electrospun Nanofibers. J. Polym. Sci. Part. A: Polym Chem. 2014, 52, 848–856.
  • Halbreich, A.; Groman, E.-V.; Raison, D.; Bouchaud, C.; Paturance, S. Damage to the Protein Synthesizing Apparatus in Mouse Liver In Vivo by Magnetocy-Tolysis in the Presence Of Hepatospecific Magnetic Nanoparticles. J. Magn. Magn. Mater. 2002, 248, 276–285.
  • Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. Magnetic Nanoparticle Design for Medical Diagnosis and Therapy. J. Mater. Chem. 2004, 14, 2161–2175.
  • Deka, S.-R.; Quarta, A.; Di Corato, R.; Riedinger, A.; Cingolania, R.; Pellegrino, T. Magnetic Nanobeads Decorated by Thermo-Responsive PNIPAM Shell as Medical Platforms for the Efficient Delivery of Doxorubicin to Tumour Cells. Nanoscale 2011, 3, 619–629.
  • Figuerola, A.; Di Corato, R.; Manna, L.; Pellegrino, T. From Iron Oxide Nanoparticles Towards Advanced Iron-Based Inorganic Materials Designed for Biomedical Applications. Pharmacol. Res. 2010, 62, 126–143.
  • Gazeau, F.; Levy, M.; Wilhelm, C. Optimizing Magnetic Nanoparticle Design for Nanothermotherapy. Nanomedicine 2008, 3, 831–844.
  • Lu, A.-H.; Salabas, E.-L.; Schuth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244.
  • Liu, X.-Q.; Ma, Z.-Y.; Xing, J.-M.; Liu, H.-Z. Preparation and Characterization of Amino-Silane Modified Superparamagnetic Silica Nanospheres. J. Magn. Magn. Mater. 2004, 270, 1–6.
  • Ping, P.; Wang, W.; Chen, X.; Jing, X. Poly(epsilon-caprolactone) Polyurethane and Its Shape-Memory Property. Biomacromolecules 2005, 6, 587–592.
  • Zunobi, J. U.; Higginbotham, C. L. Polymer Molecular Weight Analysis by 1H NMR Spectroscopy. J. Chem. Edu. 2011, 88, 1098–1104.
  • Dionigi, C.; Pineiro, Y.; Riminucci, A.; Banobre, M.; Rivas, J.; Dediu, V. Regulating the Thermal Response of Pnipam Hydrogels by Controlling the Adsorption of Magnetite Nanoparticles. Appl. Phys. A: Mater. Sci. Process 2014, 114, 585–590.
  • Dionigi, C.; Lungaro, L.; Goranov, V.; Riminucci, A.; Pineiro-Redondo, Y.; Banobre-Lopez, M.; Rivas, J.; Dediu, V. Smart Magnetic Poly(N-Isopropylacrylamide) to Control the Release of Bio-Active Molecules. J. Mater. Sci.: Mater. Med. 2014, 25, 2365–2371.
  • Rubio-Retama, J.; Zafeiropoulos, N.E.; Serafinelli, C.; Rojas-Reyna, R.; Voit, B.; Cabarcos, E.L.; Stamm, M. Synthesis and Characterization of Thermosensitive PNIPAM Microgels Covered with Superparamagnetic γ-Fe2O3 Nanoparticles. Langmuir 2007, 23, 10280–10285
  • Zhang, W.; Zhang, Z.; Zhang, Y. The Application of Carbon Nanotubes in Target Drug Delivery Systems for Cancer Therapies. Nanoscale Res. Lett. 2011, 6, 555–577.
  • Tang, H.; Guo, J.; Sun, Y.; Chang, B.; Ren, Q.; Yang, W. Facile Synthesis of pH Sensitive Polymer-Coated Mesoporous Silica Nanoparticles and Their Application in Drug Delivery. Int. J. Pharm. 2011, 421, 388–396.
  • Najib, N.; Suleiman, M. The Kinetics of Drug Release From Ethylcellulose Solid Dispersions. Drug Dev. Ind. Pharm. 1985, 11, 2169–2181.
  • Desai, S.-J.; Singh, P.; Simonelli, A.-P.; Higuchi, W.-I. Investigation of Factors Influencing Release of Solid Drug Dispersed in Inert Matrices: III. Quantitative Studies Involving the Polyethylene Plastic Matrix. J. Pharm. Sci. 1966, 55, 1230–1234.
  • Higuchi, T. Mechanism of Sustained-Action Medication. Theoretical Analysis of Rate of Release of Solid Drugs Dispersed in Solid Matrices. J. Pharm. Sci. 1963, 50, 1145–1149.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.