328
Views
12
CrossRef citations to date
0
Altmetric
Articles

A polymer scaffold with drug-sustained release and antibacterial activity

, , , , , & show all
Pages 398-405 | Received 01 Oct 2018, Accepted 07 Feb 2019, Published online: 25 Mar 2019

References

  • Javaid, M. A.; Kaartinen, M. T. Int. Dental J. Students Res. 2013, 1, 24–35.
  • Cunniffe, G. M.; Vinardell, T.; Murphy, J. M.; Thompson, E. M.; Matsiko, A.; O'Brien, F. J.; Kelly, D. J. Porous Decellularized Tissue Engineered Hypertrophic Cartilage as a Scaffold for Large Bone Defect Healing. Acta Biomater. 2015, 23, 82–90. DOI: 10.1016/j.actbio.2015.05.031.
  • Neovius, E.; Engstrand, T. Craniofacial Reconstruction with Bone and Biomaterials: Review Over the Last 11 Years. J. Plast. Reconstr. Aesthet. Surg. 2010, 63, 1615–1623. DOI: 10.1016/j.bjps.2009.06.003.
  • Prosecká, E.; Rampichová, M.; Litvinec, A.; Tonar, Z.; Králíčková, M.; Vojtová, L.; Kochová, P.; Plencner, M.; Buzgo, M.; Míčková, A.; et al. Collagen/hydroxyapatite Scaffold Enriched with Polycaprolactone Nanofibers, Thrombocyte-rich Solution and Mesenchymal Stem Cells Promotes Regeneration in Large Bone Defect in Vivo. J. Biomed. Mater. Res. A. 2015, 103, 671–682. DOI: 10.1002/jbm.a.35216.
  • Emara, K. M.; Diab, R. A.; Emara, A. K. Recent Biological Trends in Management of Fracture Non-Union. World J. Orthop. 2015, 6, 623. DOI: 10.5312/wjo.v6.i8.623.
  • Griffin, K. S.; Davis, K. M.; McKinley, T. O.; Anglen, J. O.; Chu, T.-M. G.; Boerckel, J. D.; Kacena, M. A. Evolution of Bone Grafting: Bone Grafts and Tissue Engineering Strategies for Vascularized Bone Regeneration. Clinic. Rev. Bone Miner. Metab. 2015, 13, 232–244. DOI: 10.1007/s12018-015-9194-9.
  • Venkatesan, J.; Bhatnagar, I.; Manivasagan, P.; Kang, K.-H.; Kim, S.-K. Alginate Composites for Bone Tissue Engineering: A Review. Int. J. Biol. Macromol. 2015, 72, 269–281. DOI: 10.1016/j.ijbiomac.2014.07.008.
  • Venkatesan, J.; Kim, S.-K. Nano-Hydroxyapatite Composite Biomaterials for Bone Tissue Engineering—A Review. J. Biomed. Nanotechnol. 2014, 10, 3124–3140. DOI: 10.1166/jbn.2014.1893.
  • Yamamoto, M.; Takahashi, Y.; Tabata, Y. Enhanced Bone Regeneration at a Segmental Bone Defect by Controlled Release of Bone Morphogenetic Protein-2 from a Biodegradable Hydrogel. Tissue Eng. 2006, 12, 1305–1311. DOI: 10.1089/ten.2006.12.1305.
  • Bottino, M. C.; Yassen, G. H.; Platt, J. A.; Labban, N.; Windsor, L. J.; Spolnik, K. J.; Bressiani, A. H. A Novel Three-dimensional Scaffold for Regenerative Endodontics: materials and Biological Characterizations. J. Tissue Eng. Regen. Med. 2015, 9, E116–E123. DOI: 10.1002/term.1712.
  • Serra, I.; Fradique, R.; Vallejo, M.; Correia, T.; Miguel, S.; Correia, I. Production and Characterization of Chitosan/Gelatin/β-TCP Scaffolds for Improved Bone Tissue Regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 55, 592–604. DOI: 10.1016/j.msec.2015.05.072.
  • Pal, N.; Dubey, P.; Gopinath, P.; Pal, K. Combined Effect of Cellulose Nanocrystal and Reduced Graphene Oxide into Poly-lactic Acid Matrix Nanocomposite as a Scaffold and Its anti-bacterial Activity. Int. J. Biol. Macromol. 2017, 95, 94–105. DOI: 10.1016/j.ijbiomac.2016.11.041.
  • Zhou, M.; Hong, Y.; Lin, X.; Shen, L.; Feng, Y. Recent Pharmaceutical Evidence on the Compatibility Rationality of Traditional Chinese Medicine. J. Ethnopharmacol. 2017, 206, 363–375. DOI: 10.1016/j.jep.2017.06.007.
  • Wu, P.; Liang, Q.; Feng, P.; Li, C.; Yang, C.; Liang, H.; Tang, H.; Shuai, C. A Novel Brucine Gel Transdermal Delivery System Designed for anti-Inflammatory and Analgesic Activities. IJMS. 2017, 18, 757. DOI: 10.3390/ijms18040757.
  • Eldahshan, O. A.; Abdel-Daim, M. M. Phytochemical Study, Cytotoxic, Analgesic, Antipyretic and Anti-inflammatory Activities of Strychnos Nux-Vomica. Cytotechnology. 2015, 67, 831–844. DOI: 10.1007/s10616-014-9723-2.
  • Zeng, C.; Jiang, W.; Tan, M.; Xing, J.; He, C. Improved Oral Bioavailability of Total Flavonoids of Dracocephalum Moldavica via Composite Phospholipid Liposomes: Preparation, In-vitro Drug Release and Pharmacokinetics in Rats. Pharmacogn. Mag. 2016, 12, 313. DOI: 10.4103/0973-1296.192201.
  • Li, L.; Chen, J.; Cai, B. Trad. Chinese Drug Res. Clin. Pharmacol. 2010, 21, 637–639.
  • Fujihara, K.; Huang, Z.-M.; Ramakrishna, S.; Satknanantham, K.; Hamada, H. Feasibility of Knitted Carbon/PEEK Composites for Orthopedic Bone Plates. Biomaterials. 2004, 25, 3877–3885. DOI: 10.1016/j.biomaterials.2003.10.050.
  • Xu, A.; Liu, X.; Gao, X.; Deng, F.; Deng, Y.; Wei, S. Enhancement of Osteogenesis on Micro/nano-topographical Carbon Fiber-reinforced Polyetheretherketone–nanohydroxyapatite Biocomposite. Mater. Sci. Eng. C. 2015, 48, 592–598. DOI: 10.1016/j.msec.2014.12.061.
  • Ma, R.; Tang, T. Current Strategies to Improve the Bioactivity of PEEK. Int. J. Mol. Sci. 2014, 15, 5426–5445. DOI: 10.3390/ijms15045426.
  • Liang, Z. W. Y. D. a.; Tingxian, C. L. Z. X. Mater. Rev. 2003, 9, 020.
  • Gilding, D.; Reed, A. Biodegradable Polymers for Use in Surgery—polyglycolic/poly(actic Acid) homo- and Copolymers: 1. Polymer. 1979, 20, 1459–1464. DOI: 10.1016/0032-3861(79)90009-0.
  • Shuai, C.; Wu, P.; Zhong, Y.; Feng, P.; Gao, C.; Huang, W.; Zhou, Z.; Chen, L.; Shuai, C. Polyetheretherketone/Poly (Glycolic Acid) Blend Scaffolds with Biodegradable Properties. J. Biomater. Sci. Polym. Ed. 2016, 27, 1434–1446. DOI: 10.1080/09205063.2016.1210420.
  • Lehtonen, T. J.; Tuominen, J. U.; Hiekkanen, E. Resorbable Composites with Bioresorbable Glass Fibers for Load-bearing Applications. In Vitro Degradation and Degradation Mechanism. Acta Biomaterialia. 2013, 9, 4868–4877. DOI: 10.1016/j.actbio.2012.08.052.
  • Shuai, C.; Guo, W.; Wu, P.; Yang, W.; Hu, S.; Xia, Y.; Feng, P. A Graphene oxide-Ag Co-dispersing Nanosystem: Dual Synergistic Effects on Antibacterial Activities and Mechanical Properties of Polymer Scaffolds. Chem. Eng. J. 2018, 347, 322–333. DOI: 10.1016/j.cej.2018.04.092.
  • Chang, B.; Song, W.; Han, T.; Yan, J.; Li, F.; Zhao, L.; Kou, H.; Zhang, Y. Influence of Pore Size of Porous Titanium Fabricated by Vacuum Diffusion Bonding of Titanium Meshes on Cell Penetration and Bone Ingrowth. Acta Biomater. 2016, 33, 311–321. DOI: 10.1016/j.actbio.2016.01.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.