412
Views
27
CrossRef citations to date
0
Altmetric
Articles

Sciatic nerve regeneration with collagen type I hydrogel containing chitosan nanoparticle loaded by insulin

, , , , , , , , , & show all
Pages 1133-1141 | Received 16 Jul 2018, Accepted 06 Oct 2018, Published online: 10 Dec 2018

References

  • Ducatman, B. S.; Scheithauer, B. W.; Piepgras, D. G.; Reiman, H. M.; Ilstrup, D. M. Malignant Peripheral Nerve Sheath Tumors. A Clinicopathologic Study of 120 Cases. Cancer. 1986, 57(10), 2006–2021.
  • Silva, J. B.; Marchese, G. M.; Cauduro, C. G.; Debiasi, M. Nerve Conduits for Treating Peripheral Nerve Injuries: A Systematic Literature Review. Hand Surg. Rehabil. 2017, 36(2), 71–85.
  • Navarro, X.; Vivó, M.; Valero-Cabré, A. Neural Plasticity After Peripheral Nerve Injury and Regeneration. Prog. Neurobiol. 2007, 82(4), 163–201. DOI: 10.1016/j.pneurobio.2007.06.005
  • Tos, P.; Artiaco, S.; Papalia, I.; Marcoccio, I.; Geuna, S.; Battiston, B. End-to-Side Nerve Regeneration: From the Laboratory Bench to Clinical Applications. Int. Rev. Neurobiol. 2009, 87, 281–294. DOI: 10.1016/S0074-7742(09)87014-1
  • Ichihara, S.; Inada, Y.; Nakamura, T. Artificial Nerve Tubes and Their Application for Repair of Peripheral Nerve Injury: An Update of Current Concepts. Injury. 2008, 39, 29–39. DOI: 10.1016/j.injury.2008.08.029
  • Xu, X.; Yee, W.-C.; Hwang, P. Y.; Yu, H.; Wan, A. C.; Gao, S.; et al. Peripheral Nerve Regeneration With Sustained Release of Poly (phosphoester) Microencapsulated Nerve Growth Factor Within Nerve Guide Conduits. Biomaterials. 2003, 24(13), 2405–2412. DOI: 10.1016/S0142-9612(03)00109-1
  • Chandran, V.; Coppola, G.; Nawabi, H.; Omura, T.; Versano, R.; Huebner, EA.; et al. A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program. Neuron. 2016, 89(5), 956–970. DOI: 10.1016/j.neuron.2016.01.034
  • Tajdaran, K.; Gordon, T.; Wood, M. D.; Shoichet, M. S.; Borschel, G. H. A Glial Cell Line-Derived Neurotrophic Factor Delivery System Enhances Nerve Regeneration Across Acellular Nerve Allografts. Acta Biomaterialia. 2016, 29, 62–70. DOI: 10.1016/j.actbio.2015.10.001
  • Liu, Q.; Huang, J.; Shao, H.; Song, L.; Zhang, Y. Dual-Factor Loaded Functional Silk Fibroin Scaffolds for Peripheral Nerve Regeneration with the Aid of Neovascularization. RSC Adv. 2016, 6(9), 7683–7691. DOI: 10.1039/C5RA22054H
  • Rosenberg, S. S.; Spitzer, N. C. Calcium Signaling in Neuronal Development. Cold Spring Harbor Perspect. Biol. 2011, 3(10), a004259.
  • Besson, J. C. F.; Hernandes, L.; de Campos, J. M.; Morikawa, K. A.; Bersani-Amado, C. A.; Matioli, G. Insulin Complexed with Cyclodextrins Stimulates Epithelialization and Neovascularization of Skin Wound Healing in Rats. Injury. 2017, 48(11), 2417–2425. DOI: 10.1016/j.injury.2017.08.046
  • Yu, T.; Gao, M.; Yang, P.; Pei, Q.; Liu, D.; Wang, D.; et al. Topical Insulin Accelerates Cutaneous Wound Healing in Insulin-Resistant Diabetic Rats. Am. J. Translat. Res. 2017, 9(10), 4682.
  • Ehterami, A.; Salehi, M.; Farzamfar, S.; Vaez, A.; Samadian, H.; Sahrapeyma, H.; et al. In Vitro and In Vivo Study of PCL/Collagen Wound Dressing Loaded With Insulin-Chitosan Nanoparticles on Cutaneous Wound Healing in Rats Model. Int. J. Biolog. Macro. 2018, 117, 601–609.
  • Apfel, S. C. Neurotrophic Factors in the Therapy of Diabetic Neuropathy. Am. J. Med. 1999, 107(2), 34–42. DOI: 10.1016/S0002-9343(99)00011-X
  • Gasparini, L.; Netzer, W. J.; Greengard, P.; Xu, H. Does Insulin Dysfunction Play a Role in Alzheimer's Disease? Trends Pharmacol Sci. 2002, 23(6), 288–293. DOI: 10.1016/S0165-6147(02)02037-0
  • Kanje, M.; Skottner, A.; Sjo, J. Insulin-Like Growth Factor I (IGF-I) Stimulates Regeneration of the Rat Sciatic Nerve. Brain Res. 1989, 486(2), 396–398. DOI: 10.1016/0006-8993(89)90531-3
  • Rauskolb, S.; Dombert, B.; Sendtner, M. Insulin-Like Growth Factor 1 in Diabetic Neuropathy and Amyotrophic Lateral Sclerosis. Neurobiol. Dis. 2017, 97, 103–113. DOI: 10.1016/j.nbd.2016.04.007
  • Grenha, A.; Grainger, C. I.; Dailey, L. A.; Seijo, B.; Martin, G. P.; Remuñán-López, C.; et al. Chitosan Nanoparticles Are Compatible With Respiratory Epithelial Cells In Vitro. European J. Pharmaceut. Sci. 2007, 31(2), 73–84. DOI: 10.1016/j.ejps.2007.02.008
  • Issa, M. M.; Köping-Höggård, M.; Artursson, P. Chitosan and the Mucosal Delivery of Biotechnology Drugs. Drug Disc. Today Technol. 2005, 2(1), 1–6. DOI: 10.1016/j.ddtec.2005.05.008
  • Longo, F. M.; Hayman, E. G.; Davis, G. E.; Ruoslahti, E.; Engvall, E.; Manthorpe, M.; et al. Neurite-Promoting Factors and Extracellular Matrix Components Accumulating In Vivo Within Nerve Regeneration Chambers. Brain Res. 1984, 309(1), 105–117. DOI: 10.1016/0006-8993(84)91014-X
  • Yao, L.; de Ruiter, G. C.; Wang, H.; Knight, A. M.; Spinner, R. J; Yaszemski, M. J.; et al. Controlling Dispersion of Axonal Regeneration Using a Multichannel Collagen Nerve Conduit. Biomaterials. 2010, 31(22), 5789–5797. DOI: 10.1016/j.biomaterials.2010.03.081
  • Wallace, D. G.; Rosenblatt, J. Collagen Gel Systems for Sustained Delivery and Tissue Engineering. Adv. Drug Deliv. Rev. 2003, 55(12), 1631–1649. DOI: 10.1016/j.addr.2003.08.004
  • DeVore, D. P.; Dewoolfson, B. H.; Lazar, E. Collagen-based implants for sustained delivery of drugs. 2016, Google Patents.
  • Xing, R.; Liu, K.; Jiao, T.; Zhang, N.; Ma, K.; Zhang, R.; et al. An Injectable Self-Assembling Collagen–Gold Hybrid Hydrogel for Combinatorial Antitumor Photothermal/Photodynamic Therapy. Adv. Mater. 2016, 28(19), 3669–3676. DOI: 10.1002/adma.201600284
  • Salehi, M.; Naseri-Nosar, M.; Ebrahimi-Barough, S.; Nourani, M.; Khojasteh, A.; Hamidieh A. A.; et al. Sciatic Nerve Regeneration by Transplantation of Schwann Cells Via Erythropoietin Controlled-Releasing Polylactic Acid/Multiwalled Carbon Nanotubes/Gelatin Nanofibrils Neural Guidance Conduit. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106(4), 1463–1476. DOI: 10.1002/jbm.b.33952
  • Techatanawat, S.; Surarit, R.; Suddhasthira, T.; Khovidhunkit, S.-oP. Type I Collagen Extracted from Rat-Tail and Bovine Achilles Tendon for Dental Application: A Comparative Study. Asian Biomed, 2011, 5(6), 787–798.
  • Salehi, M.; Naseri-Nosar, M.; Ebrahimi-Barough, S.; Nourani, M.; Vaez, A.; Farzamfar, S.; et al. Regeneration of Sciatic Nerve Crush Injury by a Hydroxyapatite Nanoparticle-Containing Collagen Type I Hydrogel. J. Physiolog. Sci. 2018, 68(5), 579–587.
  • Santana, B. P.; Nedel, F.; Perelló Ferrúa, C.; e Silva, R. M.; da Silva, A. F.; Demarco, F. F.; et al. Comparing Different Methods to Fix and to Dehydrate Cells on Alginate Hydrogel Scaffolds Using Scanning Electron Microscopy. Microscopy Res. Techniq, 2015, 78(7), 553–561. DOI: 10.1002/jemt.22508
  • Beer, G. M.; Steurer, J.; Meyer, V. E. Standardizing Nerve Crushes with a Non-Serrated Clamp. J. Reconstruct. Microsurg. 2001, 17(07), 531–534. DOI: 10.1055/s-2001-17755
  • Gu, Y.; Zhu, J.; Xue, C.; Li, Z.; Ding, F.; Yang, Y.; et al. Chitosan/silk Fibroin-Based, Schwann Cell-Derived Extracellular Matrix-Modified Scaffolds for Bridging Rat Sciatic Nerve Gaps. Biomaterials. 2014, 35(7), 2253–2263. DOI: 10.1016/j.biomaterials.2013.11.087
  • Yang, S.; Leong, K.-F.; Du, Z.; Chua, C.-K. The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors. Tissue Eng. 2001, 7(6), 679–689. DOI: 10.1089/107632701753337645
  • Susuki, K.; Kuba, H. Activity-Dependent Regulation of Excitable Axonal Domains. J. Physiolog. Sci. 2016, 66(2), 99–104. DOI: 10.1007/s12576-015-0413-4
  • Farzamfar, S.; Naseri-Nosar, M.; Vaez, A.; Esmaeilpour, F.; Ehterami, A.; Sahrapeyma, H.; et al. Neural Tissue Regeneration by a Gabapentin-Loaded Cellulose Acetate/Gelatin Wet-Electrospun Scaffold. Cellulose. 2018, 25(2), 1229–1238. DOI: 10.1007/s10570-017-1632-z
  • Carballo-Molina, O.A.; Velasco, I. Hydrogels as Scaffolds and Delivery Systems to Enhance Axonal Regeneration After Injuries. Frontiers Cellular Neurosci. 2015, 9, 13.
  • O'Brien, F. J.; Harley, B.; Yannas, I. V.; Gibson, L. J. The Effect of Pore Size on Cell Adhesion in Collagen-GAG Scaffolds. Biomaterials. 2005, 26(4), 433–441. DOI: 10.1016/j.biomaterials.2004.02.052
  • Alberti, K. A.; Hopkins, A. M.; Tang-Schomer, M. D.; Kaplan, D. L.; Xu, Q. The Behavior of Neuronal Cells on Tendon-Derived Collagen Sheets As Potential Substrates for Nerve Regeneration. Biomaterials. 2014, 35(11), 3551–3557. DOI: 10.1016/j.biomaterials.2013.12.082
  • Hadjipanayi, E.; Mudera, V.; Brown, R. Close Dependence of Fibroblast Proliferation On Collagen Scaffold Matrix Stiffness. J. Tissue Eng. Regenerative Med. 2009. 3(2), 77–84. DOI: 10.1002/term.136
  • Syroid, D. E.; Zorick, T. S.; Arbet-Engels, C.; Kilpatrick, T. J.; Eckhart, W.; Lemke, G. A Role for Insulin-Like Growth Factor-I in the Regulation of Schwann Cell Survival. J. Neurosci. 1999, 19(6), 2059–2068. DOI: 10.1523/JNEUROSCI.19-06-02059.1999
  • Stewart, H. J.; Bradke, F.; Tabernero, A.; Morrell, D.; Jessen, K. R.; Mirsky, R. Regulation of Rat Schwann Cell Po Expression and DNA Synthesis by Insulin-like Growth Factors In Vitro. European J. Neurosci. 1996, 8(3), 553–564. DOI: 10.1111/j.1460-9568.1996.tb01240.x
  • Bain, J.; Mackinnon, S.; Hunter, D. Functional Evaluation of Complete Sciatic, Peroneal, and Posterior Tibial Nerve Lesions in the Rat. Plast. Reconstructive Surg. 1989, 83(1), 129–138. DOI: 10.1097/00006534-198901000-00024
  • Goto, E.; Mukozawa, M.; Mori, H.; Hara, M. A Rolled Sheet of Collagen Gel With Cultured Schwann Cells: Model of Nerve Conduit to Enhance Neurite Growth. J. Biosci. Bioeng. 2010, 109(5), 512–518. DOI: 10.1016/j.jbiosc.2009.11.002
  • Yoshii, S.; Oka, M.; Shima, M.; Taniguchi, A.; Akagi, M. 30 mm Regeneration of Rat Sciatic Nerve Along Collagen Filaments. Brain Res. 2002, 949(1-2), 202–208. DOI: 10.1016/S0006-8993(02)03149-9
  • Labrador, R. O.; Butı́, M.; Navarro, X. Influence of Collagen and Laminin Gels Concentration On Nerve Regeneration After Resection and Tube Repair. Exp. Neurol. 1998, 149(1), 243–252. DOI: 10.1006/exnr.1997.6650

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.