1,956
Views
104
CrossRef citations to date
0
Altmetric
Articles

Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer

, , , ORCID Icon & ORCID Icon
Pages 85-126 | Received 14 Oct 2018, Accepted 20 Oct 2018, Published online: 08 Feb 2019

References

  • Godage, R.; Chaudhari, A. Advanced drug delivery systems; Techmax Publication: Pune, 2017.
  • Sinha, V. R.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A. Poly-ϵ-caprolactone microspheres and nanospheres: an overview. Int. J. Pharm. 2004, 278, 1–23. DOI: 10.1016/j.ijpharm.2004.01.044.
  • Woodruff, M. A.; Hutmacher, D. W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256. DOI:10.1016/j.progpolymsci.2010.04.002.
  • Sivabalan, A.; Subramani, R. H.; Meenarathi, B.; Palanikumar, S.; Anbarasan, R. Synthesis and Characterization of poly(ε-caprolactone): A comparative study. Int. J. Sci. Res. Eng. Technol. 2014, 1, 9–14.
  • Dash, T. K.; Konkimalla, V. B. Poly-J-caprolactone based formulations for drug delivery and tissue engineering: A review. J. Controlled Release 2012,158, 15–33. DOI: 10.1016/j.jconrel.2011.09.064.
  • Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf., B 2010,75, 1–18. DOI: 10.1016/j.colsurfb.2009.09.001.
  • Palamà, I. E.; Arcadio, V.; D’Amone, S.; Biasiucci, M.; Gigli, G.; Cortese, B. Therapeutic PCL scaffold for reparation of resected osteosarcoma defect. Sci. Rep. 2017,7, 12672. DOI: 10.1038/s41598-017-12824-3.
  • Rai, B.; Teoh, S. H.; Hutmacher, D. W.; Cao, T.; Ho, K. H. Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials 2005,26, 3739–3748. DOI: 10.1016/j.biomaterials.2004.09.052.
  • Singh, M.; Manikandan, S.; Kumaraguru, A. K. Nanoparticles: a new technology with wide applications. Res. J. Nanosci. Nanotechnol. 2010, 1, 1–11. DOI: 10.3923/rjnn.2010.
  • Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R. A.; Alves, F.; Andrews, A. M.; Ashraf, S.; Balogh, L. P.; Ballerini, L.; Bestetti, A.; Brendel, C.; et al. Diverse Applications of Nanomedicine. ACS Nano. 2017, 11, 2313–2381. DOI: 10.1021/acsnano.6b06040.
  • Singh, S. Nanomedicine-Nanoscale Drugs and Delivery Systems. J. Nanosci. Nanotechnol. 2010, 10, 7906–7918.DOI: 10.1166/jnn.2010.3617.
  • Forman, D.; Ferlay, J. The global and regional burden of cancer. In World cancer report 2014, 1st ed.; Stewart, B. W., Wild, C. P., Eds.; International Agency for Research on Cancer: Lyon, 2014; pp 16–53.
  • Torre, L. A.; Bray, F.; Siegel, R. L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. DOI: 10.3322/caac.21262.
  • Sinha, R.; Kim, G. J.; Nie, S.; Shin, D. M. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther. 2006, 5, 1909–1917. DOI: 10.1158/1535-7163.
  • Wilczewska, A. Z.; Niemirowicz, K.; Markiewicz, K. H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012, 64,1020–1037. DOI: 10.1016/S1734-1140(12)70901-5.
  • Nakache, E.; Poulain, N.; Candau, F.; Orecchioni, A.-M.; Irache, J. M. Biopolymer and polymer nanoparticles and their biomedical applications. In Handbook of Nanostructured Materials and Nanotechnology: Organics, polymers, and biological materials, 1st ed.; Nalwa, H. S., Ed.; Academic Press: Cambridge, 1999; Vol.5, pp 577–635.
  • Singh, R.; Lillard, J. W.Jr. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009, 86, 215–223. DOI: 10.1016/j.yexmp.2008.12.004.
  • Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Delivery Rev. 2003, 55, 329–347. DOI: 10.1016/S0169-409X(02)00228-4.
  • Lee, J. S.; Feijen, J. Polymersomes for drug delivery: Design, formation and characterization. J. Controlled Release2012,161, 473–483. DOI: 10.1016/j.jconrel.2011.10.005.
  • Noriega-Luna, B.; Godínez, L. A.; Rodríguez, F. J.; Rodríguez, A.; Zaldívar-Lelo de Larrea, G.; Sosa-Ferreyra, C. F.; Mercado-Curiel, R. F.; Manríquez, J.; Bustos, E. Applications of Dendrimers in Drug Delivery Agents, Diagnosis, Therapy, and Detection. J. Nanomater.2014, 2014, 1–19. DOI: 10.1155/2014/507273.
  • Aliabadi, H. M.; Lavasanifar, A. Polymeric micelles for drug delivery. Expert Opin. Drug Delivery, 2006,3, 139–162. DOI: 10.1517/17425247.3.1.139.
  • Pinto Reis, C.; Neufeld, R. J.; Ribeiro, A. J.; Veiga, F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine, 2006, 2, 8–21. DOI:10.1016/j.nano.2005.12.003.
  • Nair, L. S.; Laurencin, C. T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. DOI: 10.1016/j.progpolymsci.2007.05.017.
  • Shenoy, D. B.; Amiji, M. M. Poly(ethylene oxide)-modified poly(ɛ-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int. J. Pharm. 2005,293, 261–270. DOI: 10.1016/j.ijpharm.2004.12.010.
  • Wei, X.; Gong, C.; Gou, M.; Fu, S.; Guo, Q.; Shi, S.; Luo, F.; Guo, G.; Qiu, L.; Qian, Z. Biodegradable poly(ɛ-caprolactone)–poly(ethylene glycol) copolymers as drug delivery system. Int. J. Pharm. 2009, 381, 1–18. DOI:10.1016/j.ijpharm.2009.07.033.
  • Varan, C.; Bilensoy, E. Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment. Beilstein J. Nanotechnol. 2017, 8, 1446–1456. DOI: 10.3762/bjnano.8.144.
  • Pitt, C. G.; Chasalow, F. I.; Hibionada, Y. M.; Klimas, D. M.; Schindler, A. Aliphatic polyesters. I. The degradation of poly(ϵ-caprolactone) in vivo. J. Appl. Polym. Sci. 1981,26, 3779–3787. DOI:10.1002/app.1981.070261124.
  • Woodward, S. C.; Brewer, P. S.; Moatamed, F.; Schindler, A.; Pitt, C. G. The intracellular degradation of poly(ε-caprolactone). J. Biomed. Mater. Res., Part A 1985, 19, 437–444. DOI: 10.1002/jbm.820190408.
  • Pitt, C. G. Poly-ε-Caprolactone and its Copolymers. In Biodegradable Polymers as Drug Delivery Systems, 1st ed.; Chasin, M., Langer, R., Eds.; Marcel Decker Inc.: New York, 1990; pp 71–120.
  • Sun, H.; Mei, L.; Song, C.; Cui, X.; Wang, P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials, 2006, 27, 1735–1740. DOI: 10.1016/j.biomaterials.2005.09.019.
  • Vert, M.; Li, S. M.; Spenlehauer, G.; Guerin, P. Bioresorbability and biocompatibility of aliphatic polyesters. J. Mater. Sci.: Mater. Med. 1992, 3, 432–446. DOI: 10.1007/BF00701240.
  • Sisson, A. L.; Ekinci, D.; Lendlein, A. The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures. Polymer, 2013, 54, 4333–4350. DOI: 10.1016/j.polymer.2013.04.045.
  • Kanehisa, M.; Goto, S.; Kawashima, S.; Nakaya, A. The KEGG databases at GenomeNet. Nucleic Acids Res. 2002, 30, 42–46. DOI: 10.1093/nar/30.1.42.
  • Wishart, D. S.; Feunang, Y. D.; Marcu, A.; Guo, A. C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. DOI: 10.1093/nar/gkx1089.
  • Bates, C. J.; Edwards, G.; Downes, R.; Coward, A. [13C]adipic acid as a probe of fatty acid oxidation in human subjects: feasibility study and pilot trial of correction of endemic riboflavin deficiency in The Gambia. J. Nutr. Biochem. 1991, 2, 214–221. DOI: 10.1016/0955-2863(91)90019-2.
  • Ulery, B. D.; Nair, L. S.; Laurencin, C. T. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci., Part B: Polym. Phys. 2011, 49, 832–864. DOI: 10.1002/polb.22259.
  • Gatoo, M. A.; Naseem, S.; Arfat, M. Y.; Dar, A. M.; Qasim, K.; Zubair, S. Physicochemical Properties of Nanomaterials: Implication in Associated Toxic Manifestations. Biomed Res. Int. 2014, 2014, 1–8. DOI: 10.1155/2014/498420.
  • Chawla, J. S.; Amiji, M. M. Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharm. 2002, 249, 127–138. DOI: 10.1016/S0378-5173(02)00483-0.
  • Funabashi, M.; Ninomiya, F.; Kunioka, M. Biodegradation of Polycaprolactone Powders Proposed as Reference Test Materials for International Standard of Biodegradation Evaluation Method. J. Polym. Environ. 2007, 15, 7–17. DOI: 10.1007/s10924-006-0041-4.
  • Gan, Z.; Fung, J. T.; Jing, X.; Wu, C.; Kuliche, W. K. A novel laser light-scattering study of enzymatic biodegradation of poly(ε-caprolactone) nanoparticles. Polymer, 1999, 40, 1961–1967. DOI: 10.1016/S0032-3861(98)00414-5.
  • Wu, C.; Jim, T. F.; Gan, Z.; Zhao, Y.; Wang, S. A heterogeneous catalytic kinetics for enzymatic biodegradation of poly(ϵ-caprolactone) nanoparticles in aqueous solution. Polymer 2000, 41, 3593–3597. DOI: 10.1016/S0032-3861(99)00586-8.
  • Chen, D. R.; Bei, J. Z.; Wang, S. G. Polycaprolactone microparticles and their biodegradation. Polym. Degrad. Stab. 2000, 67, 455–459. DOI: 10.1016/S0141-3910(99)00145-7.
  • Hoshino, A.; Isono, Y. Degradation of aliphatic polyester films by commercially available lipases with special reference to rapid and complete degradation of poly(L-lactide) film by lipase PL derived from Alcaligenes sp. Biodegradation, 2002, 13, 141–147. DOI:10.1023/A:1020450326301.
  • Gan, Z.; Liang, Q.; Zhang, J.; Jing, X. Enzymatic degradation of poly(ε-caprolactone) film in phosphate buffer solution containing lipases. Polym. Degrad. Stab. 1997, 56, 209–213. DOI:10.1016/S0141-3910(96)00208-X.
  • Martins, A. M.; Pham, Q. P.; Malafaya, P. B.; Sousa, R. A.; Gomes, M. E.; Raphael, R. M.; Kasper, F. K.; Reis, R. L.; Mikos, A. G. The Role of Lipase and α-Amylase in the Degradation of Starch/Poly(ɛ-Caprolactone) Fiber Meshes and the Osteogenic Differentiation of Cultured Marrow Stromal Cells. Tissue Eng., Part A, 2009, 15, 295–305. DOI:10.1089/ten.tea.2008.0025.
  • Tietz, N. W.; Shuey, D. F. Lipase in serum–the elusive enzyme: an overview. Clin. Chem. 1993, 39, 746–756.
  • Jenkins, M. J.; Harrison, K. L. The effect of crystalline morphology on the degradation of polycaprolactone in a solution of phosphate buffer and lipase. Polym. Adv. Technol. 2008, 19, 1901–1906. DOI:10.1002/pat.1227.
  • Surnar, B.; Jayakannan, M. Structural Engineering of Biodegradable PCL Block Copolymer Nanoassemblies for Enzyme-Controlled Drug Delivery in Cancer Cells. ACS Biomater. Sci. Eng. 2016, 2, 1926–1941. DOI: 10.1021/acsbiomaterials.6b00310.
  • Surnar, B.; Jayakannan, M. Triple Block Nanocarrier Platform for Synergistic Cancer Therapy of Antagonistic Drugs. Biomacromolecules, 2016, 17, 4075–4085. DOI: 10.1021/acs.biomac.6b01608.
  • Orts-Gil, G.; Natte, K.; Österle, W. Multi-parametric reference nanomaterials for toxicology: state of the art, future challenges and potential candidates. RSC Adv. 2013, 3, 18202–18215. DOI: 10.1039/C3RA42112K.
  • Kariduraganavar, M. Y.; Kittur, A. A.; Kamble, R. R. Polymer Synthesis and Processing. In Natural and Synthetic Biomedical Polymers, 1st ed.; Kumbar, S. G., Laurencin, C. T., Deng, M., Eds.; Elsevier Inc.: Burlington, 2014; pp 1–31.
  • Heiny, M.; Wurth, J. J.; Shastri, V. P. Progress in Functionalized Biodegradable Polyesters. In Natural and Synthetic Biomedical Polymers, 1st ed.; Kumbar, S. G., Laurencin, C. T., Deng, M., Eds.; Elsevier Inc.: Burlington, 2014; pp 167–180.
  • Jenkins, M. J.; Harrison, K. L. The effect of molecular weight on the crystallization kinetics of polycaprolactone. Polym. Adv. Technol. 2006, 17, 474–478. DOI: 10.1002/pat.733.
  • Bordes, C.; Fréville, V.; Ruffin, E.; Marote, P.; Gauvrit, J. Y.; Briançon, S.; Lánteri, P. Determination of poly(ɛ-caprolactone) solubility parameters: Application to solvent substitution in a microencapsulation process. Int. J. Pharm. 2010, 383, 236–243. DOI: 10.1016/j.ijpharm.2009.09.023.
  • Lide, D. R. CRC Handbook of Chemistry and Physics, CRC Press: Boca Raton, 2003.
  • Akitake, B.; Spelbrink, R. E.; Anishkin, A.; Killian, J. A.; de Kruijff, B.; Sukharev, S. 2,2,2-Trifluoroethanol Changes the Transition Kinetics and Subunit Interactions in the Small Bacterial Mechanosensitive Channel MscS. Biophys. J.2007, 92, 2771–2784. DOI:10.1529/biophysj.106.098715.
  • Wagner, F. S. Jr. Acetyl Chloride. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed.; Howe-Grant, M., Kroschwitz, J. I., Eds.; Wiley: New York, 1991; Vol.1, pp 155–157.
  • Labet, M.; Thielemans, W. Synthesis of polycaprolactone: a review. Chem. Soc. Rev. 2009, 38, 3484–3504. DOI: 10.1039/B820162P.
  • Azimi, B.; Nourpanah, P.; Rabiee, M.; Arbab, S. Poly(ε-caprolactone) Fiber: An overview. J. Eng. Fibers Fabr. 2014, 9, 74–90.
  • Clark, E.; Childers, C. W. Impact-resistant plastics from blends of poly(styrene/acrylonitrile) with ϵ-caprolactone block copolymers. J. Appl. Polym. Sci. 1978, 22, 1081–1092. DOI: 10.1002/app.1978.070220417.
  • Manzini, G.; Crescenzi, V. Heat of dilution and density data for poly(β-propiolactone) and poly(ε-caprolactone) in dioxane. Polymer, 1973, 14, 343–346. DOI: 10.1016/0032-3861(73)90017-7.
  • Ketelaars, A.A.J.; Papantoniou, Y.; Nakayama, K. Analysis of the density and the enthalpy of poly(ϵ-caprolactone)-polycarbonate blends: Amorphous phase compatibility and the effect of secondary crystallization. J. Appl. Poly. Sci. 1997, 66, 921–927. DOI: 10.1002/(SICI)1097-4628(19971031)66:5 < 921::AID-APP12 > 3.0.CO;2-Q.
  • Lebedev, B.; Yevstropov, A. Thermodynamic properties of polylactones. Macromol. Chem. Phys. 1984, 185, 1235–1253. DOI: 10.1002/macp.1984.021850617.
  • Gautam, S.; Dinda, A. K.; Mishra, N. C. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 1228–1235. DOI: 10.1016/j.msec.2012.12.015.
  • Wu, C.-S. Physical properties and biodegradability of maleated-polycaprolactone/starch composite. Polym. Degrad. Stab. 2003, 80, 127–134. DOI: 10.1016/S0141-3910(02)00393-2.
  • Wu, C.-S. A comparison of the structure, thermal properties, and biodegradability of polycaprolactone/chitosan and acrylic acid grafted polycaprolactone/chitosan. Polymer, 2005, 46, 147–155. DOI: 10.1016/j.polymer.2004.11.013.
  • Cama, G.; Mogosanu, D. E.; Houben, A.; Dubruel, P. Synthetic biodegradable medical polyesters: poly-ε-caprolactone. In Science and Principles of Biodegradable and Bioresorbable Medical Polymers: Materials and Properties, 1st ed.; Zhang, X., Ed.; Woodhead Publishing: Cambridge, 2016; pp 79–105
  • Mahapatro, A.; Kumar, A.; Gross, R. A. Mild, Solvent-Free ω-Hydroxy Acid Polycondensations Catalyzed by Candida antarctica Lipase B. Biomacromolecules, 2004,5, 62–68. DOI:10.1021/bm0342382.
  • Dong, H.; Wang, H.-D.; Cao, S.-G.; Shen, J.-C. Lipase-catalyzed polymerization of lactones and linear hydroxyesters. Biotechnol. Lett. 1998, 20, 905–908. DOI: 10.1023/A:1005441707356.
  • Braud, C.; Devarieux, R.; Atlan, A.; Ducos, C.; Vert, M. Capillary zone electrophoresis in normal or reverse polarity separation modes for the analysis of hydroxy acid oligomers in neutral phosphate buffer. J. Chromatogr. B: Biomed. Sci. Appl. 1998, 706, 73–82. DOI: 10.1016/S0378-4347(97)00468-4">10.1016/S0378-4347(97)00468-4.
  • Nuyken, O.; Pask, S. D. Ring-Opening Polymerization—An Introductory Review. Polymers 2013, 5, 361–403. DOI: 10.3390/polym5020361.
  • Li, H. Advanced Biodegradable Organic Polymers. In Advanced Functional Materials, 1st ed.; Woo, H.-G., Li, H., Eds.; Springer: Berlin, 2011; pp 37–64.
  • Basko, M. Activated monomer mechanism in the cationic polymerization of L,L-lactide. Pure Appl. Chem. 2012, 84, 2081–2088. DOI: 10.1351/PAC-CON-11-10-19.
  • Ikpo, N.; Hoffmann, C.; Dawe, L. N.; Kerton, F. M. Ring-opening polymerization of ε-caprolactone by lithium piperazinyl-aminephenolate complexes: synthesis, characterization and kinetic studies. Dalton Trans. 2012, 41, 6651–6660. DOI: 10.1039/C2DT30276D.
  • Zhao, H.; Nathaniel, G. A.; Merenini, P. C. Enzymatic ring-opening polymerization (ROP) of lactides and lactone in ionic liquids and organic solvents: digging the controlling factors. RSC Adv. 2017, 7, 48639–48648. DOI: 10.1039/C7RA09038B.
  • Shiro, K. Enzymatic Ring-Opening Polymerization of Lactones by Lipase Catalyst: Mechanistic Aspects. Macromol. Symp. 2006, 240, 178–185. DOI: 10.1002/masy.200650822">10.1002/masy.200650822.
  • Hiroshi, U.; Shiro, K. Enzymatic Ring-Opening Polymerization of Lactones Catalyzed by Lipase. Chem. Lett. 1993, 22, 1149–1150. DOI: 10.1246/cl.1993.1149">10.1246/cl.1993.1149.
  • Lee, J.; Oh, S.; Joo, M. K.; Jeong, B. Solvent-free preparation of caprolactone oligomer microspheres. J. Phys. Chem. Solids, 2008,69, 1596–1599. DOI:https://doi.org/10.1016/j.jpcs.2007.09.016.
  • Natarajan, V.; Krithica, N.; Madhan, B.; Sehgal, P. K. Formulation and Evaluation of Quercetin Polycaprolactone Microspheres for the Treatment of Rheumatoid Arthritis. J.Pharm. Sci. 2011,100, 195–205. DOI: 10.1002/jps.22266.
  • Ramesh, D. V. Comparison of oil-in-oil, water-in-oil-in-water and melt encapsulation techniques for the preparation of controlled release B12 Poly(ε-caprolactone) microparticles. Trends Biomater. Artif. Organs, 2009,23, 21–33.
  • Sastre, R. L.; Blanco, M. D.; Teijón, C.; Olmo, R.; Teijón, J. M. Preparation and characterization of 5-fluorouracil-loaded poly(ϵ-caprolactone) microspheres for drug administration. Drug Dev. Res. 2004,63, 41–53. DOI: 10.1002/ddr.10396.
  • Hombreiro-Pérez, M.; Zinutti, C.; Lamprecht, A.; Ubrich, N.; Astier, A.; Hoffman, M.; Bodmeier, R.; Maincent, P. The preparation and evaluation of poly(ϵ-caprolactone) microparticles containing both a lipophilic and a hydrophilic drug. J. Controlled Release, 2000,65, 429–438. DOI: 10.1016/S0168-3659(99)00253-9.
  • Guerra, G. D.; Cristallini, C.; Barbani, N.; Gagliardi, M. Bioresorbable microspheres as devices for the controlled release of paclitaxel. International Journal of Biology and Biomedical Engineering, 2011,5, 121–128.
  • Shiny, J.; Ramchander, T.; Goverdhan, P.; Habibuddin, M.; Aukunuru, J. V. Development and evaluation of novel biodegradable sustained release microsphere fomulation of paclitaxel intended to treat breast cancer. Int. J. Pharm. Investig. 2013,3, 119–125. DOI: 10.4103/2230-973X.119212.
  • Wagh, P.; Naik, J. B. Formulation and characterization of ketoprofen embeddd polycaprolactone microspheres using solvent evaporation method. ADMET & DMPK, 2015,3, 141–153. DOI: 10.5599/admet.3.2.167">10.5599/admet.3.2.167.
  • Guzmán, M.; Molpeceres, J.; García, F.; Aberturas, M. R. Preparation, characterization and in vitro drug release of poly-ε-caprolactone and hydroxypropyl methylcellulose phthalate ketoprofen loaded microspheres. J. Microencapsulation, 1996,13, 25–39. DOI: 10.3109/02652049609006801.
  • Barbosa, J.A.P.; Franco, E. S.; Silva, C.V.N.S.; Bezerra, T. O.; Santana, M.A.N.; Júnior, C.H.R.C.; Silva, T. G.; Santos, N.P.S.; Maia, M.B.S. Poly-ϵ-Caprolactone Microspheres Polymers Containing Usnic Acid: Acute Toxicity and Anti-inflammatory Activity.J. Evidence-based Complementary Altern. Med.2017,2017,1–9. DOI: 10.1155/2017/7392891.
  • Azouz, L. H.; Dahmoune, F.; Rezgui, F.; G’Sell, C. Full factorial design optimization of anti-inflammatory drug release by PCL–PEG–PCL microspheres. Mater. Sci. Eng. C2016, 58, 412–419. DOI: 10.1016/j.msec.2015.08.058.
  • Pérez de la Ossa, D. H.; Ligresti, A.; Gil-Alegre, M. E.; Aberturas, M. R.; Molpeceres, J.; Di Marzo, V.; Torres-Suárez, A. I. Poly-ε-caprolactone microspheres as a drug delivery system for cannabinoid administration: Development, characterization and in vitro evaluation of their antitumoral efficacy. J. Controlled Release, 2012,161, 927–932. DOI: 10.1016/j.jconrel.2012.05.003.
  • Dhanaraju, M. D.; Sathyamoorthy, N.; Sundar, V. D.; Suresh, C. Preparation of poly (epsilon-caprolactone) microspheres cotaining etoposide by solvent evaporation method. Asian J. Pharm. Sci. 2010,5, 114–122.
  • Ghosal, K.; Ghosh, D; Das, S. K. Preparation and evaluation of naringin-loaded polycaprolactone microspheres based oral suspension using Box-Behnken design. J. Mol. Liq. 2018,256, 49–57.DOI: 10.1016/j.molliq.2018.02.024.
  • Aberturas, M. R.; Molpeceres, J.; Guzmán, M.; García, F. Development of a new cyclosporine formulation based on poly(caprolactone) microspheres. J.Microencapsulation, 2002,19, 61–72. DOI:10.1080/02652040110055270.
  • Barbato, F.; La Rotonda, M. I.; Maglio, G.; Palumbo, R.; Quaglia, F. Biodegradable microspheres of novel segmented poly(ether-ester-amide)s based on poly(ε-caprolactone) for the delivery of bioactive compounds. Biomaterials, 2001,22, 1371–1378. DOI:10.1016/S0142-9612(00)00291-X.
  • Poletto, F. S.; Jäger, E.; Ré, M. I.; Guterres, S. S.; Pohlman, A. R. Rate-modulating PHBHV/PCL microparticles containing weak acid model drugs. Int. J. Pharm. 2007,345, 70–80. DOI:10.1016/j.ijpharm.2007.05.040.
  • Aydin, O.; Aydin, B.; Tezcaner, A.; Keskin, D. Study on physiochemical structure and in vitro release behaviors of doxycycline-loaded PCL microspheres. J. Appl. Polym. Sci. 2015,132, 1–13. DOI: 10.1002/app.41768">10.1002/app.41768.
  • Amselem, S.; Alving, C. R.; Domb, A. J. Polymeric biodegradable lipospheres™ as vaccine delivery systems. Polym. Adv. Technol. 1992,3, 351–357. DOI: 10.1002/pat.1992.220030611.
  • Jeong, J.-C.; Lee, J.; Cho, K. Effects of crystalline microstructure on drug release behavior of poly(ε-caprolactone) microspheres. J. Controlled Release, 2003,92, 249–258. DOI: 10.1016/S0168-3659(03)00367-5.
  • Kim, B. K.; Hwang, S. J.; Park, J. B.; Park, H. J. Characteristics of felodipine-located poly(ε-caprolactone) microspheres. J. Microencapsulation, 2005,22, 193–203. DOI: 10.1080/02652040400015346..
  • Benoit, M.-A.; Baras, B.; Gillard, J. Preparation and characterization of protein-loaded poly(ε-caprolactone) microparticles for oral vaccine delivery. Int. J. Pharm. 1999,184, 73–84. DOI: 10.1016/S0378-5173(99)00109-X.
  • Jameela, S. R.; Suma, N.; Jayakrishnan, A. Protein release from poly(ε-caprolactone) microspheres prepared by melt encapsulation and solvent evaporation techniques: A comparative study. J. Biomater. Sci., Polym. Ed. 1997,8, 457–466. DOI: 10.1163/156856297X00380.
  • Krithica, N.; Natarajan, V.; Madhan, B.; Sehgal, P. K.; Mandal, A. B. Type I Collagen Immobilized Poly(caprolactone) Nanofibers: Characterization of Surface Modification and Growth of Fibroblasts. Adv. Eng. Mater. 2012,14, B149–B154. DOI:10.1002/adem.201180035.
  • Nguyen, T.-H.; Lee, B.-T. The effect of cross-linking on the microstructure, mechanical properties and biocompatibility of electrospun polycaprolactone–gelatin/PLGA–gelatin/PLGA–chitosan hybrid composite. Sci. Technol. Adv. Mater. 2012,13, 1–11. DOI: 10.1088/1468-6996/13/3/035002">10.1088/1468-6996/13/3/035002.
  • Bao, T.-Q.; Franco, R. A.; Lee, B.-T. Preparation and characterization of a novel 3D scaffold from poly(ɛ-caprolactone)/biphasic calcium phosphate hybrid composite microspheres adhesion. Biochem. Eng. J. 2012,64, 76–83. DOI: 10.1016/j.bej.2012.02.005.
  • Hayat, M. A. Introduction. In Tumors of the Central Nervous System, 1st ed.; Hayat, M. A., Ed.; Springer: Berlin, 2011; Vol.1, pp 3–8.
  • Pardridge, W. M. BBB-Genomics: creating new openings for brain-drug targeting. Drug Discovery Today, 2001, 6, 381–383. DOI: 10.1016/S1359-6446(01)01721-4.
  • Ashour, A. E.; Badran, M. M.; Kumar, A.; Rishi, A. K.; Yassin, A. E. Di-Block PLCL and Tri-Block PLCLG Matrix Polymeric Nanoparticles Enhanced the Anticancer Activity of Loaded 5-Fluorouracil. IEEE Trans. Nanobioscience, 2016, 15, 739–747. DOI: 10.1109/TNB.2016.2612340.
  • Karanam, V.; Marslin, G.; Krishnamoorthy, B,; Vijayaraghavan, C.; Siram, K.; Natarajan, T.; Bhaskar, B.; Franklin, G. Poly (ɛ-caprolactone) nanoparticles of carboplatin: Preparation, characterization and in vitro cytotoxicity evaluation in U-87 MG cell lines. Colloids Surf., B, 2015, 130, 48–52. DOI: 10.1016/j.colsurfb.2015.04.005.
  • Xin, H.; Chen, L.; Gu, J.; Ren, X.; Wei, Z.; Luo, J.; Chen, Y.; Jiang, X.; Sha, X.; Fang, X. Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(ɛ-caprolactone) nanoparticles: In vitro and in vivo evaluation. Int. J. Pharm. 2010, 402,238–247. DOI: 10.1016/j.ijpharm.2010.10.005.
  • Yadav, B.V.N.; Ravichandiran, V.; Kumar, S. S. Preparation and characterization of gemcitabine loaded MPEG-PCL polymeric nanoparticles for improved transportation across blood brain barrier. Int. J. Pharm. Pharm. Sci. 2016, 8, 83–90.
  • Duvoix, A.; Blasius, R.; Delhalle, S.; Schnekenburger, M.; Morceau, F.; Henry, E.; Dicato, M.; Diederich, M. Chemopreventive and therapeutic effects of curcumin. Cancer Lett. 2005, 223, 181–190. DOI: 10.1016/j.canlet.2004.09.041.
  • Perry, M.-C.; Demeule, M.; Régina, A.; Moumdijan, R.; Béliveau, R. Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Mol. Nutr. Food Res. 2010, 54, 1192–1201. DOI: 10.1002/mnfr.200900277.
  • Shao, J.; Zheng, D.; Jiang, Z.; Xu, H.; Hu, Y.; Li, X.; Lu, X. Curcumin delivery by methoxy polyethylene glycol–poly(caprolactone) nanoparticles inhibits the growth of C6 glioma cells. Acta Biochim. Biophys. Sin. 2011, 43, 267–274. DOI: 10.1093/abbs/gmr011.
  • Marslin, G.; Sarmento, B.F.C.C.; Franklin, G.; Martins, J.A.R.; Silva, C.J.R.; Gomes, A. F.C.; Sárria, M. P.; Coutinho, O.M.F.P.; Días, A. C.P. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells. Planta Med. 2017, 83, 434–444. DOI: 10.1055/s-0042-112030.
  • Shao, J.; Li, X.; Lu, X.; Jiang, C.; Hu, Y.; Li, Q.; You, Y.; Fu, Z. Enhanced growth inhibition effect of Resveratrol incorporated into biodegradable nanoparticles against glioma cells is mediated by the induction of intracellular reactive oxygen species levels. Colloids Surf., B, 2009, 72, 40–47. DOI:10.1016/j.colsurfb.2009.03.010.
  • Herz, J. LRP: a bright beacon at the blood-brain barrier. J. Clin. Invest. 2003, 112, 1483–1485. DOI:10.1172/JCI200320337.
  • Maletínská, L.; Blakely, E. A.; Bjornstad, K. A.; Deen, D. F.; Knoff, L. J.; Forte, T. M. Human Glioblastoma Cell Lines: Levels of Low-Density Lipoprotein Receptor and Low-Density Lipoprotein Receptor-related Protein. Cancer Res. 2000, 60, 2300–2303.
  • Xin, H.; Jiang, X.; Gu, J.; Sha, X.; Chen, L.; Law, K.; Chen, Y.; Wang, X.; Jiang, Y.; Fang, X. Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials, 2011, 32, 4293–4305. DOI:10.1016/j.biomaterials.2011.02.044.
  • Xin, H.; Sha, X.; Jiang, X.; Zhang, W.; Chen, L.; Fang, X. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials, 2012,33, 8167–8176. DOI: 10.1016/j.biomaterials.2012.07.046.
  • Carvalho, C.; Santos, R. X.; Cardoso, S.; Correia, S.; Oliveira, P. J.; Santos, M. S.; Moreira, P. I. Doxorubicin: The Good, the Bad and the Ugly Effect. Curr. Med. Chem. 2009, 16, 3267–3285. DOI:10.2174/092986709788803312.
  • Lu, F.; Pang, Z.; Zhao, J.; Jin, K.; Li, H.; Pang, Q.; Zhang, L.; Pang, Z. Angiopep-2-conjugated poly(ethylene glycol)-co- poly(ε-caprolactone) polymersomes for dual-targeting drug delivery to glioma in rats. Int. J. Nanomedicine, 2017, 12, 2117–2127. DOI: 10.2147/IJN.S123422.
  • Tian, X.-H.; Lin, X.-N.; Wei, F.; Feng, W.; Huang, Z.-C.; Wang, P.; Ren, L.; Diao, Y. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int. J. Nanomedicine, 2011, 6, 445–452. DOI: 10.2147/IJN.S16570">10.2147/IJN.S16570.
  • Sun, W.; Xie, C.; Wang, H.; Hu, Y. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials, 2004, 25, 3065–3071. DOI:10.1016/j.biomaterials.2003.09.087.
  • Wilson, B.; Samanta, M. K.; Santhi, K.; Kumar, K.P.S.; Paramakrishnan, N.; Suresh, B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease. Brain Res. 2008, 1200, 159–168. DOI:10.1016/j.brainres.2008.01.039.
  • Wohlfart, S.; Gelperina, S.; Kreuter, J. Transport of drugs across the blood–brain barrier by nanoparticles. J. Controlled Release, 2012, 161, 264–273. DOI: 10.1016/j.jconrel.2011.08.017.
  • Ma, Y.; Zheng, Y.; Zeng, X.; Jiang, L.; Chen, H.; Liu, R.; Huang, L.; Mei, L. Novel docetaxel-loaded nanoparticles based on PCL-Tween 80 copolymer for cancer treatment. Int. J. Nanomedicine, 2011, 6, 2679–2688. DOI: 10.2147/IJN.S25251">10.2147/IJN.S25251.
  • Wang, Y.; Wang, C.; Gong, C.; Wang, Y.; Guo, G.; Luo, F.; Qian, Z. Polysorbate 80 coated poly (ɛ-caprolactone)–poly (ethylene glycol)–poly (ɛ-caprolactone) micelles for paclitaxel delivery. Int. J. Pharm. 2012, 434, 1–8. DOI: 10.1016/j.ijpharm.2012.05.015.
  • Bernardi, A.; Jacques-Silva, M. C.; Delgado-Cañedo, A.; Lenz, G.; Battastini, A.M.O. Nonsteroidal anti-inflammatory drugs inhibit the growth of C6 and U138-MG glioma cell lines. Eur. J. Pharmacol. 2006, 532, 214–222. DOI: 10.1016/j.ejphar.2006.01.008.
  • Bernardi, A.; Frozza, R. L.; Jäger, E.; Figueiró, F.; Bavaresco, L.; Salbego, C.; Pohlmann, A. R.; Guterres, S. S.; Battastini, A.M.O. Selective cytotoxicity of indomethacin and indomethacin ethyl ester-loaded nanocapsules against glioma cell lines: An in vitro study. Eur. J. Pharmacol. 2008, 586, 24–34. DOI: 10.1016/j.ejphar.2008.02.026.
  • Bernardi, A.; Braganhol, E.; Jäger, E.; Figueiró, F.; Edelweiss, M. I.; Pohlmann, A. R.; Guterres, S. S.; Battastini, A.M.O. Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett. 2009, 281, 53–63. DOI: 10.1016/j.canlet.2009.02.018.
  • Mintz, A.; Gibo, D. M.; Slagle-Webb, B.; Christensent, N. D.; Debinski, W. IL-13Rα2 is a Glioma-Restricted Receptor for Interleukin-13. Neoplasia, 2002, 4, 388–399. DOI:10.1038/sj.neo.7900234.
  • Gao, H.; Yang, Z.; Zhang, S.; Cao, S.; Shen, S.; Pang, Z.; Jiang, X. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci. Rep. 2013, 3, 1-8. DOI:10.1038/srep02534.
  • Gao, H.; Yang, Z.; Zhang, S.; Cao, S.; Pang, Z.; Yang, X.; Jiang, X. Glioma-homing peptide with a cell-penetrating effect for targeting delivery with enhanced glioma localization, penetration and suppression of glioma growth. J. Controlled Release, 2013, 172, 921–928. DOI: 10.1016/j.jconrel.2013.10.002.
  • Yadavilli, S.; Hwang, E. I.; Packer, R. J.; Nazarian, J. The Role of NG2 Proteoglycan in Glioma. Transl. Oncol. 2016, 9, 57–63. DOI: 10.1016/j.tranon.2015.12.005.
  • Chi, Y.; Zhu, S.; Wang, C.; Zhou, L.; Zhang, L.; Li, Z. Glioma homing peptide-modified PEG-PCL nanoparticles for enhanced anti-glioma therapy. J. Drug Targeting, 2016, 24, 224–232. DOI: 10.3109/1061186X.2015.1070854.
  • El-Kenawi, A. E.; El-Remessy, A. B. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br. J. Pharmacol. 2013, 170, 712–729. DOI: 10.1111/bph.12344.
  • Hoffman, J. A.; Giraudo, E.; Singh, M.; Zhang, L.; Inoue, M.; Porkka, K.; Hanahan, D.; Ruoslahti, E. Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma. Cancer Cell, 2003, 4, 383–391. DOI:10.1016/S1535-6108(03)00273-3.
  • Agemy, L.; Friedmann-Morvinski, D.; Kotamraju, V. R.; Roth, L.; Sugahara, K. N.; Girard, O. M.; Mattrey, R. F.; Verma, I. M.; Ruoslahti, E. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 17450–17455. DOI:10.1073/pnas.1114518108.
  • Hu, Q., Gao, X.; Kang, T.; Feng, X.; Jiang, D.; Yifan, T.; Song, Q.; Yao, L.; Jiang, X.; Chen, H.; et al. CGKRK-modified nanoparticles for dual-targeting drug delivery to tumor cells and angiogenic blood vessels. Biomaterials, 2013, 34, 9496–9508. DOI: 10.1016/j.biomaterials.2013.09.001.
  • Wu, X.; Chen, J.; Wu, M.; Zhao, J. X. Aptamers: Active Targeting Ligands for Cancer Diagnosis and Therapy. Theranostics, 2015, 5, 322–344. DOI:10.7150/thno.10257.
  • Bayrac, A. T.; Sefah, K.; Parekh, P.; Bayrac, C.; Gulbakan, B.; Oktem, H. A.; Tan, W. In Vitro Selection of DNA Aptamers to Glioblastoma Multiforme. ACS Chem. Neurosci. 2011, 2, 175–181. DOI: 10.1021/cn100114k.
  • Gao, H.; Qian, J.; Yang, Z.; Pang, Z.; Xi, Z.; Cao, S.; Wang, Y.; Pan, S.; Zhang, S.; Wang, W.; et al. Whole-cell SELEX aptamer-functionalised poly(ethyleneglycol)-poly(ε-caprolactone) nanoparticles for enhanced targeted glioblastoma therapy. Biomaterials, 2012, 33, 6264–6272. DOI: 10.1016/j.biomaterials.2012.05.020.
  • Koren, E.; Torchilin, V. P. Cell-penetrating peptides: breaking through to the other side. Trends Mol. Med. 2012, 18, 385–393. DOI: 10.1016/j.molmed.2012.04.012.
  • He, H.; Ye, J.; Liu, E.; Liang, Q.; Liu, Q.; Yang, V. C. Low molecular weight protamine (LMWP): A nontoxic protamine substitute and an effective cell-penetrating peptide. J. Controlled Release, 2014, 193, 63–73. DOI:10.1016/j.jconrel.2014.05.056.
  • Jiang, T.; Olson, E. S.; Nguyen, Q. T.; Roy, M.; Jennings, P. A.; Tsien, R. Y. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl. Acad. Sci. U.S.A.2004, 101, 17867–17872. DOI:10.1073/pnas.0408191101.
  • Gu, G.; Xia, H.; Hu, Q.; Liu, Z.; Jiang, M.; Kang, T.; Miao, D.; Tu, Y.; Pang, Z.; Song, Q.; et al. PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials, 2013, 34, 196–208. DOI: 10.1016/j.biomaterials.2012.09.044.
  • Agarwal, S.; Sane, R.; Oberoi, R.; Ohlfest, J. R.; Elmguist, W. F. Delivery of Molecularly Targeted Therapy to Malignant Glioma, a Disease of the Whole Brain. Expert Rev. Mol. Med. 2011, 13, 1–27. DOI: 10.1017/S1462399411001888">10.1017/S1462399411001888.
  • Huile, G.; Shuaiqi, P.; Zhi, Y.; Shijie, C.; Chen, C.; Xinguo, J.; Shun, S.; Zhiqing, P.; Yu, H. A cascade targeting strategy for brain neuroglial cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials, 2011, 32, 8669–8675. DOI: 10.1016/j.biomaterials.2011.07.069.
  • Gao H.; Qian, J.; Cao, S.; Yang, Z.; Pang, Z.; Pan, S.; Fan, L.; Xi, Z.; Jiang, X.; Zhang, Q. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials, 2012, 33, 5115–5123. DOI:10.1016/j.biomaterials.2012.03.058.
  • Gao, H.; Zhang, S.; Cao, S.; Yang, Z.; Pang, Z.; Jiang, X. Angiopep-2 and Activatable Cell-Penetrating Peptide Dual-Functionalized Nanoparticles for Systemic Glioma-Targeting Delivery. Mol. Pharmaceutics, 2014, 11, 2755–2763. DOI:10.1021/mp500113p.
  • Djupesland, P. G.; Mahmoud, R. A.; Messina, J. C. Accessing the brain: the nose may know the way. J. Cereb. Blood Flow Metab. 2013, 33, 793–794. DOI:10.1038/jcbfm.2013.41.
  • Alex, A. T.; Joseph, A.; Shavi, G.; Rao, J. V.; Udupa, N. Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery. Drug Delivery, 2016, 23, 2144–2153. DOI: 10.3109/10717544.2014.948643.
  • Merkus, F.W.H.M.; van den Berg, M. P. Can Nasal Drug Delivery Bypass the Blood-Brain Barrier? Drugs R D, 2007, 8, 133–144. DOI: 10.2165/00126839-200708030-00001.
  • Kanazawa, T.; Taki, H.; Tanaka, K.; Takashima, Y.; Okada, H. Cell-Penetrating Peptide-Modified Block Copolymer Micelles Promote Direct Brain Delivery via Intranasal Administration. Pharm. Res. 2011, 28, 2130–2139. DOI: 10.1007/s11095-011-0440-7.
  • Taki, H.; Kanazawa, T.; Akiyama, F.; Takashima, Y.; Okada, H. Intranasal Delivery of Camptothecin-Loaded Tat-Modified Nanomicells for Treatment of Intracranial Brain Tumors. Pharmaceuticals, 2012, 5, 1092–1103. DOI: 10.3390/ph5101092.
  • Guo, W.; Chen, W.; Yu, W.; Huang, W.; Deng, W. Small interfering RNA-based molecular therapy of cancers. Chin. J. Cancer, 2013, 32, 488–493. DOI: 10.5732/cjc.012.10280.
  • Kanazawa, T.; Akiyama, F.; Kakizaki, S.; Takashima, Y.; Seta, Y. Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomaterials, 2013, 34, 9220–9226. DOI: 10.1016/j.biomaterials.2013.08.036.
  • Leng, Q.; Mixson, A. J. Small interfering RNA targeting Raf-1 inhibits tumor growth in vitro and in vivo. Cancer Gene Ther. 2005, 12, 682–690. DOI: 10.1038/sj.cgt.7700831.
  • Kanazawa, T.; Morisaki, K.; Suzuki, S.; Takashima, Y. Prolongation of Life in Rats with Malignant Glioma by Intranasal siRNA/Drug Codelivery to the Brain with Cell-Penetrating Peptide-Modified Micelles. Mol. Pharmaceutics, 2014, 11, 1471–1478. DOI: 10.1021/mp400644e.
  • Wolinsky, J. B.; Colson, Y. L.; Grinstaff, M. W. Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric films, rods, and wafers. J. Controlled Release, 2012, 159, 14–26. DOI: 10.1016/j.jconrel.2011.11.031.
  • Mehta, A. M.; Sonabend, A. M.; Bruce, J. N. Convection-Enhanced Delivery. Neurotherapeutics, 2017, 14, 358–371. DOI: 10.1007/s13311-017-0520-4.
  • Çırpanlı, Y.; Allard, E.; Passirani, C.; Bilensoy, E.; Lemaire, L.; Çalış S.; Benoit, J.-P. Antitumoral activity of camptothecin-loaded nanoparticles in 9L rat glioma model. Int. J. Pharm. 2011, 403, 201–206. DOI: 10.1016/j.ijpharm.2010.10.015.
  • Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M; Parkin, D. M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136, E359–E386. DOI: 10.1002/ijc.29210.
  • Cabeza, L.; Ortiz, R.; Prados, J.; Delgado, A. V.; Martín-Villena, M. J.; Clares, B.; Perazzoli, G.; Entrena, J. M.; Melguizo, C.; Arias, J. L. Improved antitumor activity and reduced toxicity of doxorubicin encapsulated in poly(ε-caprolactone) nanoparticles in lung and breast cancer treatment: An in vitro and in vivo study. Eur. J. Pharm. Sci. 2017, 102, 24–34. DOI:10.1016/j.ejps.2017.02.026.
  • Shavi, G. V.; Nayak, U. Y.; Maliyakkal, N.; Deshpande, P. B.; Raghavendra, R.; Kumar, A. R.; Reddya, M. S.; Udupa, N.; Shrawan, B. Nanomedicine of anastrozole for breast cancer: Physicochemical evaluation, in vitro cytotoxicity on BT-549 and MCF-7 cell lines and preclinical study on rat model. Life Sci. 2015, 141, 143–155. DOI: 10.1016/j.lfs.2015.09.021.
  • López-Gasco, P.; Iglesias, I.; Benedí, J.; Lozano, R.; Teijón, J. M.; Blanco, M. D. Paclitaxel-loaded polyester nanoparticles prepared by spray-drying technology: in vitro bioactivity evaluation. J. Microencapsulation, 2011, 28, 417–429. DOI: 10.3109/02652048.2011.576785.
  • Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug fomulation. Eur. J. Cancer, 2001, 37, 1590–1598. DOI: 10.1016/S0959-8049(01)00171-X.
  • Forrest, M. L.; Yáñez, J. A.; Remsberg, C. M.; Ohgami, Y.; Kwon, G. S.; Davies, N. M. Paclitaxel Prodrugs with Sustained Release and High Solubility in Poly(ethylene glycol)-b-poly(ε-caprolactone) Micelle Nanocarriers: Pharmacokinetic Disposition, Tolerability, and Cytotoxicity. Pharm. Res. 2008, 25, 194–206. DOI: 10.1007/s11095-007-9451-9.
  • Wang, C.; Wang, Y.; Wang, Y.; Fan, M.; Luo, F.; Qian, Z. Characterization, pharmacokinetics and disposition of novel nanoscale preparations of paclitaxel. Int. J. Pharm. 2011, 414, 251–259. DOI: 10.1016/j.ijpharm.2011.05.014.
  • Lin, Y.; Shi, R.; Wang, X.; Shen, H.-M. Luteolin, a Flavonoid with Potential for Cancer Prevention and Therapy. Curr. Cancer Drug Targets, 2008, 8, 634–646. DOI: 10.2174/156800908786241050.
  • Qiu, J.-F.; Gao, X.; Wang, B.-L.; Wei, X.-W.; Gou, M.-L.; Men, K.; Liu, X.-Y.; Guo, G.; Qian, Z.-Y.; Huang, M.-J. Preparation and characterization of monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) micelles for the solubilization and in vivo delivery of luteolin. Int. J. Nanomedicine, 2013, 8, 3061–3069. DOI: 10.2147/IJN.S45062">10.2147/IJN.S45062.
  • Qazi, A.; Pal, J.; Maitah, M.; Fulciniti, M.; Pelluru, D.; Nanjappa, P.; Lee, S.; Batchu, R. B.; Prasad, M.; Bryant, C. S.; et al. Anticancer Activity of a Broccoli Derivative, Sulforaphane, in Barrett Adenocarcinoma: Potential Use in Chemoprevention and as Adjuvant in Chemotherapy. Transl. Oncol. 2010, 3, 389–399. DOI: 10.1593/tlo.10235.
  • Clarke, J. D.; Dashwood, R. H.; Ho, E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008, 269, 291–304. DOI: 10.1016/j.canlet.2008.04.018.
  • Danafar, H.; Sharafi, A.; Manjili, H. K.; Andalib, S. Sulforaphane delivery using mPEG–PCL co-polymer nanoparticles to breast cancer cells. Pharm. Dev. Technol. 2017, 22, 642–651. DOI: 10.3109/10837450.2016.1146296.
  • McLaughlin, J. L. Paw Paw and Cancer: Annonaceous Acetogenins from Discovery to Commercial Products. J. Nat. Prod. 2008, 71, 1311–1321. DOI: 10.1021/np800191t.
  • Hong, J.; Li, Y.; Li, Y.; Xiao, Y.; Kuang, H.; Wang, X. Annonaceous acetogenins nanosuspensions stabilized by PCL-PEG block polymer: significantly improved antitumor efficacy. Int. J. Nanomedicine, 2016, 11, 3239–3253. DOI: 10.2147/IJN.S108143.
  • Eatemadi, A.; Darabi, M.; Afraidooni, L.; Zarghami, N.; Daraee, H.; Eskandari, L.; Mellatyar, H.; Akbarzadeh, A. Comparison, synthesis and evaluation of anticancer drug-loaded polymeric nanoparticles on breast cancer cell lines. Artif. Cells, Nanomed., Biotechnol. 2016, 44, 1008–1017. DOI: 10.3109/21691401.2015.1008510.
  • Khoo, B. Y.; Chua, S. L.; Balaram, P. Apoptotic Effects of Chrysin in Human Cancer Cell Lines. Int. J. Mol. Sci. 2010, 11, 2188–2199. DOI: 10.3390/ijms11052188.
  • Eatemadi, A.; Daraee, H.; Aiyelabegan, H. T.; Negahdari, B.; Rajeian, B.; Zarghami, N. Synthesis and Characterization of Chrysin-loaded PCL-PEG-PCL nanoparticle and its effect on breast cancer cell line. Biomed. Pharmacother. 2016, 84, 1915–1922. DOI: 10.1016/j.biopha.2016.10.095.
  • Ungaro, F.; Conte, C.; Ostacolo, L.; Maglio, G.; Barbieri, A.; Arra, C.; Misso, G.; Abbruzzese, A.; Caraglia, M.; Quaglia, F. Core-shell biodegradable nanoassemblies for the passive targeting of docetaxel: features, antiproliferative activity and in vivo toxicity. Nanomedicine, 2012, 8, 637–646. DOI:10.1016/j.nano.2011.08.012.
  • Cuong, N.-V.; Hsieh, M.-F.; Chen, Y.-T.; Liau, I. Synthesis and characterization of PEG–PCL–PEG triblock copolymers as carriers of doxorubicin for the treatment of breast cancer. J. Appl. Polym. Sci. 2010, 117, 3694–3703. DOI: 10.1002/app.32266">10.1002/app.32266.
  • Cuong, N.-V.; Chen, Y.-T.; Hsieh, M.-F. Doxorubicin-loaded micelles of Y-shaped PEG-(PCL)2 against drug-resistant breast cancer cells. Biomed.Eng. Appl. Basis Commun. 2013, 25,1–10. DOI: 10.4015/S1016237213400097">10.4015/S1016237213400097.
  • Kabanov, A. V.; Batrakova, E. V.; Alakhov, V. Y. Pluronic® block copolymers for overcoming drug resistance in cancer. Adv. Drug Delivery Rev. 2002, 54, 759–779. DOI: 10.1016/S0169-409X(02)00047-9.
  • Batrakova, E. V.; Kabanov, A. V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Controlled Release, 2008, 130, 98–106. DOI:10.1016/j.jconrel.2008.04.013.
  • Mei, L.; Zhang, Y.; Zheng, Y.; Tian, G.; Song, C.; Yang, D.; Chen, H.; Sun, H.; Tian, Y.; Liu, K.; et al. A Novel Docetaxel-Loaded Poly (ε-Caprolactone)/Pluronic F68 Nanoparticle Overcoming Multidrug Resistance for Breast Cancer Treatment. Nanoscale Res. Lett. 2009, 4, 1530–1539. DOI: 10.1007/s11671-009-9431-6.
  • Zhang, Y.; Tang, L.; Sun, L.; Bao, J.; Song, C.; Huang, L.; Liu, K.; Tian, Y.; Tian, G.; Li, Z.; et al. Tang A novel paclitaxel-loaded poly(ε-caprolactone)/Poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment. Acta Biomater. 2010, 6, 2045–2052. DOI: 10.1016/j.actbio.2009.11.035.
  • Varan, C.; Bilensoy, E. Development of implantable hydroxypropyl-β-cyclodextrin coated polycaprolactone nanoparticles for the controlled delivery of docetaxel to solid tumors. J. Inclusion Phenom. Macrocyclic Chem. 2014, 80, 9–15.DOI: 10.1007/s10847-014-0422-6.
  • Chen, C.-H.; Cuong, N. V.; Chen, Y. T.; So, R. C.; Liau, I.; Hsieh, M. F. Overcoming Multidrug Resistance of Breast Cancer Cells by the Micellar Doxorubicin Nanoparticles of mPEG-PCL-Graft-Cellulose. J. Nanosci. Nanotechnol. 2011, 11, 53–60. DOI: 10.1166/jnn.2011.3102.
  • Bernabeu, E.; Helguera, G.; Legaspi, M. J.; González, L.; Hocht, C.; Taira, C.; Chiappetta, D. A. Paclitaxel-loaded PCL–TPGS nanoparticles: In vitro and in vivo performance compared with Abraxane®. Colloids Surf., B, 2014, 113, 43–50. DOI: 10.1016/j.colsurfb.2013.07.036.
  • Bernabeu, E.; Gonzalez, L.; Legaspi, M. J.; Moretton, M. A.; Chiappetta, D. A. Paclitaxel-Loaded TPGS-b-PCL Nanoparticles: In Vitro Cytotoxicity and Cellular Uptake in MCF-7 and MDA-MB-231 Cells versus mPEG-b-PCL Nanoparticles and Abraxane®. J. Nanosci. Nanotechnol. 2016, 16, 160–170. DOI: 10.1166/jnn.2016.10739.
  • Ye, L.; Gao, Z.; Zhou, Y.; Yin, X.; Zhang, X.; Zhang, A.; Feng, Z. A pH-sensitive binary drug delivery system based on poly(caprolactone)–heparin conjugates. J. Biomed. Mater. Res., Part A, 2014, 102, 880–889. DOI: 10.1002/jbm.a.34735.
  • Zhang, L.; He, Y.; Ma, G.; Song, C.; Sun, H. Paclitaxel-loaded polymeric micelles based on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) triblock copolymers: in vitro and in vivo evaluation. Nanomedicine, 2012, 8, 925–934. DOI:10.1016/j.nano.2011.11.005.
  • Zhang, L.; Chen, Z.; Wang, H.; Wu, S.; Zhao, K.; Sun, H.; Kong, D.; Wang, C.; Leng, X.; Zhu, D. Preparation and evaluation of PCL-PEG-PCL polymeric nanoparticles for doxorubicin delivery against breast cancer. RSC Adv. 2016, 6, 54727–54737. DOI: 10.1039/C6RA04687H.
  • Balendiran, G. K.; Dabur, R.; Fraser, D. The role of glutathione in cancer. Cell Biochem. Funct. 2004, 22, 343–352. DOI: 10.1002/cbf.1149.
  • Wang, Y.-C.; Wang, F.; Sun, T.-M.; Wang, J. Redox-Responsive Nanoparticles from the Single Disulfide Bond-Bridged Block Copolymer as Drug Carriers for Overcoming Multidrug Resistance in Cancer Cells. Bioconjugate Chem. 2011, 22, 1939–1945. DOI: 10.1021/bc200139n.
  • Yin, Q.; Shen, J.; Zhang, Z.; Yu, H.; Chen, L.; Gu, W.; Li, Y. Multifunctional Nanoparticles Improve Therapeutic Effect for Breast Cancer by Simultaneously Antagonizing Multiple Mechanisms of Multidrug Resistance. Biomacromolecules, 2013, 14, 2242–2252. DOI: 10.1021/bm400378x.
  • Wu, Y.; Zhang, Y.; Zhang, W.; Sun, C.; Wu, J.; Tang, J. Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles. Colloids Surf., B, 2016, 138, 60–69. DOI: 10.1016/j.colsurfb.2015.11.041.
  • Masuda, H; Zhang, D.; Bartholomeusz, C.; Doihara, H.; Hortobagyi, G. N.; Ueno, N. T. Role of Epidermal Growth Factor Receptor in Breast Cancer. Breast Cancer Res. Treat. 2012, 136, 331–345. DOI: 10.1007/s10549-012-2289-9.
  • Milane, L.; Duan, Z.; Amiji, M. Development of EGFR-Targeted Polymer Blend Nanocarriers for Combination Paclitaxel/Lonidamine Delivery To Treat Multi-Drug Resistance in Human Breast and Ovarian Tumor Cells. Mol. Pharmaceutics2011,8, 185–203. DOI: 10.1021/mp1002653.
  • Milane, L.; Duan, Z.; Amiji, M. Therapeutic Efficacy and Safety of Paclitaxel/Lonidamine Loaded EGFR-Targeted Nanoparticles for the Treatment of Multi-Drug Resistant Cancer. PLoS One, 2011, 6, 1–11. DOI: 10.1371/journal.pone.0024075">10.1371/journal.pone.0024075.
  • Wang, Y.; Chen, L.; Tan, L.; Zhao, Q.; Luo, F.; Wei, Y.; Qian, Z. PEG–PCL based micelle hydrogels as oral docetaxel delivery systems for breast cancer therapy. Biomaterials, 2014, 35, 6972–6985. DOI: 10.1016/j.biomaterials.2014.04.099.
  • Osbild, S.; Brault, L.; Battaglia, E.; Bragel, D. Resistance to Cisplatin and Adriamycin is Associated with the Inhibition of Glutathione Efflux in MCF-7-derived cells. Anticancer Res. 2006, 26, 3595–3600.
  • Surnar, B.; Sharma, K.; Jayakannan, M. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells. Nanoscale, 2015 , 7, 17964–17979. DOI: 10.1039/C5NR04963F.
  • He, X.; Li, L.; Su, H.; Zhou, D.; Song, H.; Wang, L.; Jiang, X. Poly(ethylene glycol)-block-poly(ε-caprolactone)–and phospholipid-based stealth nanoparticles with enhanced therapeutic efficacy on murine breast cancer by improved intracellular drug delivery. Int. J. Nanomedicine, 2015, 10, 1791–1804. DOI: 10.2147/IJN.S75186">10.2147/IJN.S75186.
  • Zhang, L.; Zhu, D.; Dong, X.; Sun, H.; Song, C.; Wang, C.; Kong, D. Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery. Int. J. Nanomedicine, 2015, 10, 2101–2114. DOI: 10.2147/IJN.S77667">10.2147/IJN.S77667.
  • Chen, D.; Cui, Q. C.; Yang, H.; Dou, Q. P. Disulfiram, a Clinically Used Anti-Alcoholism Drug and Copper-Binding Agent, Induces Apoptotic Cell Death in Breast Cancer Cultures and Xenografts via Inhibition of the Proteasome Activity. Cancer Res. 2006, 66, 10425–10433. DOI:10.1158/0008-5472.
  • Song, W.; Tang, Z.; Lei, T.; Wen, X.; Wang, G.; Zhang, D.; Deng, M.; Tang, X.; Chen, X. Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy. Nanomedicine, 2016, 12, 377–386. DOI: 10.1016/j.nano.2015.10.022.
  • Jadia, R.; Scandore, C.; Rai, P. Nanoparticles for Effective Combination Therapy of Cancer. Int. J. Nanotechnol. Nanomed. 2016, 1, 1–27.
  • Sun, H.-P, Su, J.-H.; Meng, Q.,-S.; Yin, Q.; Zhang, Z.-W.; Yu, H.-J.; Zhang, P.-C.; Wang, S.-L.; Li, Y.-P. Silibinin and indocyanine green-loaded nanoparticles inhibit the growth and metastasis of mammalian breast cancer cells in vitro. Acta Pharmacol Sin. 2016, 37, 941–949. DOI: 10.1038/aps.2016.20.
  • Lin, Y.-J.; Liu, Y.-S.; Yeh, H.-H.; Chen, T.-L.; Wang, L.-F. Self-assembled poly(ε-caprolactone)-g-chondroitin sulfate copolymers as an intracellular doxorubicin delivery carrier against lung cancer cells. Int. J. Nanomedicine, 2012, 7, 4169–4183. DOI: 10.2147/IJN.S33602">10.2147/IJN.S33602.
  • Jiang, L.; Li, X.; Liu, L.; Zhang, Q. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer. Nanoscale Res. Lett. 2013, 8, 1–11. DOI: 10.1186/1556-276X-8-66">10.1186/1556-276X-8-66.
  • Garg, A.; Patel, V.; Sharma, R.; Jain, A.; Yadav, A. K. Heparin-appended polycaprolactone core/corona nanoparticles for site specific delivery of 5-fluorouracil. Artif. Cells, Nanomed., Biotechnol. 2017, 45, 1146–1155. DOI:10.1080/21691401.2016.1203793.
  • Xu, H.; Hou, Z.; Zhang, H.; Kong, H.; Li, X.; Wang, H.; Xie, W. An efficient Trojan delivery of tetrandrine by poly(N-vinylpyrrolidone)-block-poly(ε-caprolactone) (PVP-b-PCL) nanoparticles shows enhanced apoptotic induction of lung cancer cells and inhibition of its migration and invasion. Int. J. Nanomedicine, 2014, 9, 231–242. DOI: 10.2147/IJN.S55541">10.2147/IJN.S55541.
  • Yin, H.-T.; Zhang, D.-G.; Wu, X.-L., Huang, X.-E.; Chen, G. In vivo Evaluation of Curcumin-loaded Nanoparticles in an A549 Xenograft Mice Model. Asian Pac. J. Cancer Prev. 2013, 14, 409–412. DOI: 10.7314/APJCP.2013.14.1.409.
  • Yin, H.; Zhang, H.; Liu, B. Superior anticancer efficacy of curcumin-loaded nanoparticles against lung cancer. Acta Biochim. Biophys. Sin. 2013, 45, 634–640. DOI: 10.1093/abbs/gmt063.
  • Gong, C.; Deng, S.; Wu, Q.; Xiang, M.; Wei, X.; Li, L.; Gao, X.; Wang, B.; Sun, L.; Chen, Y.; et al. Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials, 2013, 34, 1413–1432. DOI:10.1016/j.biomaterials.2012.10.068.
  • Wen, C.; Zhou, Y.; Zhou, C.; Zhang, Y.; Hu, X.; Li, J.; Yin, H. Enhanced Radiosensitization Effect of Curcumin Delivered by PVP-PCL Nanoparticle in Lung Cancer. J. Nanomater. 2017, 2017, 1–8. DOI:10.1155/2017/9625909.
  • Yang, Q.; Liao, J.; Deng, X.; Liang, J.; Long, C.; Xie, C.; Chen, X.; Zhang, L.; Sun, J.; Peng, J.; et al. Anti-Tumor Activity and Safety Evaluation of Fisetin-Loaded Methoxy Poly(ethylene glycol)-Poly(ε-Caprolactone) Nanoparticles. J. Biomed. Nanotechnol. 2014, 10, 580–591. DOI: 10.1166/jbn.2014.1746.
  • Wang, B.-L.; Shen, Y.-M.; Zhang, Q.-W.; Li, Y.-L.; Luo, M.; Liu, Z.; Li, Y.; Qian, Z.-Y.; Gao, X.; Shi, H.-S. Codelivery of curcumin and doxorubicin by MPEG-PCL results in improved efficacy of systemically administered chemotherapy in mice with lung cancer. Int. J. Nanomedicine, 2013, 8, 3521–3531. DOI: 10.2147/IJN.S45250">10.2147/IJN.S45250.
  • Arora, S.; Singh, S.; Piazza, G. A.; Contreras, C. M.; Panyam, J.; Singh, A. P. Honokiol: A Novel Natural Agent for Cancer Prevention and Therapy. Curr. Mol. Med. 2012, 12, 1244–1252. DOI: 10.2174/156652412803833508.
  • Dong, P.; Wang, X.; Gu, Y.; Wang, Y.; Wang, Y.; Gong, C.; Luo, F.; Guo, G.; Zhao, X.; Wei, Y.; et al. Self-assembled biodegradable micelles based on star-shaped PCL-b-PEG copolymers for chemotherapeutic drug delivery. Colloids Surf., A, 2010, 358, 128–134. DOI: 10.1016/j.colsurfa.2010.01.037.
  • Li, R.; Wu, W.; Liu, Q.; Wu, P.; Xie, L.; Zhu, Z.; Yang, M.; Qian, X.; Ding, Y.; Yu, L. Intelligently Targeted Drug Delivery and Enhanced Antitumor Effect by Gelatinase-Responsive Nanoparticles. PLoS One, 2013, 8, 1–11. DOI: 10.1371/journal.pone.0069643">10.1371/journal.pone.0069643.
  • Askari, S.; Salehi, R.; Zarghami, N.; Akbarzadeh, A.; Rahmati-Yamchi, M. The anticancer effects of biodegradable nanomagnetic dual natural components on the leptin gene expression in lung cancer. Artif. Cells, Nanomed., Biotechnol. 2016, 44, 1753–1763. DOI: 10.3109/21691401.2015.1101000.
  • Mandal, B.; Mittal, N. K.; Balabathula, P.; Thoma, L. A.; Wood, G. C. Development and in vitro evaluation of core–shell type lipid–polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur. J. Pharm. Sci. 2016, 81, 162–171. DOI: 10.1016/j.ejps.2015.10.021.
  • Gao, H.; Zhang, Q.; Yang, Y.; Jiang, X.; He, Q. Tumor homing cell penetrating peptide decorated nanoparticles used for enhancing tumor targeting delivery and therapy. Int. J. Pharm. 2015, 478, 240–250. DOI:10.1016/j.ijpharm.2014.11.029.
  • Gou, M.-L.; Zheng, X.-L.; Men, K.; Zhang, J.; Zheng, L.; Wang, X.-H.; Luo, F.; Zhao, Y.-L.; Zhao, X.; et al. Poly(ε-caprolactone)/Poly(ethylene glycol)/Poly(ε-caprolactone) Nanoparticles: Preparation, Characterization, and Application in Doxorubicin Delivery. J. Phys. Chem B, 2009, 113, 12928–12933. DOI: 10.1021/jp905781g.
  • Li, R.; Li, X.; Xie, L.; Ding, D.; Hu, Y.; Qian, X.; Yu, L.; Ding, Y.; Jiang, X.; Liu, B. Preparation and evaluation of PEG–PCL nanoparticles for local tetradrine delivery. Int. J. Pharm. 2009, 379, 158–166. DOI: 10.1016/j.ijpharm.2009.06.007.
  • Gou, M.; Men, K.; Shi, H.; Xiang, M.; Zhang, J.; Song, J.; Long, J.; Wan, Y.; Luo, F.; Zhao, X.; et al. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale, 2011, 3, 1558–1567. DOI: 10.1039/c0nr00758g.
  • Li, X.; Zhen, D.; Lu, X.; Xu, H.; Shao, Y.; Xue, Q.; Hu, Y.; Liu, B.; Sun, W. Enhanced cytotoxicity and activation of ROS-dependent c-Jun NH2-terminal kinase and caspase-3 by low doses of tetrandrine-loaded nanoparticles in Lovo cells – A possible Trojan strategy against cancer. Eur. J. Pharm. Biopharm. 2010, 75, 334–340. DOI: 10.1016/j.ejpb.2010.04.016.
  • Li, R.; Xie, L.; Zhu, Z.; Liu, Q.; Hu, Y.; Jiang, X.; Yu, L.; Qian, X.; Guo, W.; Ding, Y.; et al. Reversion of pH-Induced Physiological Drug Resistance: A Novel Function of Copolymeric Nanoparticles. PLoS One, 2011, 6, 1–13. DOI: 10.1371/journal.pone.0024172">10.1371/journal.pone.0024172.
  • Ortiz, R.; Prados, J.; Melguizo, C.; Arias, J. L.; Ruiz, M. A.; Alvarez, P. J.; Caba, O.; Lungue, R.; Segura, A.; Aránega, A. 5-Fluorouracil-loaded poly (ε-caprolactone) nanoparticles combined with phage E gene therapy as a new strategy against colon cancer. Int. J. Nanomed. 2012, 7, 95–107. DOI: 10.2147/IJN.S26401">10.2147/IJN.S26401.
  • Badran, M. M.; Mady, M. M.; Ghannam, M. M.; Shakeel, F. Preparation and characterization of polymeric nanoparticles surface modified with chitosan for target treatment of colorectal cancer. Int. J. Biol. Macromol. 2017, 95, 643–649. DOI: 10.1016/j.ijbiomac.2016.11.098.
  • Li, C.-Y.; Wang, E.-Q., Cheng, Y.; Bao, J.-K. Oridonin: An active diterpenoid targeting cell cycle arrest, apoptotic and autophagic pathways for cancer therapeutics. Int. J. Biochem. Cell Biol. 2011, 43, 701–704. DOI: 10.1016/j.biocel.2011.01.020.
  • Feng, N.; Wu, P.; Li, Q.; Mei, Y.; Shi, S.; Yu, J.; Xu, J.; Liu, Y.; Wang, Y. Oridonin-loaded poly (ε-caprolactone)–poly(ethylene oxide)–poly(ε-caprolactone) copolymer nanoparticles: Preparation, characterization, and antitumor activity on mice with transplanted hepatoma. J. Drug Targeting, 2008, 16, 479–485. DOI: 10.1080/10611860802102282.
  • Vasilcanu, R.; Vasilcanu, D.; Rosengren, L.; Natalishvili, N.; Sehat, B.; Yin, S.; Girnita, A.; Axelson, M.; Girnita, L.; Larsson, O. Picropodophyllin induces downregulation of the insulin-like growth factor 1 receptor: potential mechanistic involvement of Mdm2 and [beta]-arrestin1. Oncogene, 2007, 27, 1629–1638. DOI: 10.1038/sj.onc.1210797.
  • Zhao, J.; Wang, Y.; Luan, L. Star-Shaped Polycaprolactone-Polyethyleneglycol Copolymer Micelle-Like Nanoparticles for Picropodophyllin Delivery. J. Biomed. Nanotechnol. 2014, 10, 1627–1634. DOI: 10.1166/jbn.2014.1835.
  • Zhu, Z.; Li, Y.; Li, X.; Li, R.; Jia, Z.; Liu, B.; Guo, W.; Wu, W.; Jiang, X. Paclitaxel-loaded poly (N-vinylpyrrolidone)-b-poly(ε-caprolactone) nanoparticles: Preparation and antitumor activity in vivo. J. Controlled Release, 2010, 142, 438–446. DOI: 10.1016/j.jconrel.2009.11.002.
  • Li, X.; Xu, H.; Dai, X.; Zhu, Z.; Liu, B.; Lu, X. Enhanced in vitro and in vivo therapeutic efficacy of codrug-loaded nanoparticles against liver cancer. Int. J. Nanomed. 2012, 7, 5183–5190. DOI: 10.2147/IJN.S34886">10.2147/IJN.S34886.
  • Liu, Q.; Li, R.; Zhu, Z.; Qian, X.; Guan, W.; Yu, L.; Yang, M.; Jiang, X.; Liu, B. Enhanced antitumor efficacy, biodistribution and penetration of docetaxel-loaded biodegradable nanoparticles. Int. J. Pharm. 2012, 430, 350–358. DOI: 10.1016/j.ijpharm.2012.04.008.
  • Li, X.; Li, R.; Qian, X.; Ding, Y.; Tu, Y.; Guo, R.; Hu, Y.; Jiang, X.; Guo, W.; Liu, B. Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate. Eur. J. Pharm. Biopharm. 2008, 70, 726–734. DOI: 10.1016/j.ejpb.2008.06.016.
  • Shi, B.; Abrams, M.; Sepp-Lorenzino, L. Expression of Asialoglycoprotein Receptor 1 in Human Hepatocellular Carcinoma. J.Histochem. Cytochem. 2013, 61, 901–909. DOI: 10.1369/0022155413503662.
  • Zhou, N.; Zan, X.; Wang, Z.; Wu, H.; Yin, D.; Liao, C.; Wan, Y. Galactosylated chitosan–polycaprolactone nanoparticles for hepatocyte-targeted delivery of curcumin. Carbohydr. Polym. 2013, 94, 420–429. DOI: 10.1016/j.carbpol.2013.01.014.
  • Tao, W.; Zeng, X.; Zhang, J.; Zhu, H.; Chang, D.; Zhang, X.; Gao, Y.; Tang, J.; Huang, L.; Mei, L. Synthesis of cholic acid-core poly (Ɛ-caprolactone-ran-lactide)-b-poly(ethylene glycol) 1000 random copolymer as a chemotherapeutic nanocarrier for liver cancer treatment. Biomater. Sci. 2014, 2, 1262–1274. DOI: 10.1039/C4BM00134F.
  • Liu, Q.; Li, R.-T.; Qian, H.-Q.; Yang, M.; Zhu, Z.-S.; Wu, W.; Qian, X.-P.; Yu, L.-X.; Jiang, X.-Q.; Liu, B.-R. Gelatinase-stimuli strategy enhances the tumor delivery and therapeutic efficacy of docetaxel-loaded poly (ethylene glycol)-poly (ɛ-caprolactone) nanoparticles. Int. J. Nanomed. 2012, 7, 281–295. DOI: 10.2147/IJN.S26697">10.2147/IJN.S26697.
  • Deng, H.; Zhao, X.; Liu, J.; Deng, L.; Zhang, J.; Liu, J.; Dong, A. Reactive oxygen species (ROS) responsive PEG-PCL nanoparticles with pH-controlled negative-to-positive charge reversal for intracellular delivery of doxorubicin. J. Mater. Chem. B. 2015, 3, 9397–9408. DOI: 10.1039/C5TB01939G.
  • Matsumoto, A.; Stephenson-Brown, A. J.; Khan, T.; Miyazawa, H.; Cabral, H.; Kataoka, K.; Miyahara, Y. Heterocyclic boronic acids display sialic acid selective binding in a hypoxic tumor relevant acidic environment. Chem. Sci. 2017, 8, 6165–6170. DOI: 10.1039/c7sc01905j.
  • Tang, Z.; Zhang, L.; Wang, Y.; Li, D.; Zhong, Z.; Zhou, S. Redox-responsive star-shaped magnetic micelles with active-targeted and magnetic-guided functions for cancer therapy. Acta Biomater. 2016, 42, 1–15. DOI: 10.1016/j.actbio.2016.06.038">10.1016/j.actbio.2016.06.038.
  • Ma, Y.; Huang, L.; Song, C.; Zeng, X.; Liu, G.; Mei, L. Nanoparticle formulation of poly(ɛ-caprolactone-co-lactide)-d-α-tocopheryl polyethylene glycol 1000 succinate random copolymer for cervical cancer treatment. Polymer, 2010, 51, 5952–5959. DOI: 10.1016/j.polymer.2010.10.029.
  • Qing-Shan, L.; Li, C. Y.; Li, Z. L.; Zhu, H. L. Genistein and its Synthetic Analogs as Anticancer Agents. Anti-Cancer Agents Med. Chem. 2012, 12, 271–281. DOI: 10.2174/187152012800228788.
  • Zhang, H.; Liu, G.; Zeng, X.; Wu, Y.; Yang, C.; Mei, L.; Wang, Z.; Huang, L. Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells. Int. J. Nanomed. 2015, 10, 2461–2473. DOI: 10.2147/IJN.S78988">10.2147/IJN.S78988.
  • Yang, X.; Chen, Y.; Yuan, R.; Chen, G.; Blanco, E.; Gao, J.; Shuai, X. Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells. Polymer, 2008, 49, 3477–3485. DOI: 10.1016/j.polymer.2008.06.005.
  • Weiß, L.; Efferth, T. Polo-like kinase 1 as target for cancer therapy. Exp.Hematol. Oncol. 2012, 1, 1–6. DOI: 10.1186/2162-3619-1-38">10.1186/2162-3619-1-38.
  • Lin, D.; Jiang, Q.; Cheng, Q.; Huang, Y.; Huang, P.; Han, S.; Guo, S.; Liang, Z.; Dong, A. Polycation-detachable nanoparticles self-assembled from mPEG-PCL-g-SS-PDMAEMA for in vitro and in vivo siRNA delivery. Acta Biomater. 2013, 9, 7746–7757. DOI: 10.1016/j.actbio.2013.04.031.
  • Gou, M.; Zheng, L.; Peng, X.; Men, K.; Zheng, S.; Guo, G.; Luo, F.; Zhao, X.; Chen, L.; Wei, Y.; et al. Poly(ɛ-caprolactone)–poly(ethylene glycol)–poly(ɛ-caprolactone) (PCL–PEG–PCL) nanoparticles for honokiol delivery in vitro. Int. J. Pharm. 2009, 375, 170–176. DOI: 10.1016/j.ijpharm.2009.04.007.
  • Gou, M.; Zheng, X.; Men, K.; Zhang, J.; Wang, B.; Lv, L.; Wang, X.; Zhao, Y.; Luo, F.; Wei, Y.; et al. Self-Assembled Hydrophobic Honokiol Loaded MPEG-PCL Diblock Copolymer Micelles. Pharm. Res. 2009, 26, 2164–2173. DOI: 10.1007/s11095-009-9929-8.
  • Zheng, D.; Li, D.; Lu, X.; Feng, Z. Enhanced antitumor effciency of docetaxel-loaded nanoparticles in a human ovarian xenograft model with lower systemic toxicties by intratumoral delivery. Oncol. Rep. 2010, 23, 717–724. DOI: 10.3892/or_00000689">10.3892/or_00000689.
  • Xu, P.; Van Kirk, E. A.; Murdoch, W. J.; Zhan, Y.; Isaak, D. D.; Radosz, M.; Shen, Y. Anticancer Efficacies of Cisplatin-Releasing pH-Responsive Nanoparticles. Biomacromolecules, 2006, 7, 829–835. DOI: 10.1021/bm050902y.
  • van Vlerken, L. E.; Duan, Z.; Seiden, M. V.; Amiji, M. M. Modulation of Intracellular Ceramide Using Polymeric Nanoparticles to Overcome Multidrug Resistance in Cancer. Cancer Res. 2007, 67, 4843–4850. DOI: 10.1158/0008-5472.CAN-06-1648.
  • Devalapally, H.; Duan, Z.; Seiden, M. V.; Amiji M. M. Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer. Int. J. Cancer. 2007, 121, 1830–1838. DOI: 10.1002/ijc.22886.
  • Devalapally, H.; Duan, Z.; Seiden, M. V.; Amiji, M. M. Modulation of Drug Resistance in Ovarian Adenocarcinoma by Enhancing Intracellular Ceramide Using Tamoxifen-Loaded Biodegradable Polymeric Nanoparticles. Clin.Cancer Res. 2008, 14, 3193–3203. DOI: 10.1158/1078-0432.CCR-07-4973.
  • Yadav, S.; Van Vlerken, L. E.; Little, S. R.; Amiji, M. M. Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemother. Pharmacol. 2009, 63, 711–722. DOI: 10.1007/s00280-008-0790-y.
  • Scarano, W.; De Souza, P.; Stenzel, M. Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: a double act for the treatment of multidrug-resistant cancer. Biomater. Sci. 2015, 3, 163–174. DOI: 10.1039/C4BM00272E.
  • Bilensoy, E.; Sarisozen, C.; Esendaĝli, G.; Doĝan, A. L.; Aktaş, Y.; Sen, M.; Mungan, N. A. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. Int. J. Pharm. 2009, 371, 170–176. DOI: 10.1016/j.ijpharm.2008.12.015.
  • Erdogar, N.; Iskit, A. B.; Eroglu, H.; Sargon, M. F.; Mungan, N. A.; Bilensoy, E. Cationic core-shell nanoparticles for intravesical chemotherapy in tumor-induced rat model: Safety and efficacy. Int. J. Pharm. 2014, 471, 1–9. DOI: 10.1016/j.ijpharm.2014.05.014.
  • Zhang, H.; Li, X.; Ding, J.; Xu, H.; Dai, X.; Hou, Z.; Zhang, K.; Sun, K.; Sun, W. Delivery of ursolic acid (UA) in polymeric nanoparticles effectively promotes the apoptosis of gastric cancer cells through enhanced inhibition of cyclooxygenase 2 (COX-2). Int. J. Pharm. 2013, 441, 261–268. DOI: 10.1016/j.ijpharm.2012.11.034.
  • Li, X.; Lu, X.; Xu, H.; Zhu, Z.; Yin, H.; Qian, X.; Li, R.; Jiang, X.; Liu, B. Paclitaxel/Tetrandrine Coloaded Nanoparticles Effectively Promote the Apoptosis of Gastric Cancer Cells Based on “Oxidation Therapy”. Mol. Pharmaceutics, 2012, 9,222–229. DOI: 10.1021/mp2002736.
  • Zhang, H.; Tian, Y.; Zhu, Z.; Xu, H.; Li, X.; Zheng, D.; Sun, W. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation. Sci. Rep. 2016, 6, 1–14. DOI: 10.1038/srep26546">10.1038/srep26546.
  • Krishnan, V.; Xu, X.; Barwe, S. P.; Yang, X., Czymmek, K.; Waldman, S. A.; Mason, R. W.; Jlia, X.; Rajasekaran, A. K. Dexamethasone-Loaded Block Copolymer Nanoparticles Induce Leukemia Cell Death and Enhance Therapeutic Efficacy: A Novel Application in Pediatric Nanomedicine. Mol. Pharmaceutics, 2013, 10, 2199–2210. DOI: 10.1021/mp300350e.
  • Cortese, B.; D’Amone, S.; Gigli, G.; Palamà, I. E. Sustained anti-BCR-ABL activity with pH responsive imatinib mesylate loaded PCL nanoparticles in CML cells. Med. Chem. Commun. 2015, 6, 212–221. DOI: 10.1039/C4MD00348A.
  • Amgoth, C.; Dharmapuri, G. Synthesis and Characterization of Polymeric Nanoparticles and Capsules as Payload for Anticancer Drugs and Nanomedicines. Mater. Today, 2016 , 3, 3833–3837. DOI: 10.1016/j.matpr.2016.11.036.
  • Hira, S. K.; Mishra, A. K.; Ray, B.; Manna, P. P. Targeted Delivery of Doxorubicin-Loaded Poly (ε-caprolactone)-b-Poly(N-vinylpyrrolidone) Micelles Enhances Antitumor Effect in Lymphoma. PLoS One, 2014, 9, 1–17. DOI: 10.1371/journal.pone.0094309">10.1371/journal.pone.0094309.
  • Zheng, L.; Gou, M.; Zhou, S.; Yi, T.; Zhong, Q.; Li, Z.; He, X.; Chen, X.; Zhou, L.; Wei, Y.; et al. Antitumor activity of monomethoxy poly (ethylene glycol)-poly(ε-caprolactone) micelle-encapsulated doxorubicin against mouse melanoma. Oncol. Rep. 2011, 25, 1557–1564. DOI: 10.3892/or.2011.1243">10.3892/or.2011.1243.
  • Loch-Neckel, G.; Santos-Bubniak, L.; Mazzarino, L.; Jacques, A. V.; Moccelin, B.; Santos-Silva, M. C.; Lemos-Senna, E. Orally Administered Chitosan-Coated Polycaprolactone Nanoparticles Containing Curcumin Attenuate Metastatic Melanoma in the Lungs. J. Pharm. Sci. 2015, 104, 3524–3534. DOI: 10.1002/jps.24548.
  • Yu, H.; Chen, J.; Liu, S.; Lu, Q.; He, J.; Zhou, Z.; Hu, Y. Enzyme sensitive, surface engineered nanoparticles for enhanced delivery of camptothecin. J. Controlled Release, 2015, 216, 111–120. DOI: 10.1016/j.jconrel.2015.08.021.
  • Semenza, G. L. Defining the Role of Hypoxia-Inducible Factor 1 in Cancer Biology and Therapeutics. Oncogene, 2010, 29, 625–634. DOI: 10.1038/onc.2009.441.
  • Chen, Y.; Xu, G.; Zheng, Y.; Yan, M.; Li, Z.; Zhou, Y.; Mei, L.; Li, X. Nanoformulation of D-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) diblock copolymer for siRNA targeting HIF-1α for nasopharyngeal carcinoma therapy. Int. J. Nanomed. 2015, 10, 1375–1386. DOI: 10.2147/IJN.S76092">10.2147/IJN.S76092.
  • Lian, D.; Chen, Y.; Xu, G.; Zeng, X.; Li, Z.; Li, Z.; Zhou, Y.; Mei, L.; Li, X. Delivery of siRNA targeting HIF-1α loaded chitosan modified d-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) nanoparticles into nasopharyngeal carcinoma cell to improve the therapeutic efficacy of cisplatin. RSC Adv. 2016, 6, 37740–37749. DOI:10.1039/C6RA03440C.
  • Gang, J.; Park, S. B.; Hyung, W.; Choi, E. H.; Wen, J.; Kim, H. S.; Shul, Y. G, Haam, S.; Song, S. Y. Magnetic poly ε-caprolactone nanoparticles containing Fe3O4 and gemcitabine enhance anti-tumor effect in pancreatic cancer xenograft mouse model. J. Drug Targeting, 2007, 15, 445–453. DOI: 10.1080/10611860701453901.
  • Sanna, V.; Roggio, A. M.; Posadino, A. M.; Cossu, A.; Marceddu, S.; Mariani, A.; Alzari, V.; Uzzau, S.; Pintus, G.; Sechi, M.; et al. Novel docetaxel-loaded nanoparticles based on poly (lactide-co-caprolactone) and poly(lactide-co-glycolide-co-caprolactone) for prostate cancer treatment: formulation, characterization, and cytotoxicity studies. Nanoscale Res. Lett. 2011, 6, 1–9. DOI: 10.1186/1556-276X-6-260.
  • Sanna, V.; Siddiqui, I. A.; Sechi, M.; Mukhtar, H. Resveratrol-Loaded Nanoparticles Based on Poly (epsilon-caprolactone) and Poly(d,l-lactic-co-glycolic acid)–Poly(ethylene glycol) Blend for Prostate Cancer Treatment. Mol. Pharmaceutics, 2013, 10, 3871–3881. DOI:10.1021/mp400342f.
  • Arya, A.; Khandelwal, K.; Ahmad, H.; Laxman, T. S.; Sharma, K.; Mittapelly, N.; Agrawal, S.; Bhatta, R. S.; Dwivedi, A. K. Co-delivery of hesperetin enhanced bicalutamide induced apoptosis by exploiting mitochondrial membrane potential via polymeric nanoparticles in a PC-3 cell line. RSC Adv. 2016, 6, 5925–5935. DOI:10.1039/C5RA23067E.
  • Zhao, Y.; Duan, S.; Zeng, X.; Liu, C.; Davies, N. M.; Li, B.; Forrest, M. L. Prodrug Strategy for PSMA-Targeted Delivery of TGX-221 to Prostate Cancer Cells. Mol. Pharmaceutics, 2012, 9, 1705–1716. DOI: 10.1021/mp3000309.
  • Zhang, L.; Yang, M.; Wang, Q.; Li, Y.; Guo, R.; Jiang, X.; Yang, C.; Liu, B. 10-Hydroxycamptothecin loaded nanoparticles: Preparation and antitumor activity in mice. J. Controlled Release, 2007, 119, 153–162. DOI: 10.1016/j.jconrel.2007.02.013.
  • Kanazawa, T.; Sugawara, K.; Tanaka, K.; Horiuchi, S.; Takashima, Y.; Okada, H. Suppression of tumor growth by systemic delivery of anti-VEGF siRNA with cell-penetrating peptide-modified MPEG–PCL nanomicelles. Eur. J. Pharm. Biopharm. 2012, 81, 470–477. DOI: 10.1016/j.ejpb.2012.04.021.
  • Tanaka, K.; Kanazawa, T.; Horiuchi, S.; Ando, T.; Sugawara, K.; Takashima, Y.; Seta, Y.; Okada, H. Cytoplasm-responsive nanocarriers conjugated with a functional cell-penetrating peptide for systemic siRNA delivery. Int. J. Pharm. 2013, 455, 40–47. DOI: 10.1016/j.ijpharm.2013.07.069.
  • Yadav, A. K.; Mishra, P.; Jain, S.; Mishra, P.; Mishra, A. K.; Agrawal, G. P. Preparation and characterization of HA–PEG–PCL intelligent core–corona nanoparticles for delivery of doxorubicin. J. Drug Targeting, 2008, 16, 464–478. DOI: 10.1080/10611860802095494.
  • Huang, P.; Yang, C.; Liu, J.; Wang, W.; Guo, S.; Li, J.; Sun, Y.; Dong, H.; Deng, L.; Zhang, J.; et al. Improving the oral delivery efficiency of anticancer drugs by chitosan coated polycaprolactone-grafted hyaluronic acid nanoparticles. J. Mater. Chem. B2014, 2, 4021–4033. DOI: 10.1039/C4TB00273C.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.