386
Views
52
CrossRef citations to date
0
Altmetric
Articles

Preparation and characterization of poly ε-caprolactone-gelatin/multi-walled carbon nanotubes electrospun scaffolds for cartilage tissue engineering applications

, , &
Pages 326-337 | Received 06 Oct 2018, Accepted 15 Dec 2018, Published online: 19 Jan 2019

References

  • Zhu, Y.; Wu, H.; Sun, S.; Zhou, T.; Wu, J.; Wan, Y. Designed Composites for Mimicking Compressive Mechanical Properties of Articular Cartilage Matrix. J. Mech. Behav. Biomed. Mater. 2014, 36, 32–46. doi:10.1016/j.jmbbm.2014.04.003.
  • Lavik, E.; Langer, R. Tissue Engineering: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2004, 65, 1–8.
  • Kundu, S. Silk Biomaterials for Tissue Engineering and Regenerative Medicine. Elsevier Science: Amsterdam, 2014.
  • Kuo, C.-Y.; Chen, C.-H.; Hsiao, C.-Y.; Chen, J.-P. Incorporation of Chitosan in Biomimetic Gelatin/Chondroitin-6-Sulfate/Hyaluronan Cryogel for Cartilage Tissue Engineering. Carbohydr. Polym. 2015, 117, 722–730. doi:10.1016/j.carbpol.2014.10.056.
  • Naebe, M.; Lin, T.; Wang, X. Carbon Nanotubes Reinforced Electrospun Polymer Nanofibres. InTech: London, 2010.
  • Wise, D. L. Biomaterials and Bioengineering Handbook. Marcel Dekker: New York City, 2000.
  • Smith, L.; Ma, P. Nano-Fibrous Scaffolds for Tissue Engineering. Colloids Surf. B Biointerfaces Surf. B. 2004, 39, 125–131. doi:10.1016/j.colsurfb.2003.12.004
  • Baker, S. R.; Banerjee, S.; Bonin, K.; Guthold, M. Determining the Mechanical Properties of Electrospun Poly-ε-Caprolactone (PCL) Nanofibers Using AFM and a Novel Fiber Anchoring Technique. Mater. Sci. Eng. C. 2016, 59, 203–212. doi:10.1016/j.msec.2015.09.102.
  • Ghasemi-Mobarakeh, L.; Prabhakaran, M. P.; Morshed, M.; Nasr-Esfahani, M.-H.; Ramakrishna, S. Electrospun Poly (ɛ-caprolactone)/Gelatin Nanofibrous Scaffolds for Nerve Tissue Engineering. Biomaterials 2008, 29, 4532–4539. doi:10.1016/j.biomaterials.2008.08.007.
  • Jaiswal, A. K.; Chandra, V.; Bhonde, R. R.; Soni, V. P.; Bellare, J. R. Mineralization of Nanohydroxyapatite on Electrospun Poly (L-lactic Acid)/Gelatin by an Alternate Soaking Process: A Biomimetic Scaffold for Bone Regeneration. J. Bioact. Compat. Polym 2012, 27, 356–374. doi:10.1177/0883911512447211.
  • Sambudi, N. S.; Sathyamurthy, M.; Lee, G. M.; Park, S. B. Electrospun Chitosan/Poly (Vinyl Alcohol) Reinforced with CaCO3 Nanoparticles with Enhanced Mechanical Properties and Biocompatibility for Cartilage Tissue Engineering. Compos. Sci. Technol. 2015, 106, 76–84. doi:10.1016/j.compscitech.2014.11.003.
  • Jiankang, H.; Dichen, L.; Yaxiong, L.; Bo, Y.; Hanxiang, Z.; Qin, L.; Bingheng, L.; Yi, L. Preparation of Chitosan–Gelatin Hybrid Scaffolds with Well-Organized Microstructures for Hepatic Tissue Engineering. Acta Biomater. 2009, 5, 453–461. doi:10.1016/j.actbio.2008.07.002.
  • Jaiswal, A. Nanofibrous Scaffolds for Tissue Engineering Applications. Braz. Arch. Biol. Technol. 2016, 59, 1–8.
  • Binulal, N.; Natarajan, A.; Menon, D.; Bhaskaran, V.; Mony, U.; Nair, S. V. PCL–gelatin Composite Nanofibers Electrospun Using Diluted Acetic Acid–Ethyl Acetate Solvent System for Stem Cell-Based Bone Tissue Engineering. J. Biomater. Sci. Polym. Ed 2014, 25, 325–340. doi:10.1080/09205063.2013.859872.
  • Zhou, Z.; Zhou, Y.; Chen, Y.; Nie, H.; Wang, Y.; Li, F.; Zheng, Y. Bilayer Porous Scaffold Based on Poly-(ɛ-Caprolactone) Nanofibrous Membrane and Gelatin Sponge for Favoring Cell Proliferation. Appl. Surf. Sci. 2011, 258, 1670–1676. doi:10.1016/j.apsusc.2011.09.120
  • Mirmusavi, M. H.; Karbasi, S.; Semnani, D.; Rafienia, M.; Kharazi, A. Z. Assessing the Physical and Mechanical Properties of Poly 3-Hydroxybutyrate-Chitosan-Multi-Walled Carbon Nanotube/Silk Nano–Micro Composite Scaffold for Long-Term Healing Tissue Engineering Applications. Micro Nano Lett 2018, 13, 829–834. doi:10.1049/mnl.2017.0725.
  • Laurencin, C. T.; Nair, L. S. Nanotechnology and Regenerative Engineering: The Scaffold. CRC Press: Boca Raton, 2014.
  • Li, Q-h.; Zhou, Q-h.; Dan, D.; Yu, Q-z.; Li, G.; Gong, K-d.; Xu, K-h. Enhanced Thermal and Electrical Properties of Poly (D, L-lactide)/Multi-Walled Carbon Nanotubes Composites by In-Situ Polymerization. Trans. Nonferrous Met. Soc. China 2013, 23, 1421–1427. doi:10.1016/S1003-6326(13)62612-6.
  • Treacy, M. J.; Ebbesen, T.; Gibson, J. Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes. Nature 1996, 381, 678. doi:10.1038/381678a0.
  • Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam Mechanics: Elasticity, strength, and Toughness of Nanorods and Nanotubes. Science 1997, 277, 1971–1975. doi:10.1126/science.277.5334.1971.
  • Ren, Z.; Huang, Z.; Xu, J.; Wang, J.; Bush, P.; Siegal, M.; Provencio, P. Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass. Science 1998, 282, 1105–1107. doi:10.1126/science.282.5391.1105
  • Spinks, G. M.; Shin, S. R.; Wallace, G. G.; Whitten, P. G.; Kim, S. I.; Kim, S. J. Mechanical Properties of Chitosan/CNT Microfibers Obtained with Improved Dispersion. Sens. Actuators B Chem. 2006, 115, 678–684. doi:10.1016/j.snb.2005.10.047.
  • Sun, F.; Cha, H.-R.; Bae, K.; Hong, S.; Kim, J.-M.; Kim, S. H.; Lee, J.; Lee, D. Mechanical Properties of Multilayered Chitosan/CNT Nanocomposite Films. Mater. Sci. Eng. A. 2011, 528, 6636–6641. doi:10.1016/j.msea.2011.05.028.
  • Biercuk, M.; Llaguno, M. C.; Radosavljevic, M.; Hyun, J.; Johnson, A. T.; Fischer, J. E. Carbon Nanotube Composites for Thermal Management. Appl. Phys. Lett. 2002, 80, 2767–2769. doi:10.1063/1.1469696.
  • Zarei, M.; Karbasi, S. Evaluation of the Effects of Multiwalled Carbon Nanotubes on Electrospun Poly (3-Hydroxybutirate) Scaffold for Tissue Engineering Applications. J. Porous Mater. 2018, 25, 259–272. doi:10.1007/s10934-017-0439-5.
  • Karbasi, S.; Alizadeh, Z. M. Effects of Multi-wall Carbon Nanotubes on Structural and Mechanical Properties of Poly (3-Hydroxybutyrate)/Chitosan Electrospun Scaffolds for Cartilage Tissue Engineering. Bull. Mater. Sci. 2017, 40, 1247–1253. doi:10.1007/s12034-017-1479-9.
  • Pan, L.; Pei, X.; He, R.; Wan, Q.; Wang, J. Multiwall Carbon Nanotubes/polycaprolactone Composites for Bone Tissue Engineering Application. Colloids. Surf. B Biointerfaces 2012, 93, 226–234. doi:10.1016/j.colsurfb.2012.01.011
  • Ko, F.; Gogotsi, Y.; Ali, A.; Naguib, N.; Ye, H.; Yang, G.; Li, C.; Willis, P. Electrospinning of Continuous Carbon Nanotube‐Filled Nanofiber Yarns. Adv. Mater. 2003, 15, 1161–1165. doi:10.1002/adma.200304955.
  • Mikael, P. E.; Nukavarapu, S. P. Functionalized Carbon Nanotube Composite Scaffolds for Bone Tissue Engineering: prospects and Progress. J. Biomat. Tissue Engng. 2011, 1, 76–85. doi:10.1166/jbt.2011.1011.
  • Kokubo, T.; Takadama, H. How Useful Is SBF in Predicting in Vivo Bone Bioactivity? Biomaterials 2006, 27, 2907–2915. doi:10.1016/j.biomaterials.2006.01.017
  • ASTM D7334-08. Standard Practice for Surface Wettability of Coatings, Substrates and Pigments by Advancing Contact Angle Measurement. ASTM International, West Conshohocken, PA, 2008.
  • 194, T. C. I. T., ISO 1798: Flexible Cellular Polymeric Materials, Determination of Tensile Strength and Elongation at Break. International Organization for Standardization: Geneva, Switzerland, 2008.
  • ASTM F1635-95. Standard Test Method for in Vitro Degradation Testing of Poly (L-lactic Acid) Resin and Fabricated Form for Surgical Implants. ASTM International, West Conshohocken, PA, 2000.
  • 194, T. C. I. T., ISO-10993: Biological Evaluation of Medical Devices —Part 5: Tests for in Vitro Cytotoxicity, 2009.
  • Pal, S. Overview of Human System and Its Artificial Replacement. In Design of Artificial Human Joints & Organs; Pal, S., Ed.; Springer: New York City, 2014; pp 1–21.
  • Hopley, E. L.; Salmasi, S.; Kalaskar, D. M.; Seifalian, A. M. Carbon Nanotubes Leading the Way Forward in New Generation 3D Tissue Engineering. Biotechnol. Adv. 2014, 32, 1000–1014. doi:10.1016/j.biotechadv.2014.05.003.
  • Li, X.; Liu, X.; Huang, J.; Fan, Y.; Cui, F-z. Biomedical Investigation of CNT Based Coatings. Surf. Coat. Tech. 2011, 206, 759–766. doi:10.1016/j.surfcoat.2011.02.063.
  • Sung, H.-J.; Meredith, C.; Johnson, C.; Galis, Z. S. The Effect of Scaffold Degradation Rate on Three-dimensional Cell Growth and Angiogenesis. Biomaterials 2004, 25, 5735–5742. doi:10.1016/j.biomaterials.2004.01.066
  • Thorvaldsson, A.; Stenhamre, H.; Gatenholm, P.; Walkenström, P. Electrospinning of Highly Porous Scaffolds for Cartilage Regeneration. Biomacromolecules 2008, 9, 1044–1049. doi:10.1021/bm701225a
  • Temenoff, J. S.; Mikos, A. G. Review: Tissue Engineering for Regeneration of Articular Cartilage. Biomaterials 2000, 21, 431–440. doi:10.1016/S0142-9612(99)00213-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.