133
Views
6
CrossRef citations to date
0
Altmetric
Articles

Cells integration onto scaffolds prepared from polyester based polymers – importance of polymer thermal properties in addition to hydrophilicity

ORCID Icon, &
Pages 1068-1077 | Received 25 Jul 2018, Accepted 15 Sep 2018, Published online: 10 Dec 2018

References

  • Webb, K.; Li, W.; Hitchcock, R. W.; Smeal, R. M.; Gray, S. D.; Tresco, P. A. Comparison of Human Fibroblast ECM-Related Gene Expression on Elastic Three-Dimensional Substrates Relative to Two-Dimensional Films of the Same Material. Biomaterials. 2003, 24, 4681–4690. doi:10.1016/S0142-9612(03)00368-5
  • Meinel, L.; Karageorgiou, V.; Fajardo, R.; Snyder, B.; Shinde-Patil, V.; Zichner, L.; Kaplan, D.; Langer, R.; Vunjak-Novakovic, G. Bone Tissue Engineering Using Human Mesenchymal Stem Cells: Effects of Scaffold Material and Medium Flow. Ann. Biomed. Eng. 2004, 32, 112–122. doi:10.1023/B:ABME.0000007796.48329.b4
  • Place, E. S.; George, J. H.; Williams, C. K.; Stevens, M. M. Synthetic Polymer Scaffolds for Tissue Engineering. Chem. Soc. Rev. 2009, 38, 1139–1151. doi:10.1039/b811392k
  • Lee, J.; Cuddihy, M. J.; Kotov, N. A. Three-Dimensional Cell Culture Matrices: State of the Art. Tissue Eng. Part B Rev. 2008, 14, 61–86. doi:10.1089/teb.2007.0150
  • Jafari, M.; Paknejad, Z.; Rad, M. R.; Motamedian, S. R.; Eghbal, M. J.; Nadjmi, N.; Khojasteh, A. Polymeric Scaffolds in Tissue Engineering: A Literature Review. J. Biomed. Mater. Res. 2017, 105, 431–459. doi:10.1002/jbm.b.33547
  • Jeong, S. I.; Kim, S. H.; Kim, Y. H.; Jung, Y.; Kwon, J. H.; Kim, B.-S.; Lee, Y. M. Manufacture of Elastic Biodegradable PLCL Scaffolds for Mechano-Active Vascular Tissue Engineering. J. Biomater. Sci. Polym. Ed. 2004, 15, 645–660. doi:10.1163/156856204323046906
  • Salerno, A.; Guarnieri, D.; Iannone, M.; Zeppetelli, S.; Netti, P. A. Effect of Micro- and Macroporosity of Bone Tissue Three-Dimensional-Poly(Epsilon-Caprolactone) Scaffold on Human Mesenchymal Stem Cells Invasion, Proliferation, and Differentiation In Vitro. Tissue Eng. Part A. 2010, 16, 2661–2673. doi:10.1089/ten.tea.2009.0494
  • Lu, H. H.; El-Amin, S. F.; Scott, K. D.; Laurencin, C. T. Three-Dimensional, Bioactive, Biodegradable, Polymer-Bioactive Glass Composite Scaffolds with Improved Mechanical Properties Support Collagen Synthesis and Mineralization of Human Osteoblast-like Cells In Vitro. J. Biomed. Mater. Res. 2003, 64A, 465–474. doi:10.1002/jbm.a.10399
  • Yang, J.; Shi, G.; Bei, J.; Wang, S.; Cao, Y.; Shang, Q.; Yang, G.; Wang, W. Fabrication and Surface Modification of Macroporous Poly(L-Lactic Acid) and Poly(L-Lactic-co-Glycolic Acid) (70/30) Cell Scaffolds for Human Skin Fibroblast Cell Culture. J. Biomed. Mater. Res. 2002, 62, 438–446. doi:10.1002/jbm.10318
  • Tran, R. T.; Naseri, E.; Kolasnikov, A.; Bai, X.; Yang, J. A New Generation of Sodium Chloride Porogen for Tissue Engineering. Biotechnol. Appl. Biochem. 2011, 58, 335–344. doi:10.1002/bab.44
  • Lebourg, M.; Sabater Serra, R.; Más Estellés, J.; Hernández Sánchez, F.; Gómez Ribelles, J. L.; Suay Antón, J. Biodegradable Polycaprolactone Scaffold with Controlled Porosity Obtained by Modified Particle-Leaching Technique. J. Mater. Sci: Mater. Med. 2008, 19, 2047–2053. doi:10.1007/s10856-007-3282-4
  • Harris, L. D.; Kim, B. S.; Mooney, D. J. Open Pore Biodegradable Matrices Formed with Gas Foaming. J. Biomed. Mater. Res. 1998, 42, 396–402. doi:10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E
  • Kuang, T.; Chen, F.; Chang, L.; Zhao, Y.; Fu, D.; Gong, X.; Peng, X. Facile Preparation of Open-Cellular Porous Poly (l-Lactic Acid) Scaffold by Supercritical Carbon Dioxide Foaming for Potential Tissue Engineering Applications. Chem. Eng. J. 2017, 307, 1017–1025. doi:10.1016/j.cej.2016.09.023
  • Yu, P.; Mi, H.-Y.; Huang, A.; Geng, L.-H.; Chen, B.-Y.; Kuang, T.-R.; Mou, W.-J.; Peng, X.-F. Effect of Poly(Butylenes Succinate) on Poly(Lactic Acid) Foaming Behavior: Formation of Open Cell Structure. Ind. Eng. Chem. Res. 2015, 54, 6199–6207. doi:10.1021/acs.iecr.5b00477
  • Whang, K.; Thomas, C. H.; Healy, K. E.; Nuber, G. A Novel Method to Fabricate Bioabsorbable Scaffolds. Polymer 1995, 36, 837–842. doi:10.1016/0032-3861(95)93115-3
  • Oh, S. H. Fabrication and Characterization of Hydrophilic Poly(Lactic-co-Glycolic Acid)/Poly(Vinyl Alcohol) Blend Cell Scaffolds by Melt-Molding Particulate-Leaching Method. Biomaterials 2003, 24, 4011–4021. doi:10.1016/S0142-9612(03)00284-9
  • Pham, Q. P.; Sharma, U.; Mikos, A. G. Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review. Tissue Eng. 2006, 12, 1197 doi:10.1089/ten.2006.12.1197
  • Arai, K.; Iwanaga, S.; Toda, H.; Genci, C.; Nishiyama, Y.; Nakamura, M. Three-Dimensional Inkjet Biofabrication Based on Designed Images. Biofabrication 2011, 3, 034113. doi:10.1088/1758-5082/3/3/034113
  • Nouman, M.; Jubeli, E.; Saunier, J.; Yagoubi, N. Exudation of Additives to the Surface of Medical Devices: Impact on Biocompatibility in the Case of Polyurethane Used in Implantable Catheters. J. Biomed. Mater. Res. 2016, 104, 2954–2967. doi:10.1002/jbm.a.35837
  • Tortolano, L.; Serrano, C.; Jubeli, E.; Saunier, J.; Yagoubi, N. Interaction of Intraocular Lenses with Fibronectin and Human Lens Epithelial Cells: Effect of Chemical Composition and Aging. J. Biomed. Mater. Res. 2015, 103, 3843–3851. doi:10.1002/jbm.a.35528
  • Tortolano, L.; Saunier, J.; Hammami, S.; Manerlax, K.; Matmati, H.; Do, B.; Jubeli, E.; Fattal, E.; Yagoubi, N. Restructuration Kinetics of Amphiphilic Intraocular Lenses during Aging. Colloids Surf B Biointerfaces 2018, 161, 420–432. doi:10.1016/j.colsurfb.2017.11.007
  • Al Salloum, H.; Saunier, J.; Dazzi, A.; Vigneron, J.; Etcheberry, A.; Marlière, C.; Aymes-Chodur, C.; Herry, J. M.; Bernard, M.; Jubeli, E.; et al. Characterization of the Surface Physico-Chemistry of Plasticized PVC Used in Blood Bag and Infusion Tubing. Materials Science and Engineering: C 2017, 75, 317–334. doi:10.1016/j.msec.2017.02.057
  • Nouman, M.; Saunier, J.; Jubeli, E.; Yagoubi, N. Additive Blooming in Polymer Materials: Consequences in the Pharmaceutical and Medical Field. Polymer Degradation and Stability 2017, 143, 239–252. doi:10.1016/j.polymdegradstab.2017.07.021
  • Bernard, M.; Jubeli, E.; Bakar, J.; Tortolano, L.; Saunier, J.; Yagoubi, N. Biocompatibility Assessment of Cyclic Olefin Copolymers: Impact of Two Additives on Cytotoxicity, Oxidative Stress, Inflammatory Reactions, and Hemocompatibility. J. Biomed. Mater. Res. 2017, 105, 3333–3349. doi:10.1002/jbm.a.36199
  • Lin, Y.; Wang, L.; Zhang, P.; Wang, X.; Chen, X.; Jing, X.; Su, Z. Surface Modification of Poly(L-lactic acid) to Improve Its Cytocompatibility via Assembly of Polyelectrolytes and Gelatin. Acta Biomater. 2006, 2, 155–164. doi:10.1016/j.actbio.2005.10.002
  • Jubeli, E.; Moine, L.; Barratt, G. Synthesis, Characterization, and Molecular Recognition of Sugar-Functionalized Nanoparticles Prepared by a Combination of ROP, ATRP, and Click Chemistry. J. Polym. Sci. A Polym. Chem. 2010, 48, 3178–3187. doi:10.1002/pola.24105
  • Shanmugasundaram, N.; Ravichandran, P.; Neelakanta Reddy, P.; Ramamurty, N.; Pal, S.; Panduranga Rao, K. Collagen-Chitosan Polymeric Scaffolds for the In Vitro Culture of Human Epidermoid Carcinoma Cells. Biomaterials 2001, 22, 1943–1951. doi:10.1016/S0142-9612(00)00220-9
  • Ni, P.; Fu, S.; Fan, M.; Guo, G.; Shi, S.; Peng, J.; Luo, F.; Qian, Z. Preparation of Poly(Ethylene Glycol)/Polylactide Hybrid Fibrous Scaffolds for Bone Tissue Engineering. Int. J. Nanomed. 2011, 6, 3065–3075.
  • Yin, H.-M.; Qian, J.; Zhang, J.; Lin, Z.-F.; Li, J.-S.; Xu, J.-Z.; Li, Z.-M. Engineering Porous Poly(Lactic Acid) Scaffolds with High Mechanical Performance via a Solid State Extrusion/Porogen Leaching Approach. Polymers 2016, 8, 213. doi:10.3390/polym8060213
  • Pan, Z.; Ding, J. Poly(Lactide-co-Glycolide) Porous Scaffolds for Tissue Engineering and Regenerative Medicine. Interface Focus 2012, 2, 366–377. doi:10.1098/rsfs.2011.0123
  • Houvenagel, S.; Picheth, G.; Dejean, C.; Brûlet, A.; Chennevière, A.; Couture, O.; Huang, N.; Moine, L.; Tsapis, N. End-Chain Fluorination of Polyesters Favors Perfluorooctyl Bromide Encapsulation into Echogenic PEGylated Nanocapsules. Polym. Chem. 2017, 8, 2559–2570. doi:10.1039/C7PY00400A
  • Chen, C. C.; Chueh, J. Y.; Tseng, H.; Huang, H. M.; Lee, S. Y. Preparation and Characterization of Biodegradable PLA Polymeric Blends. Biomaterials 2003, 24, 1167–1173. doi:10.1016/S0142-9612(02)00466-0
  • Lucke, A.; Teßmar, J.; Schnell, E.; Schmeer, G.; Göpferich, A. Biodegradable Poly(d,l-Lactic Acid)-Poly(Ethylene Glycol)-Monomethyl Ether Diblock Copolymers: Structures and Surface Properties Relevant to Their Use as Biomaterials. Biomaterials 2000, 21, 2361–2370. doi:10.1016/S0142-9612(00)00103-4
  • Piorkowska, E.; Kulinski, Z.; Galeski, A.; Masirek, R. Plasticization of Semicrystalline Poly(l-Lactide) with Poly(Propylene Glycol). Polymer 2006, 47, 7178–7188. doi:10.1016/j.polymer.2006.03.115
  • Salem, A. K.; Cannizzaro, S. M.; Davies, M. C.; Tendler, S. J.; Roberts, C. J.; Williams, P. M.; Shakesheff, K. M. Synthesis and Characterisation of a Degradable Poly(lactic acid)-Poly(ethylene glycol) Copolymer with Biotinylated End Groups. Biomacromolecules 2001, 2, 575–580. doi:10.1021/bm010030+
  • von Burkersroda, F.; Gref, R.; Pferich, A. G. Ã. Erosion of Biodegradable Block Copolymers Made of Poly(d,l-Lactic Acid) and Poly(Ethylene Glycol). Biomaterials 1997, 18, 1599–1607. doi:10.1016/S0142-9612(97)00098-7
  • Passerini, N.; Craig, D. Q. M. An Investigation into the Effects of Residual Water on the Glass Transition Temperature of Polylactide Microspheres Using Modulated Temperature DSC. J. Control. Release. 2001, 73, 111–115. doi:10.1016/S0168-3659(01)00245-0
  • In Pyo Park, P.; Jonnalagadda, S. Predictors of Glass Transition in the Biodegradable Poly-Lactide and Poly-Lactide-co-Glycolide Polymers. J. Appl. Polym. Sci. 2006, 100, 1983–1987. doi:10.1002/app.22135
  • Doneva, T. A.; Yin, H. B.; Stephens, P.; Bowen, W. R.; Thomas, D. W. Development and AFM Study of Porous Scaffolds for Wound Healing Applications. Spectroscopy 2004, 18, 587–596. doi:10.1155/2004/251698
  • Wan, Y.; Chen, W.; Yang, J.; Bei, J.; Wang, S. Biodegradable Poly(l-Lactide)-Poly(Ethylene Glycol) Multiblock Copolymer: Synthesis and Evaluation of Cell Affinity. Biomaterials 2003, 24, 2195–2203. doi:10.1016/S0142-9612(03)00107-8
  • Wright, B.; Parmar, N.; Bozec, L.; Aguayo, S. D.; Day, R. M. A Simple and Robust Method for Pre-Wetting Poly (Lactic-co-Glycolic) Acid Microspheres. J. Biomater. Appl. 2015, 30, 147–159. doi:10.1177/0885328215577297
  • van Wachem, P. B.; Beugeling, T.; Feijen, J.; Bantjes, A.; Detmers, J. P.; van Aken, W. G. Interaction of Cultured Human Endothelial Cells with Polymeric Surfaces of Different Wettabilities. Biomaterials 1985, 6, 403–408. doi:10.1016/0142-9612(85)90101-2
  • Lee, J. H.; Khang, G.; Lee, J. W.; Lee, H. B. Interaction of Different Types of Cells on Polymer Surfaces with Wettability Gradient. J. Colloid Interface Sci. 1998, 205, 323–330. doi:10.1006/jcis.1998.5688
  • Vasita, R.; Katti, D. S. Structural and Functional Characterization of Proteins Adsorbed on Hydrophilized Polylactide-co-Glycolide Microfibers. Int. J. Nanomed. 2012, 7, 61–71.
  • Jeong, J. H.; Lim, D. W.; Han, D. K.; Park, T. G. Synthesis, Characterization and Protein Adsorption Behaviors of PLGA/PEG di-Block co-Polymer Blend Films. Colloids Surf. B. Biointerfaces 2000, 18, 371–379. doi:10.1016/S0927-7765(99)00162-9
  • Tran, V.-T.; Karam, J.-P.; Garric, X.; Coudane, J.; Benoît, J.-P.; Montero-Menei, C. N.; Venier-Julienne, M.-C. Protein-Loaded PLGA-PEG-PLGA Microspheres: A Tool for Cell Therapy. Eur. J. Pharmaceut. Sci. 2012, 45, 128–137. doi:10.1016/j.ejps.2011.10.030
  • Loh, Q. L.; Choong, C. Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Eng. Part B. Rev. 2013, 19, 485–502. doi:10.1089/ten.teb.2012.0437

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.