2,337
Views
6
CrossRef citations to date
0
Altmetric
Articles

Capillary alginate gel (Capgel™) for the treatment of full-thickness dermal wounds in a hypoxic mouse model

, , , , , , , & show all
Pages 1108-1117 | Received 09 Jul 2018, Accepted 06 Oct 2018, Published online: 10 Dec 2018

References

  • Rice, J. B.; Desai, U.; Cummings, A. K. G.; Birnbaum, H. G.; Skornicki, M.; Parsons, N. B., Burden of Diabetic Foot Ulcers for Medicare and Private Insurers (vol 37, pg 651, 2014). Diabetes Care. 2014, 37(9), 2660–2660. DOI:10.2337/dc14-er09
  • Rice J. B.; Desai, U.; Cummings, A. K. G.; Birnbaum, H. G.; Skornicki, M.; Parsons, N. Burden of Venous Leg Ulcers in the United States. J. Med. Econ. 2014, 17(5), 347–356. DOI: 10.3111/13696998.2014.903258
  • Russo, C. A.; Spector, W. Hospitalizations Related to Pressure Ulcers, 2006. HCUP Statistical Brief #64. December 2008. Agency for Healthcare Research and Quality, Rockville, MD.
  • Rodero, M. P.; Khosrotehrani, K. Skin Wound Healing Modulation by Macrophages. Int. J. Clin. Exp. Pathol. 2010, 3(7), 643–653.
  • Gurtner, G. C.; Werner, S.; Barrandon, Y.; Longaker, M. T. Wound Repair and Regeneration. Nature. 2008, 453(7193), 314–321. DOI: 10.1038/nature07039
  • Leibovich, S. J.; Ross R. The Role of the Macrophage in Wound Repair. A Study with Hydrocortisone and Antimacrophage Serum. Am. J. Pathol. 1975, 78(1), 71–100.
  • Kim, M. H.; Liu, W.; Borjesson, D. L.; Curry, F. R. E.; Miller, L. S.; Cheung, A. L.; Liu, F. T.; Isseroff, R. R.; Simon, S. I. Dynamics of Neutrophil Infiltration During Cutaneous Wound Healing and Infection Using Fluorescence Imaging. J. Invest. Dermatol. 2008, 128(7), 1812–1820. DOI: 10.1038/sj.jid.5701223
  • Schurmann, C.; Seitz, O.; Sader, R.; Pfeilschifter, J.; Goren, I.; Frank, S. Role of Wound Macrophages in Skin Flap Loss or Survival in an Experimental Diabetes Model. British J. Surg. 2010, 97(9), 1437–1451. DOI: 10.1002/bjs.7123
  • Schultz, G.S.; Grant, M. B. Neovascular Growth Factors. Eye (Lond). 1991, 5(Pt 2), 170–180. DOI: 10.1038/eye.1991.31
  • Schultz, G. S.; Wysocki, A. Interactions Between Extracellular Matrix and Growth Factors in Wound Healing. Wound Rep. Regeneration. 2009, 17(2), 153–162. DOI: 10.1111/j.1524-475X.2009.00466.x
  • Kolluru, G. K.; Bir, S. C.; Kevil, C. G., Endothelial Dysfunction and Diabetes: Effects On Angiogenesis, Vascular Remodeling, and Wound Healing. Int. J. Vasc. Med. 2012, 2012, 918267.
  • Alijotas-Reig, J.; Fernandez-Figueras, M. T.; Puig, L. Late-Onset Inflammatory Adverse Reactions Related to Soft Tissue Filler Injections. Clin. Rev. Allergy Immunol. 2013, 45(1), 97–108. DOI: 10.1007/s12016-012-8348-5
  • Li, Z. Y.; Yuan, B. M.; Dong, X. M.; Duan, L. J.; Tian, H. Y.; He, C. L.; Chen, X. S., Injectable Polysaccharide Hybrid Hydrogels As Scaffolds for Burn Wound Healing. RSC Adv. 2015, 5(114), 94248–94256. DOI: 10.1039/C5RA16912G
  • Xu, Q.; Sigen, A.; Gao, Y. S.; Guo, L. R.; Creagh-Flynn, J.; Zhou, D. Z.; Greiser, U.; Dong, Y. X.; Wang, F. G.; Tai, H. Y.; et al. A Hybrid Injectable Hydrogel from Hyperbranched PEG Macromer as a Stem Cell Delivery and Retention Platform for Diabetic Wound Healing. Acta Biomaterialia. 2018, 75, 63–74. DOI: 10.1016/j.actbio.2018.05.039
  • Clayman, M. A.; Clayman, S. M.; Mozingo, D. W., The Use of Collagen-Glycosaminoglycan Copolymer (Integra) for the Repair of Hypertrophic Scars and Keloids. J. Burn Care Res. 2006, 27(3), 404–409. DOI: 10.1097/01.BCR.0000216749.72080.89
  • Griffin, D. R.; Weaver, W. M.; Scumpia, P. O.; Di Carlo, D.; Segura, T., Accelerated Wound Healing by Injectable Microporous Gel Scaffolds Assembled From Annealed Building Blocks. Nature Mater. 2015, 14(7), 737–+. DOI: 10.1038/nmat4294
  • Willenberg, B. J.; Hamazaki, T.; Meng, F. W.; Terada, N.; Batich, C., Self-Assembled Copper-Capillary Alginate Gel Scaffolds with Oligochitosan Support Embryonic Stem Cell Growth. J. Biomed. Mater. Res. Part A. 2006, 79A(2), 440–450. DOI: 10.1002/jbm.a.30942
  • Della Rocca, D. G.; Willenberg, B. J.; Qi, Y. F.; Simmons, C. S.; Rubiano, A.; Ferreira, L. F.; Huo, T.; Petersen, J. W.; Ruchaya, P. J.; Wate, P. S.; et al. An Injectable Capillary-Like Microstructured Alginate Hydrogel Improves Left Ventricular Function After Myocardial Infarction in Rats. Int. J. Cardiol. 2016, 220, 149–154. DOI: 10.1016/j.ijcard.2016.06.158
  • Goffin, J. M.; Pittet, P.; Csucs, G.; Lussi, J. W.; Meister, J. J.; Hinz, B. Focal Adhesion Size Controls Tension-Dependent Recruitment of Alpha-Smooth Muscle Actin to Stress Fibers. J. Cell Biol. 2006, 172(2), 259–268. DOI: 10.1083/jcb.200506179
  • Pelton, J. C.; Wright, C. E.; Leitges, M.; Bautch, V. L., Multiple Endothelial Cells Constitute the Tip of Developing Blood Vessels and Polarize to Promote Lumen Formation. Development. 2014, 141(21), 4121–4126. DOI: 10.1242/dev.110296
  • Willenberg, B. J.; Zheng, T.; Meng, F. W.; Meneses, J. C.; Rossignol, C.; Batich, C. D.; Terada, N.; Steindler, D. A.; Weiss, M. D., Gelatinized Copper-Capillary Alginate Gel Functions as an Injectable Tissue Scaffolding System for Stem Cell Transplants. J. Biomater. Sci. Polym. Ed. 2011, 22(12), 1621–1637. DOI: 10.1163/092050610X519453
  • Rendell M. S.; Milliken, B. K.; Finnegan, M. F.; Finney, D. E.; Healy, J. C.; Bonner, R. F. The Microvascular Composition of the Healing Wound Compared At Skin Sites with Nutritive Versus Arteriovenous Perfusion. J. Surg. Res. 1998, 80(2), 373–379. DOI: 10.1006/jsre.1998.5463
  • Howdieshell, T. R.; Callaway, D.; Webb, W. L.; Gaines, M. D.; Procter, C. D.; Sathyanarayana; Pollock, J. S.; Brock, T. L.; McNeil, P. L. Antibody Neutralization of Vascular Endothelial Growth Factor Inhibits Wound Granulation Tissue Formation. J. Surg. Res. 2001, 96(2), 173–182. DOI: 10.1006/jsre.2001.6089
  • O'Brien, F. J. Biomaterials & Scaffolds for Tissue Engineering. Mater. Today 2011, 14(3), 88–95. DOI: 10.1016/S1369-7021(11)70058-X
  • Zhong, S. P.; Zhang, Y. Z.; Lim, C. T., Tissue Scaffolds for Skin Wound Healing and Dermal Reconstruction. Wiley Interdisciplinary Rev. Nanomed. Nanobiotechnol. 2010, 2(5), 510–525. DOI: 10.1002/wnan.100
  • Spater, T.; Frueh, F. S.; Metzger, W.; Menger, M. D.; Laschke, M. W., In Vivo Biocompatibility, Vascularization, and Incorporation of Integra((R)) Dermal Regenerative Template and Flowable Wound Matrix. J. Biomed. Mater. Res. Part B-Appl. Biomater. 2018, 106(1), 52–60. DOI: 10.1002/jbm.b.33813
  • Sun, G. M.; Zhang, X. J.; Shen, Y. I.; Sebastian, R.; Dickinson, L. E.; Fox-Talbot, K.; Reinblatt, M.; Steenbergen, C.; Harmon, J. W.; Gerecht, S. Dextran Hydrogel Scaffolds Enhance Angiogenic Responses and Promote Complete Skin Regeneration During Burn Wound Healing. Proc. Nat. Acad. Sci. USA 2011, 108(52), 20976–20981. DOI: 10.1073/pnas.1115973108
  • Lutolf, M. P.; Lauer-Fields, J. L.; Schmoekel, H. G.; Metters, A. T.; Weber, F. E.; Fields, G. B.; Hubbell, J. A. Synthetic Matrix Metalloproteinase-Sensitive Hydrogels for the Conduction of Tissue Regeneration: Engineering Cell-Invasion Characteristics. Proc. Nat. Acad. Sci. USA 2003, 100(9), 5413–5418. DOI: 10.1073/pnas.0737381100
  • Hellstrom, M.; Phng, L. K.; Hofmann, J. J.; Wallgard, E.; Coultas, L.; Lindblom, P.; Alva, J.; Nilsson, A. K.; Karlsson, L.; Gaiano, N.; et al. Dll4 Signalling Through Notch1 Regulates Formation of Tip Cells During Angiogenesis. Nature. 2007, 445(7129), 776–780. DOI: 10.1038/nature05571
  • Gerhardt, H. VEGF and Endothelial Guidance in Angiogenic Sprouting. Organogenesis. 2008, 4(4), 241–246. DOI: 10.4161/org.4.4.7414
  • Greenhalgh, D. G. The Role of Apoptosis in Wound Healing. Int. J. Biochem. Cell Biol. 1998, 30(9), 1019–1030. DOI: 10.1016/S1357-2725(98)00058-2
  • Shin, D. M.; Minn, K. W. The Effect of Myofibroblast On Contracture of Hypertrophic Scar. Plast. Reconstructive Surg. 2004, 113(2), 633–640. DOI: 10.1097/01.PRS.0000101530.33096.5B
  • Pettet, G. J.; Byrne, H. M.; McElwain, D. L. S.; Norbury, J. A Model of Wound-Healing Angiogenesis in Soft Tissue. Mathematical Biosci. 1996, 136(1), 35–63. DOI: 10.1016/0025-5564(96)00044-2
  • Guo, S.; DiPietro, L. A., Factors Affecting Wound Healing. J. Dental Res. 2010, 89(3), 219–229.
  • Ashcroft, G. S.; Mills, S. J.; Ashworth, J. J. Ageing and Wound Healing. Biogerontology. 2002, 3(6), 337–345.
  • Minimas, D. A. Ageing and Its Influence On Wound Healing. Wounds UK. 2007, 3(1), 42–50.
  • Demidova-Rice, T. N.; Hamblin, M. R.; Herman, I. M. Acute and Impaired Wound Healing: Pathophysiology and Current Methods for Drug Delivery, Part 1: Normal and Chronic Wounds: Biology, Causes, and Approaches to Care. Adv. Skin Wound Care. 2012, 25(7), 304–314.
  • Chen, C.; Schultz, G. S.; Bloch, M.; Edwards, P. D.; Tebes, S.; Mast, B. A. Molecular and Mechanistic Validation of Delayed Healing Rat Wounds as a Model for Human Chronic Wounds. Wound Rep. Regen. 1999, 7(6), 486–494.
  • Coulombe, P. A. Wound Epithelialization: Accelerating the Pace of Discovery. J. Invest. Dermatol. 2003, 121(2), 219–230.
  • Brown, L. F.; Berse, B.; Yeo, K. T.; Yeo, T. K.; Senger, D. R.; Dvorak, H. F.; Vandewater, L. Expression of Vascular-Permeability Factor Vascular Endothelial Growth-Factor (VPF VEGF) by Epidermal-Keratinocytes Durning Wound-Healing. Mol. Biol. Cell. 1992, 3, A333–A333.
  • Magin, C. M.; Neale, D. B.; Drinker, M. C.; Willenberg, B. J.; Reddy, S. T.; La Perle, K. M. D.; Schultz, G. S.; Brennan, A. B. Evaluation of a Bilayered, Micropatterned Hydrogel Dressing for Full-Thickness Wound Healing. Exp. Biol. Med. 2016, 241(9), 986–995.
  • Moll, R.; Divo, M.; Langbein, L. The Human Keratins: Biology and Pathology. Histochem. Cell Biol. 2008, 129(6), 705–733.
  • Pastar, I.; Stojadinovic, O.; Yin, N. C.; Ramirez, H.; Nusbaum, A. G.; Sawaya, A.; Patel, S. B.; Khalid, L.; Isseroff, R. R.; Tomic-Canic, M. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care. 2014, 3(7), 445–464.