298
Views
4
CrossRef citations to date
0
Altmetric
Articles

Poly(2-oxazoline)-based nanoparticles with aggregation-induced emission (AIE) for targeted cell imaging

, , , , , & show all
Pages 1079-1088 | Received 14 Aug 2018, Accepted 15 Sep 2018, Published online: 07 Mar 2019

References

  • Nguyen, Q. T.; Olson, E. S.; Aguilera, T. A.; Jiang, T.; Scadeng,M.; Ellies, L. G.; Tsien, R. Y. Surgery with Molecular Fluorescence Imaging Using Activatable Cell-Penetrating Peptides Decreases Residual Cancer and Improves Survival. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 4317–4322.
  • Jiang, H.; Taranekar, P.; Reynolds, J. R.; Schanze, K. S. Conjugated Polyelectrolytes: Synthesis, Photophysics, and Applications. Angew. Chem., Int. Ed. 2009, 48, 4300–4316.
  • Vahrmeijer, A. L.; Hutteman, M.; van der Vorst, J. R.; van de Velde, C. J. H.; Frangioni, J. V. Image-Guided Cancer Surgery Using Near-Infrared Fluorescence. Nat. Rev. Clin. Oncol. 2013, 10, 507–518.
  • Zhu, C.; Liu, L.; Yang, Q.; Lv, F.; Wang, S. Water-Soluble Conjugated Polymers for Imaging, Diagnosis, and Therapy. Chem. Rev. 2012, 112, 4687–4735.
  • Chinen, A. B.; Guan, C. M.; Ferrer, J. R.; Barnaby, S. N.; Merkel, T. J.; Mirkin, C. A. Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues By Fluorescence. Chem. Rev. 2015, 115, 10530–10574.
  • Parthasarathy, A.; Pappas, H. C.; Hill, E. H.; Huang, Y.; Whitten, D. G.; Schanze, K. S. Conjugated Polyelectrolytes with Imidazolium Solubilizing Groups: Properties and Application To Photodynamic Inactivation of Bacteria. ACS Appl. Mater. Interfaces 2015, 7, 28027–28034.
  • Blanco, E.; Shen, H.; Ferrari, M. Principles of Nanoparticle Design for Overcoming Biological Barriers To Drug Delivery. Nat. Biotechnol. 2015, 33, 941–951.
  • Xu, X.; Liu, R.; Li, L. Nanoparticles Made of Π-Conjugated Compounds Targeted for Chemical and Biological Applications. Chem.Commun. 2015, 51, 16733–16749.
  • Wang, X.; Yang, Y.; Zhuang, Y.; Gao, P.; Yang, F.; Shen, H.; Guo, H.; Wu, D. Fabrication of Ph-Responsive Nanoparticles with an AIE Feature for Imaging Intracellular Drug Delivery. Biomacromolecules 2016, 17, 2920–2929.
  • Wu, C.; Chiu, D. T. Highly Fluorescent Semiconducting Polymer Dots for Biology and Medicine. Angew. Chem., Int. Ed. 2013, 52, 3086–3109.
  • Liu, R.; Cui, Q.; Wang, C.; Wang, X.; Yang, Y.; Li, L. Preparation of Sialic Acid-Imprinted Fluorescent Conjugated Nanoparticles and Their Application for Targeted Cancer Cell Imaging. ACS Appl. Mater. Interfaces 2017, 9, 3006–3015.
  • Wegner, K. D.; Hildebrandt, N. Quantum Dots: Bright and Versatile In Vitro and In Vivo Fluorescence Imaging Biosensors. Chem. Soc. Rev. 2015, 44, 4792–4834.
  • Cui, Q.; Xu, J.; Wang, X.; Li, L.; Antonietti, M.; Shalom, M. Phenyl-Modified Carbon Nitride Quantum Dots with Distinct Photoluminescence Behavior. Angew. Chem., Int. Ed. 2016, 55, 3672–3676.
  • Li, Y.; Tang, J.; He, L.; Liu, Y.; Liu, Y.; Chen, C.; Tang, Z. Core-Shell Upconversion Nanoparticle@Metal-Organic Framework Nanoprobes for Luminescent/Magnetic Dual-Mode Targeted Imaging. Adv. Mater. 2015, 27, 4075–4080.
  • Yahia-Ammar, A.; Sierra, D.; Mérola, F.; Hildebrandt, N.; Le Guével, X. Self-Assembled Gold Nanoclusters for Bright Fluorescence Imaging and Enhanced Drug Delivery. ACS Nano. 2016, 10, 2591–2599.
  • Hong, Y.; Lam, J. W.; Tang, B.Z. Aggregation-Induced Emission. Chem. Soc. Rev. 2011, 40, 5361–5388.
  • Zhang, X.; Zhang, X.; Wang, S.; Liu, M.; Zhang, Y.; Tao, L.; Wei, Y. ACS Appl. Mater. Interfaces 2013, 5, 1943–1947.
  • Li, K.; Ding, D.; Prashant, C.; Qin, W.; Yang, C.-T.; Tang, B. Z.; Liu, B. Gadolinium- Functionalized Aggregation-Induced Emission Dots as Dual-Modality Probes for Cancer Metastasis Study. Adv. Healthcare Mater. 2013, 2, 1600–1605.
  • Hu, R.; Leung, N. L. C.; Tang, B. Z. AIE Macromolecules: Syntheses, Structures and Functionalities. Chem. Soc. Rev. 2014, 43, 4494–4562.
  • Zhang, X.; Zhang, X.; Tao, L.; Chi, Z.; Xu, J.; Wei, Y. Aggregation Induced Emission-Based Fluorescent Nanoparticles: Fabrication Methodologies and Biomedical Applications. J. Mater. Chem. B 2014, 2, 4398–4414.
  • Yuan, Y.; Kwok, R. T. K.; Tang, B. Z.; Liu, B. Targeted Theranostic Platinum(IV) Prodrug with A Built-in Aggregation-Induced Emission Light-Up Apoptosis Sensor for Noninvasive Early Evaluation of its Therapeutic Responses In Situ. J. Am. Chem. Soc. 2014, 136, 2546–2554.
  • Yuan, Y.; Chen, Y.; Tang, B. Z.; Liu, B. A Targeted Theranostic Platinum(IV)Prodrug Containing A Luminogen with Aggregation-Induced Emission (AIE) Characteristics for In Situ Monitoring of Drug Activation. Chem. Commun. 2014, 50, 3868–3870.
  • Yuan, Y.; Feng, G.; Qin, W.; Tang, B. Z.; Liu, B. Targeted and Image-Guided Photodynamic Cancer Therapy Based on Organic Nanoparticles with Aggregation-Induced Emission Characteristics. Chem. Commun. 2014, 50, 8757–8760.
  • Hu, Q.; Gao, M.; Feng, G.; Liu, B. Mitochondria-Targeted Cancer Therapy Using a Light-Up Probe with Aggregation-Induced-Emission Characteristics. Angew. Chem., Int. Ed. 2014, 53, 14225–14229.
  • Zhang, C. J.; Hu, Q.; Feng, G.; Zhang, R.; Yuan, Y.; Lu, X.; Liu, B. Image-Guided Combination Chemotherapy and Photodynamic Therapy Using a Mitochondria-Targeted Molecular Probe with Aggregation-Induced Emission Characteristics. Chem. Sci. 2015, 6, 4580–4586.
  • Wan, Q.; Wang, K.; Du, H.; Huang, H.; Liu, M.; Deng, F.; Dai, Y.; Zhang, X.; Wei, Y. A Rather Facile Strategy for the Fabrication of Pegylated AIE Nanoprobes. Polym. Chem. 2015, 6, 5288–5294.
  • Nie, H.; Hu, K.; Cai, Y.; Peng, Q.; Zhao, Z.; Hu, R.; Chen, J.; Su, S.-J.; Qin, A,; Tang, B.Z. Tetraphenylfuran: Aggregation-Induced Emission or Aggregation-Caused Quenching, Mater. Chem. Front. 2017, 1, 1125–1129.
  • Ni, J.-S.; Liu, H.; Liu, J.; Jiang, M.; Zhao, Z.; Chen, Y.; Kwok, R.T.K.; Lam, J.W. Y.; Peng, Q.; Tang, B. Z. The Unusual Aggregation-Induced Emission of Coplanar Organoboron Isomers and Their Lipid Droplet-Specific Applications. Mater. Chem. Front. 2018, 2, 1498–1507.
  • Zhang, X.; Wang, K.; Liu, M.; Zhang, X.; Tao, L.; Chen, Y.; Wei, Y. Polymeric AIE-Based Nanoprobes for Biomedical Applications: Recent Advances and Perspectives. Nanoscale 2015, 7, 11486–11508.
  • Liu, Y.; Mao, L.; Liu, X.; Liu, M.; Xu, D.; Jiang, R.; Deng, F.; Li, Y.; Zhang, X.; Wei, Y. A Facile Strategy for Fabrication of Aggregation-Induced Emission (AIE) Active Fluorescent Polymeric Nanoparticles (FPNS) Via Post Modification of Synthetic Polymers and Their Cell Imaging. Mater. Sci. Eng. C 2017, 79, 590–595.
  • Tian, J.; Jiang, R.; Gao, P.; Xu, D.; Mao, L.; Zeng, G.; Liu, M.; Deng, F.; Zhang, X.; Wei, Y. Synthesis and Cell Imaging Applications of Amphiphilic AIE-Active Poly(Amino Acid)s. Mater. Sci. Eng. C 2017, 79, 563–569.
  • Mao, L.; Liu, M.; Jiang, R.; Huang, Q.; Dai, Y.; Tian, J.; Shi, Y.; Wen, Y.; Zhang, X.; Wei, Y. The One-Step Acetalization Reaction for Construction of Hyperbranched and Biodegradable Luminescent Polymeric Nanoparticles with Aggregation-Induced Emission Feature. Mater. Sci. Eng. C 2017, 80, 543–548.
  • Zeng, G.; Liu, M.; Jiang, R.; Huang, Q.; Huang, L.; Wan, Q.; Dai, Y.; Wen, Y.; Zhang, X.; Wei, Y. Self-Catalyzed Photo-Initiated Raft Polymerization for Fabrication of Fluorescent Polymeric Nanoparticles with Aggregation-Induced Emission Feature. Mater. Sci. Eng. C 2018, 83, 154–159.
  • Wei, D.; Xue, Y.; Huang, H.; Liu, M.; Zeng, Gu.; Wan, Q.; Liu, L.; Yu, J.; Zhang, X.; Wei, Y. Fabrication, Self-Assembly and Biomedical Applications of Luminescent Sodium Hyaluronate with Aggregation-Induced Emission Feature. Mater. Sci. Eng. C 2017, 81, 120–126.
  • Jiang, R.; Liu, H.; Liu, M.; Tian, J.; Huang, Q.; Huang, H.; Wen, Y.; Cao, Q.; Zhang, X.; Wei,Y. A Facile One-Pot Mannich Reaction for the Construction of Fluorescent Polymeric Nanoparticles with Aggregation-Induced Emission Feature and Their Biological Imaging. Mater. Sci. Eng. C 2017, 81, 416–421.
  • Jiang, R.; Liu, M.; Li, C.; Huang, Q.; Huang, H.; Wan, Q.; Wen, Y.; Cao, Q.; Zhang, X.; Wei, Y. Facile Fabrication of Luminescent Polymeric Nanoparticles Containing Dynamic Linkages Via a One-Pot Multicomponent Reaction: Synthesis, Aggregation-Induced Emission and Biological Imaging. Mater. Sci. Eng. C 2017, 80, 708–714.
  • Cao, Q.; Jiang, R.; Liu, M.; Wan, Q.; Xu, D.; Tian, J.; Huang, H.; Wen, Y.; Zhang, X.; Wei, Y. Preparation of AIE-Active Fluorescent Polymeric Nanoparticles Through a Catalyst-Free Thiol-yne Click Reaction for Bioimaging Applications. Mater. Sci. Eng. C 2017, 80, 411–416.
  • Cao, Q.; Jiang, R.; Liu, M.; Wan, Q.; Xu, D.; Tian, J.; Huang, H.; Wen, Y.; Zhang, X.; Wei, Y. Microwave-Assisted Multicomponent Reactions for Rapid Synthesis of AIE-Active Fluorescent Polymeric Nanoparticles by Post-Polymerization Method. Mater. Sci. Eng. C 2017, 80, 578–583.
  • Huang, L.; Liu, M.; Mao, L.; Zhang, X.; Xu, D.; Wan, Q.; Huang, Q.; Shi, Y.; Deng, F.; Zhang, X.; et al. Polymerizable Aggregation-Induced Emission Dye for Preparation of Cross-Linkable Fluorescent Nanoprobes with Ultra-Low Critical Micelle Concentrations. Mater. Sci. Eng. C 2017, 76, 586–592
  • Wan, Q.; Liu, M.; Mao, L.; Jiang, R.; Xu, D.; Huang, H.; Dai, Y.; Deng, F.; Zhang, X.; Wei, Y. Preparation of Pegylated Polymeric Nanoprobes with Aggregation-Induced Emission Feature Through the Combination of Chain Transfer Free Radical Polymerization and Multicomponent Reaction: Self-Assembly, Characterization and Biological Imaging Applications. Mater. Sci. Eng. C 2017, 72, 352–358.
  • Long, Z.; Liu, M.; Mao, L.; Zeng, G.; Huang, Q.; Huang, H.; Deng, F.; Wan, Y.; Zhang, X.; Wei, Y. One-Step Synthesis, Self-Assembly and Bioimaging Applications of Adenosine Triphosphate Containing Amphiphilies with Aggregation-Induced Emission Feature. Mater. Sci. Eng. C 2017, 73, 252–256.
  • Yu, S.; Xu, D.; Wan, Q.; Liu, M.; Tian, J.; Huang, Q.; Deng, F.; Wen, Y.; Zhang, X.; Wei, Y. Construction of Biodegradable and Biocompatible AIE-Active Fluorescent Polymeric Nanoparticles By CE(IV)/HNO3 Redox Polymerization in Aqueous Solution. Mater. Sci. Eng. C 2017, 78, 191–197.
  • Huang, H.; Xu, D.; Liu, M.; Jiang, R.; Mao, L.; Huang, Q.; Wan, Q.; Wen, Y.; Zhang, X.; Wei. Y. Direct Encapsulation of AIE-Active Dye with Β Cyclodextrin Terminated Polymers: Self-Assembly and Biological Imaging. Mater. Sci. Eng. C 2017, 78, 862–867.
  • Long, Z.; Mao, L.; Liu, M.; Wan, Q.; Wan, Y.; Zhang, X.; Wei, Y. Marrying Multicomponent Reactions and Aggregation-Induced Emission (AIE): New Directions for Fluorescent Nanoprobes. Polym. Chem., 2017, 8, 5644–5654.
  • Zeng, G.; Liu, M.; Jiang, R.; Huang, Q.; Huang, L.; Wan, Q.; Dai, Y.; Wen, Y.; Zhang, X.; Wei, Y. Fabrication of Water Dispersible and Biocompatible AIE-Active Fluorescent Polymeric Nanoparticles Through a “One-Pot” Mannich Reaction. Polym. Chem., 2017, 8, 4746–4751.
  • Luxenhofer, R.; Han, Y.; Schulz, A.; Tong, J.; He, Z.; Kabanov, A. V.; Jordan, R. Poly(2-Oxazoline)s as Polymer Therapeutics. Macromol. Rapid Commun. 2012, 33, 1613–1631.
  • Sedlacek, O.; Monnery, B. D.; Filippov, S. K.; Hoogenboom, R.; Hruby, M. Poly(2-Oxazoline)s Are They More Advantageous for Biomedical Applications Than Other Polymers? Macromol. Rapid Commun. 2012, 33, 1648–1662.
  • Guillerm, B.; Monge, S.; Lapinte, V.; Robin, J.-J. How to Modulate the Chemical Structure of Polyoxazolines by Appropriate Functionalization? Macromol. Rapid Commun. 2012, 33, 1600–1612.
  • Rossegger, E.; Schenk, V.; Wiesbrock, F. Design Strategies for Functionalized Poly(2-Oxazoline)s and Derived Materials. Polymers 2013, 5, 956–1011.
  • Bauer, M.; Schroeder, S.; Tauhardt, L.; Kempe, K.; Schubert, U.S.; Fischer, D. In Vitro Hemocompatibility and Cytotoxicity Study of Poly(2-Methyl-2-Oxazoline) for Biomedical Applications. J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 1816–1821.
  • Tauhardt, L.; Kempe, K.; Gottschaldt, M.; Schubert, U. S. Poly(2-Oxazoline) Functionalized Surfaces: From Modification to Application. Chem. Soc. Rev. 2013, 42, 7998–8011.
  • de la Rosa, V. R. Poly(2-Oxazoline)s as Materials for Biomedical Applications. J. Mater. Sci.: Mater. Med. 2014, 25, 1211–1225.
  • Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S. Poly(Ethylene Glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew. Chem., Int. Ed. 2010, 49, 6288–6308.
  • Bauer, M.; Lautenschlaeger, C.; Kempe, K.; Tauhardt, L.; Schubert, U. S.; Fischer, D. Poly(2-Ethyl-2-Oxazoline) as Alternative for the Stealth Polymer Poly(Ethylene Glycol): Comparison of In Vitro Cytotoxicity and Hemocompatibility. Macromol. Biosci. 2012, 12, 986–998.
  • Kempe, K.; Hoogenboom, R.; Jaeger, M.; Schubert, U. S. Three Fold Metal-Free Efficient Reactions Onto a Multifunctional Poly(2-Oxazoline) Scaffold. Macromolecules 2011, 44, 6424–6432.
  • Kempe, K.; Weber, C.; Babiuch, K.; Gottschaldt, M.; Hoogenboom, R.; Schubert, U. S. Responsive Glyco-Poly(2-Oxazoline)s: Synthesis, Cloud Point Tuning, and Lectin Binding. Biomacromolecules 2011, 12, 2591–2600.
  • Gress, A.; Volkel, A.; Schlaad, H. Thio-Click Modification of Poly[2-(3-Butenyl)-2-Oxazoline]. Macromolecules 2007, 40, 7928–7933.
  • Kempe, K.; Neuwirth, T.; Czaplewska, J.; Gottschaldt, M.;Hoogenboom, R.; Schubert, U. S. Poly(2-Oxazoline) Glycopolymers with Tunable LCST Behavior. Polym. Chem. 2011, 2, 1737–1743.
  • Tauhardt, L.; Pretzel, D.; Bode, S.; Czaplewska, J. A.; Kempe, K.; Gottschaldt, M.; Schubert, U. S. Synthesis and In Vitro Activity of Platinum Containing 2-Oxazoline-Based Glycopolymers. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2703–2714.
  • Schmidt, M.; Harmuth, S.; Barth, E. R.; Wurm, E.; Fobbe, R.; Sickmann, A.; Krumm, C.; Tiller, J. C. Conjugation of Ciprofloxacin with Poly(2-Oxazoline)s and Polyethylene Glycol Via End Groups. Bioconjugate Chem. 2015, 26, 1950–1962.
  • Fisher, R. E.; Siegel, B. A.; Edell, S. L.; Oyesiku, N. M.; Morgenstern, D. E.; Messmann, R. A.; Amato, R. J. Exploratory Study of 99MTC-EC20 Imaging for Identifying Patients with Folate Receptor-Positive Solid Tumors. J. Nucl. Med. 2008, 48, 899–906.
  • Luxenhofer, R.; Han, Y.; Schulz, A.; Tong, J.; He, Z.; Kabanov, A. V.; Jordan, R. Poly(2-Oxazoline)s as Polymer Therapeutics. Macromol. Rapid Commun. 2012, 33, 1613–1631.
  • Low, P. S.; Henne, W. A.; Doorneweerd, D. D. Discovery and Development of Folic-Acid-Based Receptor Targeting for Imaging and Therapy of Cancer and Inflammatory Diseases. Acc. Chem. Res. 2008, 41, 120–129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.