624
Views
16
CrossRef citations to date
0
Altmetric
Articles

Development of highly porous, Electrostatic force assisted nanofiber fabrication for biological applications

, & ORCID Icon
Pages 477-504 | Received 22 Nov 2018, Accepted 07 Feb 2019, Published online: 15 Mar 2019

References

  • Feyman, R. P. There is a Plenty of Room at the Bottom-Feynman. J. Int. Acad. Case Stud. 2014, 20, 45–47. http://resolver.caltech.edu/CaltechES:23.5.1960Bottom
  • Zdraveva, E.; Fang, J.; Mijovic, B.; Lin, T.; Electrospun Nanofibers; Published by Woodhead Publishing in association with The Textile Institute Woodhead Publishing is an imprint of Elsevier: Amsterdam, Netherlands, 2017.
  • Dowling, A.; Clift, R.; Grobert, N.; Hutton, D.; Oliver, R.; O’neill, O.; Pethica, J.; Pidgeon, N.; Porritt, J.; Ryan, J.; et al. Nanoscience and Nanotechnologies: Opportunities and Uncertainties. London R. Soc. R. Acad. Eng. Rep. 2004, 46, 618–618. DOI: 10.1007/s00234-004-1255-6.
  • Instone, S.; Krings, D.; Gruen, G. U.; Schmoll, R.; Badowski, M. Relationship between the Permeability of the Porous Disk Filter and the Filtrate Weight - Time Curves Generated with the PoDFA/Prefil® Footprinter Method. Light Met. 2012 2016, 246, 1085–1090. DOI: 10.1007/978-3-319-48179-1_187.
  • Balasubramanian, K.; Sharma, S.; Badwe, S.; Banerjee, B. Tailored Non-Woven Electrospun Mesh of Poly-Ethyleneoxide-Keratin for Radioactive Metal Ion Sorption. J. Green Sci. Technol. 2015, 2, 10–19. DOI: 10.1166/jgst.2015.1032.
  • Oberdörster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D.; et al. Principles for Characterizing the Potential Human Health Effects from Exposure to Nanomaterials: Elements of a Screening Strategy. Part. Fibre Toxicol. 2005, 2, 8. DOI: 10.1186/1743-8977-2-8.
  • Baji, A.; Mai, Y. W.; Wong, S. C.; Abtahi, M.; Chen, P. Electrospinning of Polymer Nanofibers: Effects on Oriented Morphology, Structures and Tensile Properties. Compos. Sci. Technol. 2010, 70, 703–718. DOI: 10.1016/j.compscitech.2010.01.010.
  • Pisignano, D.; Polymer Nanofibers; Nanoscience & Nanotechnology Series; Royal Society of Chemistry: Cambridge, UK, 2013; Vol. 8.
  • Hannah, W.; Thompson, P. B. Nanotechnology, Risk and the Environment: A Review. J. Environ. Monit. 2008, 10, 291–300. DOI: 10.1039/b718127m.
  • Nguyen, T. Q.; Martel, R.; Bushey, M.; Avouris, P.; Carlsen, A.; Nuckolls, C.; Brus, L. Self-Assembly of 1-D Organic Semiconductor Nanostructures. Phys. Chem. Chem. Phys. 2007, 9, 1515–1532. DOI: 10.1039/b609956d.
  • Liu, K.; Zhao, N.; Kumacheva, E. Self-Assembly of Inorganic Nanorods. Chem. Soc. Rev. 2011, 40, 656–671. DOI: 10.1039/c0cs00133c.
  • Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005, 105, 1025–1102. DOI: 10.1021/cr030063a.
  • Yang, P. Semiconductor Nanowires for Energy Conversion. 2010 3rd Int. Nanoelectron. Conf. 2010, 49–49.
  • Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. The Role of Interparticle and External Forces in Nanoparticle Assembly. Nature Mater. 2008, 7, 527–538. DOI: 10.1038/nmat2206.
  • Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z. L. Self-Powered Nanowire Devices. Nature Nanotech. 2010, 5, 366–373. DOI: 10.1038/nnano.2010.46.
  • Yan, H.; Choe, H. S.; Nam, S.; Hu, Y.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M. Programmable Nanowire Circuits for Nanoprocessors. Nature 2011, 470, 240–244. DOI: 10.1038/nature09749.
  • Zhang, C.-L. L.; Yu, S.-H. H. Nanoparticles Meet Electrospinning: Recent Advances and Future Prospects. Chem. Soc. Rev. 2014, 43, 4423–4448. DOI: 10.1039/c3cs60426h.
  • Borkar, S. Electronics beyond Nano-Scale CMOS. 2006 43rd ACM/IEEE Des. Autom. Conf 2006, 2–3. DOI: 10.1109/DAC.2006.229329.
  • Weiss, J. Supramolecular Approaches to Nano and Molecular Electronics. Coordination Chem. Rev. 2010, 254, 2247–2248. DOI: 10.1016/j.ccr.2010.06.002.
  • Novotny, L.; Hecht, B.; Principles of Nano-Optics; Cambridge University Press: Cambridge, UK, 2012.; Vol. 9781107005. DOI: 10.1017/CBO9780511794193.
  • Di Bartolo, B. D.; Collins, J.; Silvestri, L. Nano-Structures for Optics and Photonics. In NATO Science for Peace and Security Series B: Physics and Biophysics, Di Bartolo, B., Collins, J., Silvestri, L., Eds.; Springer Netherlands: Dordrecht, 2015.
  • Vihodceva, S.; Barloti, J.; Kukle, S.; Zommere, G. Natural Fibre Textile Nano-Level Surface Modification. Etr. 2015, 2, 113. DOI: 10.17770/etr2011vol2.1007.
  • Cohen-Tanugi, D.; Grossman, J. C. Water Desalination across Nanoporous Graphene. Nano Lett. 2012, 12, 3602–3608. DOI: 10.1021/nl3012853.
  • Gogotsi, Y. What Nano Can Do for Energy Storage. ACS Nano 2014, 8, 5369–5371. DOI: 10.1021/nn503164x.
  • Hammond, P. T. A Growing Place for Nano in Medicine. ACS Nano 2014, 8, 7551–7552. DOI: 10.1021/nn504577x.
  • Anu Bhushani, J.; Anandharamakrishnan, C. Electrospinning and Electrospraying Techniques: Potential Food Based Applications. Trends Food Sci. Technol. 2014, 38, 21–33. DOI: 10.1016/j.tifs.2014.03.004.
  • Maier, J. Ionic Transport in Nano-Sized Systems. Solid State Ionics. 2004, 175, 7–12. DOI: 10.1016/j.ssi.2004.09.051.
  • Pop, E. Energy Dissipation and Transport in Nanoscale Devices. Nano Res. 2010, 3, 147–169. DOI: 10.1007/s12274-010-1019-z.
  • Itabashi, S.; Nisha, H.; Tsuchizawa, T.; Watanabe, T.; Shinojima, H.; K0u, R.; Yamada, K. Integration of Silicon Nano-Photonic Devices for Telecommunications. IEICE Trans. Electron. 2012, E95–C, 199–205. DOI: 10.1587/transele.E95.C.199.
  • Chen, S.; Slattum, P.; Wang, C.; Zang, L. Self-Assembly of Perylene Imide Molecules into 1D Nanostructures: Methods, Morphologies, and Applications. Chem. Rev. 2015, 115, 11967–11998. DOI: 10.1021/acs.chemrev.5b00312.
  • Sapsford, K. E.; Algar, W. R.; Berti, L.; Gemmill, K. B.; Casey, B. J.; Oh, E.; Stewart, M. H.; Medintz, I. L. Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries That Facilitate Nanotechnology. Chem. Rev. 2013, 113, 1904–2074. DOI: 10.1021/cr300143v.
  • Jana, S.; Cooper, A.; Ohuchi, F.; Zhang, M. Uniaxially Aligned Nanofibrous Cylinders by Electrospinning. ACS Appl. Mater. Interfaces. 2012, 4, 4817–4824. DOI: 10.1021/am301803b.
  • Beachley, V.; Katsanevakis, E.; Zhang, N.; Wen, X.; Highly Aligned Polymer Nanofiber Structures: Fabrication and Applications in Tissue Engineering. In Advances in Polymer Science; Springer: Berlin, Heidelberg, 2012.; Vol. 246, pp 171–212.
  • González, E.; Shepherd, L.; Saunders, L.; Frey, M. Surface Functional Poly(Lactic Acid) Electrospun Nanofibers for Biosensor Applications. Materials (Basel) 2016, 9, 47. DOI: 10.3390/ma9010047.
  • Patel, N.; Gohil, P. A Review on Biomaterials: Scope, Applications & Human Anatomy Significance. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 91–101.
  • Deitzel, J. M.; Kleinmeyer, J. D.; Hirvonen, J. K.; Beck Tan, N. C. Controlled Deposition of Electrospun Poly(Ethylene Oxide) Fibers. Polymer (Guildf) 2001, 42, 8163–8170. DOI: 10.1016/S0032-3861.
  • Reneker, D. H.; Yarin, A. L. Electrospinning Jets and Polymer Nanofibers. Polymer (Guildf) 2008, 49, 2387–2425. DOI: 10.1016/j.polymer.2008.02.002.
  • Ondarçuhu, T.; Joachim, C. Drawing a Single Nanofibre over Hundreds of Microns. Europhys. Lett. 1998, 42, 215–220. DOI: 10.1209/epl/i1998-00233-9.
  • Ma, P. X.; Zhang, R. Synthetic Nano-Scale Fibrous Extracellular Matrix. J. Biomed. Mater. Res. 1999, 46, 60–72. DOI: 10.1002/(SICI)1097-4636(199907)46:1<60::AID-JBM7>3.0.CO;2-H.
  • Liu, G.; Ding, J.; Qiao, L.; Guo, A.; Dymov, B. P.; Gleeson, J. T.; Hashimoto, T.; Saijo, K. Polystyrene-Block-Poly(2-Cinnamoylethyl Methacrylate) Nanofibers—Preparation, Characterization, and Liquid Crystalline Properties. Chem. Chem. Eur. J. 1999, 5, 2740–2749. DOI: 10.1002/(SICI)1521-3765(19990903)5:9<2740::AID-CHEM2740>3.0.CO;2-V.
  • Whitesides, G. M. Self-Assembly at All Scales. Science (80-.) 2002, 295, 2418–2421. DOI: 10.1126/science.1070821.
  • Tucker, N.; Stanger, J.; Staiger, M.; Razzaq, H.; Hofman, K. The History of the Science and Technology of Electrospinning from 1600 to 1995. J. Eng. Fiber. Fabr. 2012, 7, 63–73.
  • Cipitria, A.; Skelton, A.; Dargaville, T. R.; Dalton, P. D.; Hutmacher, D. W. Design, Fabrication and Characterization of PCL Electrospun Scaffolds - A Review. J. Mater. Chem. 2011, 21, 9419–9453. DOI: 10.1039/c0jm04502k.
  • Reneker, D. H.; Chun, I. Nanometre Diameter Fibres of Polymer, Produced by Electrospinning. Nanotechnology 1996, 7, 216–223. DOI: 10.1088/0957-4484/7/3/009.
  • Khajavi, R.; Abbasipour, M. Electrospinning as a Versatile Method for Fabricating Coreshell, Hollow and Porous Nanofibers. Sci. Iran 2012, 19, 2029–2034. DOI: 10.1016/j.scient.2012.10.037.
  • Cavaliere, S.; Subianto, S.; Savych, I.; Jones, D. J.; Rozière, J. Electrospinning: Designed Architectures for Energy Conversion and Storage Devices. Energy Environ. Sci. 2011, 4, 4761–4785. DOI: 10.1039/c1ee02201f.
  • Bhardwaj, N.; Kundu, S. C. Electrospinning: A Fascinating Fiber Fabrication Technique. Biotechnol. Adv. 2010, 28, 325–347. DOI: 10.1016/j.biotechadv.2010.01.004.
  • Ahn, Y. C.; Park, S. K.; Kim, G. T.; Hwang, Y. J.; Lee, C. G.; Shin, H. S.; Lee, J. K. Development of High Efficiency Nanofilters Made of Nanofibers. Curr. Appl. Phys. 2006, 6, 1030–1035. DOI: 10.1016/j.cap.2005.07.013.
  • Huebsch, N.; Mooney, D. J. Inspiration and Application in the Evolution of Biomaterials. Nature 2009, 462, 426–432. DOI: 10.1038/nature08601.
  • Kutner, W.; Sharma, P. S.; Molecularly Imprinted Polymers for Analytical Chemistry Applications. In Polymer Chemistry Series, Kutner, W., Sharma, P. S., Eds.; Royal Society of Chemistry: Cambridge, UK, 2018.
  • Greiner, A.; Wendorff, J. H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chem. Int. Ed. 2007, 46, 5670–5703. DOI: 10.1002/anie.200604646.
  • Subbiah, T.; Bhat, G. S.; Tock, R. W.; Parameswaran, S.; Ramkumar, S. S. Electrospinning of Nanofibers. J. Appl. Polym. Sci. 2005, 96, 557–569. DOI: 10.1002/app.21481.
  • Liang, D.; Hsiao, B. S.; Chu, B.; Functional Electrospun Nanofibrous Scaffolds for Biomedical Applications. Adv. Drug Deliv. Rev. 2007, 59, 1392–1412. DOI: 10.1016/j.addr.2007.04.021.
  • Sill, T. J.; von Recum, H. A.; Electrospinning: Applications in Drug Delivery and Tissue Engineering. Biomaterials 2008, 29, 1989–2006. DOI: 10.1016/j.biomaterials.2008.01.011.
  • Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S.; Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning. J. Appl. Phys. 2000, 87, 4531–4547. DOI: 10.1063/1.373532.
  • Yarin, A. L.; Koombhongse, S.; Reneker, D. H.; Bending Instability in Electrospinning of Nanofibers. J. Appl. Phys. 2001, 89, 3018–3026. DOI: 10.1063/1.1333035.
  • Adomavičiūtė, E.; Milašius, R.; Levinskas, R.; The Influence of Main Technological Parameters on the Diameter of Poly(Vinyl Alcohol) (PVA) Nanofibre and Morphology of Manufactured Mat. Mater. Sci. 2007, 13, 3–6.
  • Agarwal, S.; Wendorff, J. H.; Greiner, A.; Use of Electrospinning Technique for Biomedical Applications. Polymer (Guildf) 2008, 49, 5603–5621. DOI: 10.1016/j.polymer.2008.09.014.
  • Haider, A.; Haider, S.; Kang, I.-K.; A Comprehensive Review Summarizing the Effect of Electrospinning Parameters and Potential Applications of Nanofibers in Biomedical and Biotechnology. Arab. J. Chem. 2015, 11, 1165–1188. DOI: 10.1016/j.arabjc.2015.11.015.
  • Aravindan, V.; Sundaramurthy, J.; Suresh Kumar, P.; Lee, Y. S.; Ramakrishna, S.; Madhavi, S.; Electrospun Nanofibers: A Prospective Electro-Active Material for Constructing High Performance Li-Ion Batteries. Chem. Commun. 2015, 51, 2225–2234. DOI: 10.1039/C4CC07824A.
  • Lee, J. S.; An, T. K.; Chae, G. S.; Jeong, J. K.; Cho, S. H.; Lee, H. B.; Khang, G.; Evaluation of in Vitro and in Vivo Antitumor Activity of BCNU-Loaded PLGA Wafer against 9L Gliosarcoma. Eur. J. Pharm. Biopharm 2005, 59, 169–175. DOI: 10.1016/j.ejpb.2004.06.006.
  • Huang, C.; Soenen, S. J.; Rejman, J.; Lucas, B.; Braeckmans, K.; Demeester, J.; De Smedt, S. C.; Stimuli-Responsive Electrospun Fibers and Their Applications. Chem. Soc. Rev. 2011, 40, 2417–2434. DOI: 10.1039/c0cs00181c.
  • Lyons, J.; Li, C.; Ko, F.; Melt-Electrospinning Part I: Processing Parameters and Geometric Properties. Polymer (Guildf) 2004, 45, 7597–7603. DOI: 10.1016/j.polymer.2004.08.071.
  • Luo, C. J.; Stoyanov, S. D.; Stride, E.; Pelan, E.; Edirisinghe, M.; Electrospinning versus Fibre Production Methods: From Specifics to Technological Convergence. Chem. Soc. Rev. 2012, 41, 4708–4735. DOI: 10.1039/c2cs35083a.
  • Tibbitt, M. W.; Langer, R.; Living Biomaterials. Acc. Chem. Res. 2017, 50, 508–513. DOI: 10.1021/acs.accounts.6b00499.
  • Wu, J.-C.; Lorenz, H. P.; Electrospinning of Biomaterials and Their Aplications in Tissue Engineering. Nano Life 2012, 02, 1230010. DOI: 10.1142/S1793984412300105.
  • Ramakrishna, S.; Mayer, J.; Wintermantel, E.; Leong, K. W.; Biomedical Applications of Polymer-Composite Materials: A Review. Compos. Sci. Technol. 2001, 61, 1189–1224. DOI: 10.1016/S0266-3538(00)00241-4.
  • Bergmann, C. P.; Stumpf, A.; Dental Ceramics: Microstructure, Properties and Degradation. Springer-Verlag; Berlin, Heidelberg, 2013.
  • Webber, M. J.; Appel, E. A.; Meijer, E. W.; Langer, R.; Supramolecular Biomaterials. Nature Mater. 2016, 15, 13–26. DOI: 10.1038/nmat4474.
  • Doshi, J.; Reneker, D. H.; Electrospinning Process and Applications of Electrospun Fibers. J. Electrostat. 1995, 35, 151–160. DOI: 10.1016/0304-3886(95)00041-8.
  • Sastri, V. R.; Plastics in Medical Devices: Properties, Requirements, and Applications; Andrew, W., Ed.; Elsevier Inc: Amsterdam, Netherlands, 2010.
  • Vendra, V. V. K.; Wu, L.; Krishnan, S.; Polymer Thin Films for Biomedical Applications. Nanomater. life Sci. 2010, 5, 1–54. DOI: 10.1002/9783527610419.ntls0179.
  • Viju, S. Biomedical Applications of Polymeric Nanofibers. In Advances in Polymer Science, Jayakumar, R., Nair, S., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, Heidelberg, 2012.; Vol. 246.
  • Sur, S.; Pashuck, E. T.; Guler, M. O.; Ito, M.; Stupp, S. I.; Launey, T. A Hybrid Nanofiber Matrix to Control the Survival and Maturation of Brain Neurons. Biomaterials 2012, 33, 545–555. DOI: 10.1016/j.biomaterials.2011.09.093.
  • Tamaru, S.; Ikeda, M.; Shimidzu, Y.; Matsumoto, S.; Takeuchi, S.; Hamachi, I.; Fluidic Supramolecular Nano- and Microfibres as Molecular Rails for Regulated Movement of Nanosubstances. Nat. Comms. 2010, 1, 1–7. DOI: 10.1038/ncomms1018.
  • Kandasubramanian, B.; Govindaraj, P.; Peeling Model for Cell Adhesion on Electrospun Polymer Nanofibres. J. Adhes. Sci. Technol. 2014, 28, 171–185. DOI: 10.1080/01694243.2013.833402.
  • Bottino, M. C.; Yassen, G. H.; Platt, J. A.; Labban, N.; Windsor, L. J.; Spolnik, K. J.; Bressiani, A. H. A.; A Novel Three-Dimensional Scaffold for Regenerative Endodontics: Materials and Biological Characterizations. J. Tissue Eng. Regen. Med. 2015, 9, E116–E123. DOI: 10.1002/term.1712.
  • Ohkawa, K.; Hayashi, S.; Kameyama, N.; Yamamoto, H.; Yamaguchi, M.; Kimoto, S.; Kurata, S.; Shinji, H.; Synthesis of Collagen-like Sequential Polypeptides Containing O-Phospho-L-Hydroxyproline and Preparation of Electrospun Composite Fibers for Possible Dental Application. Macromol. Biosci. 2009, 9, 79–92. DOI: 10.1002/mabi.200800122.
  • Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S.; A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. DOI: 10.1016/S0266-3538(03)00178-7.
  • Xue, J.; Niu, Y.; Gong, M.; Shi, R.; Chen, D.; Zhang, L.; Lvov, Y.; Electrospun Microfiber Membranes Embedded with Drug-Loaded Clay Nanotubes for Sustained Antimicrobial Protection. ACS Nano 2015, 9, 1600–1612. DOI: 10.1021/nn506255e.
  • Khanam, N.; Mikoryak, C.; Draper, R. K.; Balkus, K. J.; Electrospun Linear Polyethyleneimine Scaffolds for Cell Growth. Acta Biomater. 2007, 3, 1050–1059. DOI: 10.1016/j.actbio.2007.06.005.
  • Han, N.; Rao, S. S.; Johnson, J.; Parikh, K. S.; Bradley, P. A.; Lannutti, J. J.; Winter, J. O.; Hydrogel–Electrospun Fiber Mat Composite Coatings for Neural Prostheses. Front. Neuroeng. 2011, 4, 2. DOI: 10.3389/fneng.2011.00002.
  • Xie, J.; Willerth, S. M.; Li, X.; Macewan, M. R.; Rader, A.; Sakiyama-Elbert, S. E.; Xia, Y.; The Differentiation of Embryonic Stem Cells Seeded on Electrospun Nanofibers into Neural Lineages. Biomaterials 2009, 30, 354–362. DOI: 10.1016/j.biomaterials.2008.09.046.
  • Nisbet, D. R.; Rodda, A. E.; Horne, M. K.; Forsythe, J. S.; Finkelstein, D. I.; Neurite Infiltration and Cellular Response to Electrospun Polycaprolactone Scaffolds Implanted into the Brain. Biomaterials 2009, 30, 4573–4580. DOI: 10.1016/j.biomaterials.2009.05.011.
  • Andukuri, A.; Kushwaha, M.; Tambralli, A.; Anderson, J. M.; Dean, D. R.; Berry, J. L.; Sohn, Y. D.; Yoon, Y. S.; Brott, B. C.; Jun, H. W.; A Hybrid Biomimetic Nanomatrix Composed of Electrospun Polycaprolactone and Bioactive Peptide Amphiphiles for Cardiovascular Implants. Acta Biomater. 2011, 7, 225–233. DOI: 10.1016/j.actbio.2010.08.013.
  • Caló, E.; Khutoryanskiy, V. V.; Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products. Eur. Polym. J. 2015, 65, 252–267. DOI: 10.1016/j.eurpolymj.2014.11.024.
  • Hutmacher, D. W.; Dalton, P. D. Melt Electrospinning. Chem. Asian J. 2011, 6, 44–56. DOI: 10.1002/asia.201000436.
  • Venugopal, J. R.; Zhang, Y.; Ramakrishna, S.; In Vitro Culture of Human Dermal Fibroblasts on Electrospun Polycaprolactone Collagen Nanofibrous Membrane. Artif. Organs 2006, 30, 440–446. DOI: 10.1111/j.1525-1594.2006.00239.x.
  • Mirjalili, M.; Zohoori, S.; Review for Application of Electrospinning and Electrospun Nanofibers Technology in Textile Industry. J. Nanostruct. Chem. 2016, 6, 207–213. DOI: 10.1007/s40097-016-0189-y.
  • Karakas, H. Electrospinning of Nanofibers and Their Applications. MDT “Electrospinning” 2014, 3, 1–35.
  • Angammana, C. J.; Jayaram, S. H.; Fundamentals of Electrospinning and Processing Technologies. Part. Sci. Technol. 2016, 34, 72–82. DOI: 10.1080/02726351.2015.1043678.
  • Formhals, A. Artificial Thread and Method of Producing Same. 1937, US2187306A.
  • Formhals, A. Methods and Apparatus for Spinning. 1944, US2349950A.
  • Angeloni, I.; Raja, W.; Brescia, R.; Polovitsyn, A.; De Donato, F.; Canepa, M.; Bertoni, G.; Proietti Zaccaria, R.; Moreels, I. Disentangling the Role of Shape, Ligands, and Dielectric Constants in the Absorption Properties of Colloidal CdSe/CdS Nanocrystals. ACS Photonics 2016, 3, 58–67. DOI: 10.1021/acsphotonics.5b00626.
  • Pawlowski, K. J.; Barnes, C. P.; Boland, E. D.; Wnek, G. E.; Bowlin, G. L.; Biomedical Nanoscience: Electrospinning Basic Concepts, Applications, and Classroom Demonstration. Mat. Res. Soc. Symp. Proc. 2004, 827, BB1.7.1–BB1.7.12. DOI: 10.1557/PROC-827-BB1.7.
  • Vonnegut, B.; Neubauer, R. L. Production of Monodisperse Liquid Particles by Electrical Atomization. J. Colloid Sci. 1952, 7, 616–622. DOI: 10.1016/0095-8522(52)90043-3.
  • Drozin, V. G. The Electrical Dispersion of Liquids as Aerosols. J. Colloid Sci. 1955, 10, 158–164. DOI: 10.1016/0095-8522(55)90022-2.
  • Taylor, G. Electrically Driven Jets. Proc. R. Soc. A Math. Phys. Eng. Sci 1969, 313, 453–475. DOI: 10.1098/rspa.1969.0205.
  • Buchko, C. J.; Chen, L. C.; Shen, Y.; Martin, D. C.; Processing and Microstructural Characterization of Porous Biocompatible Protein Polymer Thin Films. Polymer (Guildf) 1999, 40, 7397–7407. DOI: 10.1016/S0032-3861(98)00866-0.
  • Baumgarten, P. K.; Electrostatic Spinning of Acrylic Microfibers. J. Colloid Interface Sci. 1971, 36, 71–79. DOI: 10.1016/0021-9797(71)90241-4.
  • Hayati, I.; Bailey, A.; Tadros, T. F. Investigations into the Mechanism of Electrohydrodynamic Spraying of Liquids. II. Mechanism of Stable Jet Formation and Electrical Forces Acting on a Liquid Cone. J. Colloid Interface Sci. 1987, 117, 222–230. DOI: 10.1016/0021-9797(87)90186-X.
  • Larrondo, L., St.; John Manley, R. Electrostatic Fiber Spinning from Polymer Melts. I. Experimental Observations on Fiber Formation and Properties. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 909–920. DOI: 10.1002/pol.1981.180190601.
  • Meechaisue, C.; Wutticharoenmongkol, P.; Waraput, R.; Huangjing, T.; Ketbumrung, N.; Pavasant, P.; Supaphol, P. Preparation of Electrospun Silk Fibroin Fiber Mats as Bone Scaffolds: A Preliminary Study. Biomed. Mater. 2007, 2, 181–188. DOI: 10.1088/1748-6041/2/3/003.
  • Wnek, G. E.; Carr, M. E.; Simpson, D. G.; Bowlin, G. L. Electrospinning of Nanofiber Fibrinogen Structures. Nano Lett. 2003, 3, 213–216. DOI: 10.1021/nl025866c.
  • Fang, X.; Reneker, D. H. DNA Fibers by Electrospinning. J. Macromol. Sci. Phys. 1997, 36, 169–173. DOI: 10.1080/00222349708220422.
  • Son, W. K.; Youk, J. H.; Park, W. H. Preparation of Ultrafine Oxidized Cellulose Mats via Electrospinnning. Biomacromolecules 2004, 5, 197–201. DOI: 10.1021/bm034312g.
  • Nagiah, N.; Madhavi, L.; Anitha, R.; Anandan, C.; Srinivasan, N. T.; Sivagnanam, U. T. Development and Characterization of Coaxially Electrospun Gelatin Coated Poly (3-Hydroxybutyric Acid) Thin Films as Potential Scaffolds for Skin Regeneration. Mater. Sci. Eng. C 2013, 33, 4444–4452. DOI: 10.1016/j.msec.2013.06.042.
  • Xue, J.; He, M.; Liu, H.; Niu, Y.; Crawford, A.; Coates, P. D.; Chen, D.; Shi, R.; Zhang, L. Drug Loaded Homogeneous Electrospun PCL/Gelatin Hybrid Nanofiber Structures for anti-Infective Tissue Regeneration Membranes. Biomaterials 2014, 35, 9395–9405. DOI: 10.1016/j.biomaterials.2014.07.060.
  • Baiguera, S.; Del Gaudio, C.; Lucatelli, E.; Kuevda, E.; Boieri, M.; Mazzanti, B.; Bianco, A.; Macchiarini, P. Electrospun Gelatin Scaffolds Incorporating Rat Decellularized Brain Extracellular Matrix for Neural Tissue Engineering. Biomaterials 2014, 35, 1205–1214. DOI: 10.1016/j.biomaterials.2013.10.060.
  • Yadav, R.; Balasubramanian, K. Metallization of Electrospun PAN Nanofibers via Electroless Gold Plating. RSC Adv. 2015, 5, 24990–24996. DOI: 10.1039/C5RA03531G.
  • Li, M.; Guo, Y.; Wei, Y.; MacDiarmid, A. G.; Lelkes, P. I. Electrospinning Polyaniline-Contained Gelatin Nanofibers for Tissue Engineering Applications. Biomaterials 2006, 27, 2705–2715. DOI: 10.1016/j.biomaterials.2005.11.037.
  • Venugopal, J. R.; Low, S.; Choon, A. T.; Kumar, A. B.; Ramakrishna, S. Nanobioengineered Electrospun Composite Nanofibers and Osteoblasts for Bone Regeneration. Artif. Organs 2008, 32, 388–397. DOI: 10.1111/j.1525-1594.2008.00557.x.
  • Schek, R. M.; Taboas, J. M.; Segvich, S. J.; Hollister, S. J.; Krebsbach, P. H. Engineered Osteochondral Grafts Using Biphasic Composite Solid Free-Form Fabricated Scaffolds. Tissue Eng. 2004, 10, 1376–1385. DOI: 10.1089/ten.2004.10.1376.
  • Sakurai, K.; Shibano, T.; Kimura, K.; Takahashi, T. Crystal Structure of Chitosan. Sen’i Gakkaishi 1985, 41, T361–T368. DOI: 10.2115/fiber.41.9_T361.
  • Pa, J.; Yu, T. L. Light Scattering Study of Chitosan in Acetic Acid Aqueous Solutions. Macromol. Chem. Phys. 2001, 202, 985–991. DOI: 10.1002/1521-3935(20010401)202:7<985::AID-MACP985>3.0.CO;2-2.
  • Geng, X.; Kwon, O. H.; Jang, J. Electrospinning of Chitosan Dissolved in Concentrated Acetic Acid Solution. Biomaterials 2005, 26, 5427–5432. DOI: 10.1016/j.biomaterials.2005.01.066.
  • Schiffman, J. D.; Schauer, C. L. Cross-Linking Chitosan Nanofibers. Biomacromolecules 2007, 8, 594–601. DOI: 10.1021/bm060804s.
  • Desai, K.; Kit, K.; Li, J.; Zivanovic, S. Morphological and Surface Properties of Electrospun Chitosan Nanofibers. Biomacromolecules 2008, 9, 1000–1006. DOI: 10.1021/bm701017z.
  • Bhattarai, N.; Edmondson, D.; Veiseh, O.; Matsen, F. A.; Zhang, M. Electrospun Chitosan-Based Nanofibers and Their Cellular Compatibility. Biomaterials 2005, 26, 6176–6184. DOI: 10.1016/j.biomaterials.2005.03.027.
  • Min, B. M.; Lee, S. W.; Lim, J. N.; You, Y.; Lee, T. S.; Kang, P. H.; Park, W. H. Chitin and Chitosan Nanofibers: Electrospinning of Chitin and Deacetylation of Chitin Nanofibers. Polymer (Guildf) 2004, 45, 7137–7142. DOI: 10.1016/j.polymer.2004.08.048.
  • Pillai, C. K. S.; Paul, W.; Sharma, C. P. Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. Prog. Polym. Sci. 2009, 34, 641–678. DOI: 10.1016/j.progpolymsci.2009.04.001.
  • Zarkoob, S.; Eby, R.; Reneker, D. H.; Hudson, S. D.; Ertley, D.; Adams, W. W. Structure and Morphology of Electrospun Silk Nanofibers. Polymer (Guildf) 2004, 45, 3973–3977. DOI: 10.1016/j.polymer.2003.10.102.
  • Altman, G. H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R. L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D. L. Silk-Based Biomaterials. Biomaterials 2003, 24, 401–416. DOI: 10.1016/S0142-9612(02)00353-8.
  • Meinel, L.; Hofmann, S.; Karageorgiou, V.; Kirker-Head, C.; McCool, J.; Gronowicz, G.; Zichner, L.; Langer, R.; Vunjak-Novakovic, G.; Kaplan, D. L. The Inflammatory Responses to Silk Films In Vitro and In Vivo. Biomaterials 2005, 26, 147–155. DOI: 10.1016/j.biomaterials.2004.02.047.
  • Dal Pra, I.; Freddi, G.; Minic, J.; Chiarini, A.; Armato, U. De Novo Engineering of Reticular Connective Tissue in Vivo by Silk Fibroin Nonwoven Materials. Biomaterials 2005, 26, 1987–1999. DOI: 10.1016/j.biomaterials.2004.06.036.
  • Park, W. H.; Jeong, L.; Yoo, D. Il.; Hudson, S. Effect of Chitosan on Morphology and Conformation of Electrospun Silk Fibroin Nanofibers. Polymer (Guildf) 2004, 45, 7151–7157. DOI: 10.1016/j.polymer.2004.08.045.
  • Horan, R. L.; Antle, K.; Collette, A. L.; Wang, Y.; Huang, J.; Moreau, J. E.; Volloch, V.; Kaplan, D. L.; Altman, G. H. In Vitro Degradation of Silk Fibroin. Biomaterials 2005, 26, 3385–3393. DOI: 10.1016/j.biomaterials.2004.09.020.
  • Parry, D. A. D. The Molecular Fibrillar Structure of Collagen and Its Relationship to the Mechanical Properties of Connective Tissue. Biophys. Chem. 1988, 29, 195–209. DOI: 10.1016/0301-4622(88)87039-X.
  • Huang, L.; Apkarian, R. P.; Chaikof, E. L. High-Resolution Analysis of Engineered Type I Collagen Nanofibers by Electron Microscopy. Scanning 2006, 23, 372–375. DOI: 10.1002/sca.4950230603.
  • Li, M.; Mondrinos, M. J.; Gandhi, M. R.; Ko, F. K.; Weiss, A. S.; Lelkes, P. I. Electrospun Protein Fibers as Matrices for Tissue Engineering. Biomaterials 2005, 26, 5999–6008. DOI: 10.1016/j.biomaterials.2005.03.030.
  • Matthews, J. A.; Boland, E. D.; Wnek, G. E.; Simpson, D. G.; Bowlin, G. L. Electrospinning of Collagen Type II: A Feasibility Study. J. Bioact. Compat. Polym. 2003, 18, 125–134. DOI: 10.1177/0883911503018002003.
  • Shields, K. J.; Beckman, M. J.; Bowlin, G. L.; Wayne, J. S. Mechanical Properties and Cellular Proliferation of Electrospun Collagen Type II. Tissue Eng. 2004, 10, 1510–1517. DOI: 10.1089/ten.2004.10.1510.
  • Boland, E. D. Electrospinning Collagen and Elastin: Preliminary Vascular Tissue Engineering. Front. Biosci. 2004, 9, 1422. DOI: 10.2741/1313.
  • Kidoaki, S.; Kwon, I. K.; Matsuda, T. Mesoscopic Spatial Designs of Nano- and Microfiber Meshes for Tissue-Engineering Matrix and Scaffold Based on Newly Devised Multilayering and Mixing Electrospinning Techniques. Biomaterials 2005, 26, 37–46. DOI: 10.1016/j.biomaterials.2004.01.063.
  • Fujioka, K.; Maeda, M.; Hojo, T.; Sano, A. Protein Release from Collagen Matrices. Adv. Drug Deliv. Rev. 1998, 31, 247–266. DOI: 10.1016/S0169-409X(97)00119-1.
  • Kawai, K.; Suzuki, S.; Tabata, Y.; Ikada, Y.; Nishimura, Y. Accelerated Tissue Regeneration through Incorporation of Basic Fibroblast Growth Factor-Impregnated Gelatin Microspheres into Artificial Dermis. Biomaterials 2000, 21, 489–499. DOI: 10.1016/S0142-9612(99)00207-0.
  • Kuijpers, A. J.; Van Wachem, P. B.; Van Luyn, M. J. A.; Plantinga, J. A.; Engbers, G. H. M.; Krijgsveld, J.; Zaat, S. A. J.; Dankert, J.; Feijen, J. In Vivo Compatibility and Degradation of Crosslinked Gelatin Gels Incorporated in Knitted Dacron. J. Biomed. Mater. Res. 2000, 51, 136–145. DOI: 10.1002/(SICI)1097-4636(200007)51:1<136::AID-JBM18>3.0.CO;2-W.
  • Kuijpers, A. J.; Engbers, G. H. M.; Krijgsveld, J.; Zaat, S. A. J.; Dankert, J.; Feijen, J. Cross-Linking and Characterisation of Gelatin Matrices for Biomedical Applications. J. Biomater. Sci. Polym. Ed. 2000, 11, 225–243. DOI: 10.1163/156856200743670.
  • Balakrishnan, B.; Jayakrishnan, A. Self-Cross-Linking Biopolymers as Injectable in Situ Forming Biodegradable Scaffolds. Biomaterials 2005, 26, 3941–3951. DOI: 10.1016/j.biomaterials.2004.10.005.
  • Toshima, M.; Ohtani, Y.; Ohtani, O. Three-Dimensional Architecture of Elastin and Collagen Fiber Networks in the Human and Rat Lung. Arch. Histol. Cytol. 2004, 67, 31–40. DOI: 10.1679/aohc.67.31.
  • Li, D. Y.; Brooke, B.; Davis, E. C.; Mecham, R. P.; Sorensen, L. K.; Boak, B. B.; Eichwald, E.; Keating, M. T. Elastin Is an Essential Determinant of Arterial Morphogenesis. Nature 1998, 393, 276–280. DOI: 10.1038/30522.
  • Ntayi, C.; Labrousse, A. L.; Debret, R.; Birembaut, P.; Bellon, G.; Antonicelli, F.; Hornebeck, W.; Bernard, P. Elastin-Derived Peptides Upregulate Matrix Metalloproteinase-2-Ediated Melanoma Cell Invasion through Elastin-Binding Protein. J. Invest. Dermatol. 2004, 122, 256–265. DOI: 10.1046/j.0022-202X.2004.22228.x.
  • Buijtenhuijs, P.; Buttafoco, L.; Poot, A. A.; Daamen, W. F.; van Kuppevelt, T. H.; Dijkstra, P. J.; de Vos, R. A. I.; Sterk, L. M. T.; Geelkerken, B. R. H.; Feijen, J.; et al. Tissue Engineering of Blood Vessels: Characterization of Smooth-Muscle Cells for Culturing on Collagen-and-Elastin-Based Scaffolds. Biotechnol. Appl. Biochem. 2004, 39, 141. DOI: 10.1042/BA20030105.
  • Lu, Q.; Ganesan, K.; Simionescu, D. T.; Vyavahare, N. R. Novel Porous Aortic Elastin and Collagen Scaffolds for Tissue Engineering. Biomaterials 2004, 25, 5227–5237. DOI: 10.1016/j.biomaterials.2003.12.019.
  • Karlsson, S.; Albertsson, A. C. Abiotic and Biotic Degradation of Aliphatic Polyesters from “Petro” versus “Green” Resources. Macromol. Symp. 1998, 127, 219–225. DOI: 10.1002/masy.19981270129.
  • Fong, H.; Reneker, D. H. Elastomeric Nanofibers of Styrene-Butadiene-Styrene Triblock Copolymer. J. Polym. Sci. B Polym. Phys. 1999, 37, 3488–3493. DOI: 10.1002/(SICI)1099-0488(19991215)37:24<3488::AID-POLB9>3.0.CO;2-M.
  • Rogero, S. O.; Malmonge, S. M.; Lugão, A. B.; Ikeda, T. I.; Miyamaru, L.; Cruz, Á. S. Biocompatibility Study of Polymeric Biomaterials. Artif. Organs 2003, 27, 424–427. DOI: 10.1046/j.1525-1594.2003.07249.x.
  • Siswomihardjo, W. Biomaterials and Medical Devices. In Advanced Structured Materials, Mahyudin, F., Hermawan, H., Eds.; Springer International Publishing: Cham, 2016; Vol. 58. DOI: 10.1007/978-3-319-14845-8.
  • Schmalz, G.; Galler, K. M. Biocompatibility of Biomaterials – Lessons Learned and Considerations for the Design of Novel Materials. Dent. Mater. 2017, 33, 382–393. DOI: 10.1016/j.dental.2017.01.011.
  • Williams, D. F. On the Mechanisms of Biocompatibility. Biomaterials 2008, 29, 2941–2953. DOI: 10.1016/j.biomaterials.2008.04.023.
  • Elshahawy, W. M.; Watanabe, I.; Kramer, P. In Vitro Cytotoxicity Evaluation of Elemental Ions Released from Different Prosthodontic Materials. Dent. Mater. 2009, 25, 1551–1555. DOI: 10.1016/j.dental.2009.07.008.
  • de Moraes Porto, I. C. C. Polymer Biocompatibility. In Polymerization; 1st Ed., Chapter 3; InTech, 2012; pp 47–64.
  • Jessy, R. S.; Ibrahim, M. H. Biodegradability and Biocompatibility of Polymers with Emphasis on Bone Scaffolding : A Brief Review. Int. J. Sci. Res. Publ. 2014, 4, 7–9.
  • Wang, C.; Wang, L.; Wang, M. Evolution of Core–shell Structure: From Emulsions to Ultrafine Emulsion Electrospun Fibers. Mater. Lett. 2014, 124, 192–196. DOI: 10.1016/j.matlet.2014.03.086.
  • Ahmed, F. E.; Lalia, B. S.; Hashaikeh, R. A Review on Electrospinning for Membrane Fabrication: Challenges and Applications. Desalination 2015, 356, 15–30. DOI: 10.1016/j.desal.2014.09.033.
  • Kriegel, C.; Kit, K. M.; McClements, D. J.; Weiss, J. Nanofibers as Carrier Systems for Antimicrobial Microemulsions. Part I: Fabrication and Characterization. Langmuir 2009, 25, 1154–1161. DOI: 10.1021/la803058c.
  • Doustgani, A.; Vasheghani-Farahani, E.; Soleimani, M.; Hashemi-Najafabadi, S. Optimizing the Mechanical Properties of Electrospun Polycaprolactone and Nanohydroxyapatite Composite Nanofibers. Compos. Part B Eng. 2012, 43, 1830–1836. DOI: 10.1016/j.compositesb.2012.01.051.
  • Ma, Z.; Kotaki, M.; Inai, R.; Ramakrishna, S. Potential of Nanofiber Matrix as Tissue-Engineering Scaffolds. Tissue Eng. 2005, 11, 101–109. DOI: 10.1089/ten.2005.11.101.
  • Yang, Y.; Jia, Z.; Li, Q.; Hou, L.; Gao, H.; Wang, L.; Guan, Z. Multiple Jets in Electrospinning. In Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials 2007, pp 940–943.
  • Zussman, E.; Theron, A.; Yarin, A. L. Formation of Nanofiber Crossbars in Electrospinning. Appl. Phys. Lett. 2003, 82, 973–975. DOI: 10.1063/1.1544060.
  • Yang, X.-Y.; Chen, L.-H.; Li, Y.; Rooke, J. C.; Sanchez, C.; Su, B.-L. Hierarchically Porous Materials: Synthesis Strategies and Structure Design. Chem. Soc. Rev. 2017, 46, 481–558. DOI: 10.1039/C6CS00829A.
  • Ramakrishna, S.; Fujihara, K.; Teo, W.; Yong, T.; Ma, Z.; Ramaseshan, R. Electrospun Nanofibers: Solving Global Issues. Mater. Today 2006, 9, 40–50. DOI: 10.1016/S1369-7021(06)71389-X.
  • Theron, S. A.; Yarin, A. L.; Zussman, E.; Kroll, E. Multiple Jets in Electrospinning: Experiment and Modeling. Polymer (Guildf) 2005, 46, 2889–2899. DOI: 10.1016/j.polymer.2005.01.054.
  • Venugopal, J.; Zhang, Y. Z.; Ramakrishna, S. Electrospun Nanofibres: Biomedical Applications. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 2004, 218, 35–45. DOI: 10.1243/174034905X39140.
  • Shuakat, M. N.; Lin, T. Highly-Twisted, Continuous Nanofibre Yarns Prepared by a Hybrid Needle-Needleless Electrospinning Technique. RSC Adv. 2015, 5, 33930–33937. DOI: 10.1039/C5RA03906A.
  • Xu, C. Y.; Inai, R.; Kotaki, M.; Ramakrishna, S. Aligned Biodegradable Nanofibrous Structure: A Potential Scaffold for Blood Vessel Engineering. Biomaterials 2004, 25, 877–886. DOI: 10.1016/S0142-9612(03)00593-3.
  • Theron, S. A.; Zussman, E.; Yarin, A. L. Experimental Investigation of the Governing Parameters in the Electrospinning of Polymer Solutions. Polymer (Guildf) 2004, 45, 2017–2030. DOI: 10.1016/j.polymer.2004.01.024.
  • Yalcinkaya, B.; Yener, F.; Jirsak, O.; Cengiz-Callioglu, F. On the Nature of Electric Current in the Electrospinning Process. J. Nanomater 2013, 2013, 1–10. DOI: 10.1155/2013/538179.
  • Taylor, G. Disintegration of Water Drops in an Electric Field. Proc. R. Soc. A Math. Phys. Eng. Sci. 1964, 280, 383–397. DOI: 10.1098/rspa.1964.0151.
  • Taylor, G. I.; Mcewan, A. D. The Stability of a Horizontal Fluid Interface in a Vertical Electric Field. J. Fluid Mech. 1965, 22, 1–15. DOI: 10.1017/S0022112065000538.
  • Cloupeau, M.; Prunet-Foch, B. Electrostatic Spraying of Liquids: Main Functioning Modes. J. Electrostat. 1990, 25, 165–184. DOI: 10.1016/0304-3886(90)90025-Q.
  • Grace, J. M.; Marijnissen, J. C. M. A Review of Liquid Atomization by Electrical Means. J. Aerosol Sci. 1994, 25, 1005–1019. DOI: 10.1016/0021-8502(94)90198-8.
  • Hohman, M. M.; Shin, M.; Rutledge, G.; Brenner, M. P. Electrospinning and Electrically Forced Jets. II. Applications. Phys. Fluids 2001, 13, 2221–2236. DOI: 10.1063/1.1384013.
  • Shin, Y. M.; Hohman, M. M.; Brenner, M. P.; Rutledge, G. C. Electrospinning: A Whipping Fluid Jet Generates Submicron Polymer Fibers. Appl. Phys. Lett. 2001, 78, 1149–1151. DOI: 10.1063/1.1345798.
  • Coles, S. R.; Jacobs, D. K.; Meredith, J. O.; Barker, G.; Clark, A. J.; Kirwan, K.; Stanger, J.; Tucker, N. A Design of Experiments (DoE) Approach to Material Properties Optimization of Electrospun Nanofibers. J. Appl. Polym. Sci. 2010, 117, 2251–2257. DOI: 10.1002/app.32022.
  • Wang, C.; Hsu, C. H.; Lin, J. H. Scaling Laws in Electrospinning of Polystyrene Solutions. Macromolecules 2006, 39, 7662–7672. DOI: 10.1021/ma060866a.
  • Ramakrishna, S.; Fujihara, K.; Teo, W.-E.; Lim, T.-C.; Ma, Z. An Introduction to Electrospinning and Nanofibers; WORLD SCIENTIFIC 2005.
  • Fong, H.; Chun, I.; Reneker, D. H. Beaded Nanofibers Formed during Electrospinning. Polymer (Guildf) 1999, 40, 4585–4592. DOI: 10.1016/S0032-3861(99)00068-3.
  • Thompson, C. J.; Chase, G. G.; Yarin, A. L.; Reneker, D. H. Effects of Parameters on Nanofiber Diameter Determined from Electrospinning Model. Polymer (Guildf) 2007, 48, 6913–6922. DOI: 10.1016/j.polymer.2007.09.017.
  • Casper, C. L.; Stephens, J. S.; Tassi, N. G.; Chase, D. B.; Rabolt, J. F. Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules 2004, 37, 573–578. DOI: 10.1021/ma0351975.
  • Bandegi, A.; Moghbeli, M. R. Effect of Solvent Quality and Humidity on the Porous Formation and Oil Absorbency of SAN Electrospun Nanofibers. J. Appl. Polym. Sci. 2018, 135, 45586. DOI: 10.1002/app.45586.
  • Boys, C. V. On the Production, Properties, and Some Suggested Uses of the Finest Threads. Proc. Phys. Soc. London 1887, 9, 8–19. DOI: 10.1088/1478-7814/9/1/303.
  • Liu, W.; Thomopoulos, S.; Xia, Y. Electrospun Nanofibers for Regenerative Medicine. Adv. Healthc. Mater. 2012, 1, 10–25. DOI: 10.1002/adhm.201100021.
  • Mieszawska, A. J.; Jalilian, R.; Sumanasekera, G. U.; Zamborini, F. P. The Synthesis and Fabrication of One-Dimensional Nanoscale Heterojunctions. Small 2007, 3, 722–756. DOI: 10.1002/smll.200600727.
  • Li, D.; Babel, A.; Jenekhe, S. A.; Xia, Y. Nanofibers of Conjugated Polymers Prepared by Electrospinning with a Two-Capillary Spinneret. Adv. Mater. 2004, 16, 2062–2066. DOI: 10.1002/adma.200400606.
  • Nezarati, R. M.; Eifert, M. B.; Cosgriff-Hernandez, E. Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology. Tissue Eng. Part C Methods 2013, 19, 810–819. DOI: 10.1089/ten.tec.2012.0671.
  • Sukigara, S.; Gandhi, M.; Ayutsede, J.; Micklus, M.; Ko, F. Regeneration of Bombyx Mori Silk by Electrospinning - Part 1: Processing Parameters and Geometric Properties. Polymer (Guildf) 2003, 44, 5721–5727. DOI: 10.1016/S0032-3861(03)00532-9.
  • Zargham, S.; Bazgir, S.; Tavakoli, A.; Rashidi, A. S.; Damerchely, R. The Effect of Flow Rate on Morphology and Deposition Area of Electrospun Nylon 6 Nanofiber. J. Eng. Fiber. Fabr. 2012, 7, 42–49.
  • Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B. S.; Chu, B. Structure and Process Relationship of Electrospun Bioabsorbable Nanofiber Membranes. Polymer (Guildf) 2002, 43, 4403–4412.(02)00275-6. DOI: 10.1016/S0032-3861.
  • Zeng, J.; Haoqing, H.; Schaper, A.; Wendorff, J. H.; Greiner, A.; Jun, Z.; Hou, H.; Schaper, A.; Wendorff, J. H.; Greiner, A. Poly-L-Lactide Nanofibers by Electrospinning - Influence of Solution Viscosity and Electrical Conductivity on Fiber Diameter and Fiber Morphology. E-Polymers 2003, 3, DOI: 10.1515/epoly.2003.3.1.102.
  • Kim, K.-H. H.; Jeong, L.; Park, H.-N. N.; Shin, S.-Y. Y.; Park, W.-H. H.; Lee, S.-C. C.; Kim, T.-I. Il; Park, Y.-J. J.; Seol, Y.-J. J.; Lee, Y.-M. M.; et al. Biological Efficacy of Silk Fibroin Nanofiber Membranes for Guided Bone Regeneration. J. Biotechnol. 2005, 120, 327–339. DOI: 10.1016/j.jbiotec.2005.06.033.
  • Huang, L.; Nagapudi, K.; Apkarian, P. R.; Chaikof, E. L. Engineered Collagen - PEO Nanofibers and Fabrics. J. Biomater. Sci. Polym. Ed. 2001, 12, 979–993. DOI: 10.1163/156856201753252516.
  • Ding, B.; Kim, H. Y.; Lee, S. C.; Shao, C. L.; Lee, D. R.; Park, S. J.; Kwag, G. B.; Choi, K. J. Preparation and Characterization of a Nanoscale Poly(Vinyl Alcohol) Fiber Aggregate Produced by an Electrospinning Method. J. Polym. Sci. B Polym. Phys. 2002, 40, 1261–1268. DOI: 10.1002/polb.10191.
  • Gupta, P.; Elkins, C.; Long, T. E.; Wilkes, G. L. Electrospinning of Linear Homopolymers of Poly(Methyl Methacrylate): Exploring Relationships between Fiber Formation, Viscosity, Molecular Weight and Concentration in a Good Solvent. Polymer (Guildf) 2005, 46, 4799–4810. DOI: 10.1016/j.polymer.2005.04.021.
  • Jarusuwannapoom, T.; Hongrojjanawiwat, W.; Jitjaicham, S.; Wannatong, L.; Nithitanakul, M.; Pattamaprom, C.; Koombhongse, P.; Rangkupan, R.; Supaphol, P. Effect of Solvents on Electro-Spinnability of Polystyrene Solutions and Morphological Appearance of Resulting Electrospun Polystyrene Fibers. Eur. Polym. J. 2005, 41, 409–421. DOI: 10.1016/j.eurpolymj.2004.10.010.
  • Ki, C. S.; Baek, D. H.; Gang, K. D.; Lee, K. H.; Um, I. C.; Park, Y. H. Characterization of Gelatin Nanofiber Prepared from Gelatin-Formic Acid Solution. Polymer (Guildf) 2005, 46, 5094–5102. DOI: 10.1016/j.polymer.2005.04.040.
  • Jiang, H.; Fang, D.; Hsiao, B. S.; Chu, B.; Chen, W. Optimization and Characterization of Dextran Membranes Prepared by Electrospinning. Biomacromolecules 2004, 5, 326–333. DOI: 10.1021/bm034345w.
  • Yuan, X. Y.; Zhang, Y. Y.; Dong, C.; Sheng, J. Morphology of Ultrafine Polysulfone Fibers Prepared by Electrospinning. Polym. Int. 2004, 53, 1704–1710. DOI: 10.1002/pi.1538.
  • Megelski, S.; Stephens, J. S.; D. Bruce Chase, A.; Rabolt, J. F. Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules 2002, 35, 8456–8466. DOI: 10.1021/ma020444a.
  • Wannatong, L.; Sirivat, A.; Supaphol, P. Effects of Solvents on Electrospun Polymeric Fibers: Preliminary Study on Polystyrene. Polym. Int. 2004, 53, 1851–1859. DOI: 10.1002/pi.1599.
  • Zuo, W.; Zhu, M.; Yang, W.; Yu, H.; Chen, Y.; Zhang, Y. Experimental Study on Relationship between Jet Instability and Formation of Beaded Fibers during Electrospinning. Polym. Eng. Sci. 2005, 45, 704–709. DOI: 10.1002/pen.20304.
  • Haider, S.; Al-Zeghayer, Y.; Ahmed Ali, F. A.; Haider, A.; Mahmood, A.; Al-Masry, W. A.; Imran, M.; Aijaz, M. O. Highly Aligned Narrow Diameter Chitosan Electrospun Nanofibers. J. Polym. Res. 2013, 20, 105. DOI: 10.1007/s10965-013-0105-9.
  • Pillay, V.; Dott, C.; Choonara, Y. E.; Tyagi, C.; Tomar, L.; Kumar, P.; Du Toit, L. C.; Ndesendo, V. M. K. A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications. J. Nanomater. 2013, 2013, 1–22. DOI: 10.1155/2013/789289.
  • Ryu, Y. J.; Kim, H. Y.; Lee, K. H.; Park, H. C.; Lee, D. R. Transport Properties of Electrospun Nylon 6 Nonwoven Mats. Eur. Polym. J. 2003, 39, 1883–1889. DOI: 10.1016/S0014-3057(03)00096-X.
  • Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Beck Tan, N. C. The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles. Polymer (Guildf) 2001, 42, 261–272. DOI: 10.1016/S0032-3861(00)00250-0.
  • Liu, H.; Hsieh, Y. L. Ultrafine Fibrous Cellulose Membranes from Electrospinning of Cellulose Acetate. J. Polym. Sci. B Polym. Phys. 2002, 40, 2119–2129. DOI: 10.1002/polb.10261.
  • Matabola, K. P.; Moutloali, R. M. The Influence of Electrospinning Parameters on the Morphology and Diameter of Poly(Vinyledene Fluoride) Nanofibers- Effect of Sodium Chloride. J. Mater. Sci. 2013, 48, 5475–5482. DOI: 10.1007/s10853-013-7341-6.
  • Kim, H.-S.; Lee, D.-H.; Min, K.; Kim, M. Effects of Key Operating Parameters on the Efficiency of Two Types of Pem Fuel Cell Systems (High-Pressure and Low-Pressure Operating) for Automotive Applications. J. Mech. Sci. Technol. 2005, 19, 1018–1026. DOI: 10.1007/BF02919185.
  • Galiński, M.; Lewandowski, A.; Stępniak, I. Ionic Liquids as Electrolytes. Electrochim. Acta 2006, 51, 5567–5580. DOI: 10.1016/j.electacta.2006.03.016.
  • Bognitzki, M.; Czado, W.; Frese, T.; Schaper, A.; Hellwig, M.; Steinhart, M.; Greiner, A.; Wendorff, J. H. Nanostructured Fibers via Electrospinning. Adv. Mater. 2001, 13, 70–72. DOI: 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO;2-H.
  • Lannutti, J.; Reneker, D.; Ma, T.; Tomasko, D.; Farson, D. Electrospinning for Tissue Engineering Scaffolds. Mater. Sci. Eng. C 2007, 27, 504–509. DOI: 10.1016/j.msec.2006.05.019.
  • Kim, H. S.; Kim, K.; Jin, H. J.; Chin, I. J. Morphological Characterization of Electrospun Nano-Fibrous Membranes of Biodegradable Poly(l-Lactide) and Poly(Lactide-Co-Glycolide). Macromol. Symp. 2005, 224, 145–154. DOI: 10.1002/masy.200550613.
  • Fertala, A.; Han, W. B.; Ko, F. K. Mapping Critical Sites in Collagen II for Rational Design of Gene-Engineered Proteins for Cell-Supporting Materials. J. Biomed. Mater. Res. 2001, 57, 48–58. DOI: 10.1002/1097-4636(200110)57:1<48::AID-JBM1140 > 3.0.CO;2-S.
  • Jin, H.-J.; Fridrikh, S. V.; Rutledge, G. C.; Kaplan, D. L. Electrospinning Bombyx Mori Silk with Poly(Ethylene Oxide). Biomacromolecules 2002, 3, 1233–1239. DOI: 10.1021/bm025581u.
  • Gibson, P. W.; Schreuder-Gibson, H. L.; Rivin, D. Electrospun Fiber Mats: Transport Properties. AIChE J. 1999, 45, 190–195. DOI: 10.1002/aic.690450116.
  • Shin, Y. M.; Hohman, M. M.; Brenner, M. P.; Rutledge, G. C. Experimental Characterization of Electrospinning: The Electrically Forced Jet and Instabilities. Polymer (Guildf) 2001, 42, 09955–09967. DOI: 10.1016/S0032-3861(01)00540-7.
  • Fong, H.; Liu, W.; Wang, C. S.; Vaia, R. A. Generation of Electrospun Fibers of Nylon 6 and Nylon 6-Montmorillonite Nanocomposite. Polymer (Guildf) 2002, 43, 775–780. DOI: 10.1016/S0032-3861(01)00665-6.
  • Sundaray, B.; Subramanian, V.; Natarajan, T. S.; Xiang, R. Z.; Chang, C. C.; Fann, W. S. Electrospinning of Continuous Aligned Polymer Fibers. Appl. Phys. Lett. 2004, 84, 1222–1224. DOI: 10.1063/1.1647685.
  • Fennessey, S. F.; Farris, R. J. Fabrication of Aligned and Molecularly Oriented Electrospun Polyacrylonitrile Nanofibers and the Mechanical Behavior of Their Twisted Yarns. Polymer (Guildf) 2004, 45, 4217–4225. DOI: 10.1016/j.polymer.2004.04.001.
  • Bazbouz, M. B.; Stylios, G. K. Alignment and Optimization of Nylon 6 Nanofibers by Electrospinning. J. Appl. Polym. Sci. 2008, 107, 3023–3032. DOI: 10.1002/app.27407.
  • Bazbouz, M. B.; Stylios, G. K. Novel Mechanism for Spinning Continuous Twisted Composite Nanofiber Yarns. Eur. Polym. J. 2008, 44, 1–12. DOI: 10.1016/j.eurpolymj.2007.10.006.
  • Mathew, G.; Hong, J. P.; Rhee, J. M.; Lee, H. S.; Nah, C. Preparation and Characterization of Properties of Electrospun Poly(Butylene Terephthalate) Nanofibers Filled with Carbon Nanotubes. Polym. Test 2005, 24, 712–717. DOI: 10.1016/j.polymertesting.2005.05.002.
  • Boland, E.; Wnek, G.; Simpson, D.; Pawlowski, K.; Bowlin, G. Tailoring Tissue Engineering Scaffolds Using Electrostatic Processing Techniques: A Study of Poly(Glycolic Acid) Electrospinning. J. Macromol. Sci Part A 2001, 38, 1231–1243. DOI: 10.1081/MA-100108380.
  • Theron, A.; Zussman, E.; Yarin, A. L. Electrostatic Field-Assisted Alignment of Electrospun Nanofibres. Nanotechnology 2001, 12, 384–390. DOI: 10.1088/0957-4484/12/3/329.
  • Shuakat, M. N.; Lin, T. Direct Electrospinning of Nanofibre Yarns Using a Rotating Ring Collector. J. Text. Inst. 2016, 107, 791–799. DOI: 10.1080/00405000.2015.1061785.
  • Wong, S. C.; Baji, A.; Leng, S. Effect of Fiber Diameter on Tensile Properties of Electrospun Poly(ε-Caprolactone). Polymer (Guildf) 2008, 49, 4713–4722. DOI: 10.1016/j.polymer.2008.08.022.
  • Teo, W. E.; Ramakrishna, S. A Review on Electrospinning Design and Nanofibre Assemblies. Nanotechnology 2006, 17, R89–R106. DOI: 10.1088/0957-4484/17/14/R01.
  • Teo, W. E.; Ramakrishna, S. Electrospun Fibre Bundle Made of Aligned Nanofibres over Two Fixed Points. Nanotechnology 2005, 16, 1878–1884. DOI: 10.1088/0957-4484/16/9/077.
  • Kim, G.; Kim, W. Formation of Oriented Nanofibers Using Electrospinning. Appl. Phys. Lett. 2006, 88, 233101. DOI: 10.1063/1.2210972.
  • Dalton, P. D.; Calvet, J. L.; Mourran, A.; Klee, D.; Möller, M. Melt Electrospinning of Poly-(Ethylene Glycol-Block-ε-Caprolactone). Biotechnol. J. 2006, 1, 998–1006. DOI: 10.1002/biot.200600064.
  • Yu, K.; Zhou, X.; Zhu, T.; Wu, T.; Wang, J.; Fang, J.; El-Aassar, M. R.; El-Hamshary, H.; El-Newehy, M.; Mo, X. Fabrication of Poly(Ester-Urethane)Urea Elastomer/Gelatin Electrospun Nanofibrous Membranes for Potential Applications in Skin Tissue Engineering. RSC Adv. 2016, 6, 73636–73644. DOI: 10.1039/C6RA15450F.
  • O. S, K. Developing Protective Textile Materials as Barriers to Liquid Penetration Using Melt-Electrospinning. J. Appl. Polym. Sci. 2006, 102, 3430. DOI: 10.1002/app.24258.
  • Liao, C. C.; Wang, C. C.; Chen, C. Y. Stretching-Induced Crystallinity and Orientation of Polylactic Acid Nanofibers with Improved Mechanical Properties Using an Electrically Charged Rotating Viscoelastic Jet. Polymer (Guildf) 2011, 52, 4303–4318. DOI: 10.1016/j.polymer.2011.07.031.
  • Dalton, P. D.; Grafahrend, D.; Klinkhammer, K.; Klee, D.; Möller, M. Electrospinning of Polymer Melts: Phenomenological Observations. Polymer (Guildf) 2007, 48, 6823–6833. DOI: 10.1016/j.polymer.2007.09.037.
  • Andrady, A. L.; Ensor, D. S.; Newsome, R. J. Electrospinning of Fibers Using a Rotatable Spray Head. US7134857B2, April 2004.
  • Dosunmu, O. O.; Chase, G. G.; Kataphinan, W.; Reneker, D. H. Electrospinning of Polymer Nanofibres from Multiple Jets on a Porous Tubular Surface. Nanotechnology 2006, 17, 1123–1127. DOI: 10.1088/0957-4484/17/4/046.
  • McCann, J. T.; Marquez, M.; Xia, Y. Melt Coaxial Electrospinning: A Versatile Method for the Encapsulation of Solid Materials and Fabrication of Phase Change Nanofibers. Nano Lett. 2006, 6, 2868–2872. DOI: 10.1021/nl0620839.
  • Koombhongse, S.; Liu, W.; Reneker, D. H. Flat Polymer Ribbons and Other Shapes by Electrospinning. J. Polym. Sci. B Polym. Phys. 2001, 39, 2598–2606. DOI: 10.1002/polb.10015.
  • Han, T.; Reneker, D. H.; Yarin, A. L. Buckling of Jets in Electrospinning. Polymer (Guildf) 2007, 48, 6064–6076. DOI: 10.1016/j.polymer.2007.08.002.
  • Agarwal, S.; Greiner, A. On the Way to Clean and Safe Electrospinning-Green Electrospinning: Emulsion and Suspension Electrospinning. Polym. Adv. Technol. 2011, 22, 372–378. DOI: 10.1002/pat.1883.
  • Li, D.; Yuliang Wang, A.; Xia, Y.; Li, D.; Wang, Y.; Xia, Y. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Lett. 2003, 3, 1167–1171. DOI: 10.1021/nl0344256.
  • Sun, D.; Chang, C.; Sha Li, A.; Lin, L. Near-Field Electrospinning. Nano Lett. 2006, 6, 839–842. DOI: 10.1021/nl0602701.
  • Nikmaram, N.; Roohinejad, S.; Hashemi, S.; Koubaa, M.; Barba, F. J.; Abbaspourrad, A.; Greiner, R. Emulsion-Based Systems for Fabrication of Electrospun Nanofibers: Food, Pharmaceutical and Biomedical Applications. RSC Adv. 2017, 7, 28951–28964. DOI: 10.1039/C7RA00179G.
  • Davis, A.; K, B.; K, B. Bioactive Hybrid Composite Membrane with Enhanced Antimicrobial Properties for Biomedical Applications. Def. Sc. Jl. 2016, 66, 434. DOI: 10.14429/dsj.66.10218.
  • Garg, K.; Bowlin, G. L. Electrospinning Jets and Nanofibrous Structures. Biomicrofluidics 2011, 5, DOI: 10.1063/1.3567097.
  • Mason, C.; Dunnill, P. A Brief Definition of Regenerative Medicine. Regen. Med. 2008, 3, 1–5. DOI: 10.2217/17460751.3.1.1.
  • Manhas, N.; Balasubramanian, K.; Prajith, P.; Rule, P.; Nimje, S. PCL/PVA Nanoencapsulated Reinforcing Fillers of Steam Exploded/Autoclaved Cellulose Nanofibrils for Tissue Engineering Applications. RSC Adv. 2015, 5, 23999–24008. DOI: 10.1039/C4RA17191H.
  • Angarano, M.; Schulz, S.; Fabritius, M.; Vogt, R.; Steinberg, T.; Tomakidi, P.; Friedrich, C.; Mülhaupt, R. Layered Gradient Nonwovens of in Situ Crosslinked Electrospun Collagenous Nanofibers Used as Modular Scaffold Systems for Soft Tissue Regeneration. Adv. Funct. Mater. 2013, 23, 3277–3285. DOI: 10.1002/adfm.201202816.
  • Harrison, R. H.; St-Pierre, J.-P.; Stevens, M. M. Tissue Engineering and Regenerative Medicine: A Year in Review. Tissue Eng. Part B Rev. 2014, 20, 1–16. DOI: 10.1089/ten.teb.2013.0668.
  • Sun, B.; Jiang, X. J.; Zhang, S.; Zhang, J. C.; Li, Y. F.; You, Q. Z.; Long, Y. Z. Electrospun Anisotropic Architectures and Porous Structures for Tissue Engineering. J. Mater. Chem. B 2015, 3, 5389–5410. DOI: 10.1039/C5TB00472A.
  • Annis, D.; Bornat, A.; Edwards, R. O.; Higham, A.; Loveday, B.; Wilson, J. An Elastomeric Vascular Prosthesis. Trans. Am. Soc. Artif. Intern. Organs 1978, 24, 209–214.
  • Nerem, R. M.; Sambanis, A. Tissue Engineering: From Biology to Biological Substitutes. Tissue Eng. 1995, 1, 3–13. DOI: 10.1089/ten.1995.1.3.
  • Yang, S.; Leong, K.-F.; Du, Z.; Chua, C.-K. The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors. Tissue Eng. 2001, 7, 679–689. DOI: 10.1089/107632701753337645.
  • Vasita, R.; Katti, D. S. Nanofibers and Their Applications in Tissue Engineering. Int. J. Nanomed. 2006, 1, 15–30. DOI: 10.2147/nano.2006.1.1.15.
  • Elsdale, T.; Bard, J. Collagen Substrata for Studies on Cell Behavior. J. Cell Biol. 1972, 54, 626–637. DOI: 10.1083/jcb.54.3.626.
  • Sun, B.; Long, Y. Z.; Zhang, H. D.; Li, M. M.; Duvail, J. L.; Jiang, X. Y.; Yin, H. L. Advances in Three-Dimensional Nanofibrous Macrostructures via Electrospinning. Prog. Polym. Sci. 2014, 39, 862–890. DOI: 10.1016/j.progpolymsci.2013.06.002.
  • Shin, H.; Jo, S.; Mikos, A. G. Biomimetic Materials for Tissue Engineering. Biomaterials 2003, 24, 4353–4364. DOI: 10.1016/S0142-9612(03)00339-9.
  • Hubbell, J. A. Biomaterials in Tissue Engineering. Nat. Biotechnol. 1995, 13, 565–576. DOI: 10.1038/nbt0695-565.
  • Kramschuster, A.; Turng, L. S. Fabrication of Tissue Engineering Scaffolds. In Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications; 2012; pp 427–446.
  • Li, W.-J.; Laurencin, C. T.; Caterson, E. J.; Tuan, R. S.; Ko, F. K. Electrospun Nanofibrous Structure: A Novel Scaffold for Tissue Engineering. J. Biomed. Mater. Res. 2002, 60, 613–621. DOI: 10.1002/jbm.10167.
  • He, W.; Horn, S. W.; Hussain, M. D. Improved Bioavailability of Orally Administered Mifepristone from PLGA Nanoparticles. Int. J. Pharm. 2007, 334, 173–178. DOI: 10.1016/j.ijpharm.2006.10.025.
  • Matthews, J. A.; Wnek, G. E.; Simpson, D. G.; Bowlin, G. L.; Matthews, J. A.; Wnek, G. E.; Simpson, D. G.; and.; Bowlin, G. L. Electrospinning of Collagen Nanofibers. Biomacromolecules 2002, 3, 232–238. DOI: 10.1021/bm015533u.
  • Telemeco, T. A.; Ayres, C.; Bowlin, G. L.; Wnek, G. E.; Boland, E. D.; Cohen, N.; Baumgarten, C. M.; Mathews, J.; Simpson, D. G. Regulation of Cellular Infiltration into Tissue Engineering Scaffolds Composed of Submicron Diameter Fibrils Produced by Electrospinning. Acta Biomater. 2005, 1, 377–385. DOI: 10.1016/j.actbio.2005.04.006.
  • Liu, T.; Houle, J. D.; Xu, J.; Chan, B. P.; Chew, S. Y. Nanofibrous Collagen Nerve Conduits for Spinal Cord Repair. Tissue Eng. Part A 2012, 18, 1057–1066. DOI: 10.1089/ten.tea.2011.0430.
  • Lam, M. T.; Huang, Y. C.; Birla, R. K.; Takayama, S. Microfeature Guided Skeletal Muscle Tissue Engineering for Highly Organized 3-Dimensional Free-Standing Constructs. Biomaterials 2009, 30, 1150–1155. DOI: 10.1016/j.biomaterials.2008.11.014.
  • Ohkawa, K.; Cha, D.; Kim, H.; Nishida, A.; Yamamoto, H. Electrospinning of Chitosan. Macromol. Rapid Commun. 2004, 25, 1600–1605. DOI: 10.1002/marc.200400253.
  • Zhang, Y.; Ouyang, H.; Chwee, T. L.; Ramakrishna, S.; Huang, Z. M. Electrospinning of Gelatin Fibers and Gelatin/PCL Composite Fibrous Scaffolds. J. Biomed. Mater. Res. - 2005, 72, 156–165. DOI: 10.1002/jbm.b.30128.
  • Min, B. M.; Lee, G.; Kim, S. H.; Nam, Y. S.; Lee, T. S.; Park, W. H. Electrospinning of Silk Fibroin Nanofibers and Its Effect on the Adhesion and Spreading of Normal Human Keratinocytes and Fibroblasts in Vitro. Biomaterials 2004, 25, 1289–1297. DOI: 10.1016/j.biomaterials.2003.08.045.
  • Meinel, A. J.; Kubow, K. E.; Klotzsch, E.; Garcia-Fuentes, M.; Smith, M. L.; Vogel, V.; Merkle, H. P.; Meinel, L. Optimization Strategies for Electrospun Silk Fibroin Tissue Engineering Scaffolds. Biomaterials 2009, 30, 3058–3067. DOI: 10.1016/j.biomaterials.2009.01.054.
  • Wittmer, C. R.; Claudepierre, T.; Reber, M.; Wiedemann, P.; Garlick, J. A.; Kaplan, D.; Egles, C. Biomedical Applications: Multifunctionalized Electrospun Silk Fibers Promote Axon Regeneration in the Central Nervous System (Adv. Funct. Mater. 22/2011). Adv. Funct. Mater. 2011, 21, 4202–4202. DOI: 10.1002/adfm.201190103.
  • Zhang, X.; Reagan, M. R.; Kaplan, D. L. Electrospun Silk Biomaterial Scaffolds for Regenerative Medicine. Adv. Drug Deliv. Rev. 2009, 61, 988–1006. DOI: 10.1016/j.addr.2009.07.005.
  • Chen, Z. G.; Wang, P. W.; Wei, B.; Mo, X. M.; Cui, F. Z. Electrospun Collagen-Chitosan Nanofiber: A Biomimetic Extracellular Matrix for Endothelial Cell and Smooth Muscle Cell. Acta Biomater. 2010, 6, 372–382. DOI: 10.1016/j.actbio.2009.07.024.
  • Stankus, J. J.; Guan, J.; Wagner, W. R. Fabrication of Biodegradable Elastomeric Scaffolds with Sub-Micron Morphologies. J. Biomed. Mater. Res. 2004, 70, 603–614. DOI: 10.1002/jbm.a.30122.
  • Zhong, S.; Teo, W. E.; Zhu, X.; Beuerman, R.; Ramakrishna, S.; Yung, L. Y. L. Formation of Collagen - Glycosaminoglycan Blended Nanofibrous Scaffolds and Their Biological Properties. Biomacromolecules 2005, 6, 2998–3004. DOI: 10.1021/bm050318p.
  • Venugopal, J.; Low, S.; Choon, A. T.; Bharath Kumar, A.; Ramakrishna, S. Electrospun-Modified Nanofibrous Scaffolds for the Mineralization of Osteoblast Cells. J. Biomed. Mater. Res. - 2008, 85, 408–417. DOI: 10.1002/jbm.a.31538.
  • Park, K. E.; Kang, H. K.; Lee, S. J.; Min, B. M.; Park, W. H. Biomimetic Nanofibrous Scaffolds: Preparation and Characterization of PGA/Chitin Blend Nanofibers. Biomacromolecules 2006, 7, 635–643. DOI: 10.1021/bm0509265.
  • Kwon, I. K.; Matsuda, T.; and, Matsuda, I. K. K.; Kwon, T.; Matsuda, I. K. T. Co-Electrospun Nanofiber Fabrics of Poly (L-Lactide-Co-ε-Caprolactone) with Type I Collagen or Heparin. Biomacromolecules 2005, 6, 2096–2105. DOI: 10.1021/bm050086u.
  • Chew, S. Y.; Wen, J.; Yim, E. K. F.; Leong, K. W. Sustained Release of Proteins from Electrospun Biodegradable Fibers. Biomacromolecules 2005, 6, 2017–2024. DOI: 10.1021/bm0501149.
  • Stitzel, J.; Liu, J.; Lee, S. J.; Komura, M.; Berry, J.; Soker, S.; Lim, G.; Van Dyke, M.; Czerw, R.; Yoo, J. J.; et al. Controlled Fabrication of a Biological Vascular Substitute. Biomaterials 2006, 27, 1088–1094. DOI: 10.1016/j.biomaterials.2005.07.048.
  • Chew, S. Y.; Mi, R.; Hoke, A.; Leong, K. W. Aligned Protein-Polymer Composite Fibers Enhance Nerve Regeneration: A Potential Tissue-Engineering Platform. Adv. Funct. Mater. 2007, 17, 1288–1296. DOI: 10.1002/adfm.200600441.
  • Yoshimoto, H.; Shin, Y. M.; Terai, H.; Vacanti, J. P. A Biodegradable Nanofiber Scaffold by Electrospinning and Its Potential for Bone Tissue Engineering. Biomaterials 2003, 24, 2077–2082. DOI: 10.1016/S0142-9612(02)00635-X.
  • Li, W. J.; Tuli, R.; Huang, X.; Laquerriere, P.; Tuan, R. S. Multilineage Differentiation of Human Mesenchymal Stem Cells in a Three-Dimensional Nanofibrous Scaffold. Biomaterials 2005, 26, 5158–5166. DOI: 10.1016/j.biomaterials.2005.01.002.
  • Pham, Q. P.; Sharma, U.; Mikos, A. G. Electrospun Poly (??-Caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds: Characterization of Scaffolds and Measurement of Cellular Infiltration. Biomacromolecules 2006, 7, 2796–2805. DOI: 10.1021/bm060680j.
  • Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S. Electrospinning of Nano/Micro Scale Poly(l-Lactic Acid) Aligned Fibers and Their Potential in Neural Tissue Engineering. Biomaterials 2005, 26, 2603–2610. DOI: 10.1016/j.biomaterials.2004.06.051.
  • Zong, X.; Bien, H.; Chung, C. Y.; Yin, L.; Fang, D.; Hsiao, B. S.; Chu, B.; Entcheva, E. Electrospun Fine-Textured Scaffolds for Heart Tissue Constructs. Biomaterials 2005, 26, 5330–5338. DOI: 10.1016/j.biomaterials.2005.01.052.
  • Badami, A. S.; Kreke, M. R.; Thompson, M. S.; Riffle, J. S.; Goldstein, A. S. Effect of Fiber Diameter on Spreading, Proliferation, and Differentiation of Osteoblastic Cells on Electrospun Poly(Lactic Acid) Substrates. Biomaterials 2006, 27, 596–606. DOI: 10.1016/j.biomaterials.2005.05.084.
  • Zhang, Y. Z.; Venugopal, J.; Huang, Z. M.; Lim, C. T.; Ramakrishna, S. Characterization of the Surface Biocompatibility of the Electrospun PCL-Collagen Nanofibers Using Fibroblasts. Biomacromolecules 2005, 6, 2583–2589. DOI: 10.1021/bm050314k.
  • He, W.; Yong, T.; Teo, W. E.; Ma, Z.; Ramakrishna, S. Fabrication and Endothelialization of Collagen-Blended Biodegradable Polymer Nanofibers: Potential Vascular Graft for Blood Vessel Tissue Engineering. Tissue Eng. 2005, 11, 1574–1588. DOI: 10.1089/ten.2005.11.1574.
  • Chakrapani, V. Y.; Gnanamani, A.; Giridev, V. R.; Madhusoothanan, M.; Sekaran, G. Electrospinning of Type i Collagen and PCL Nanofibers Using Acetic Acid. J. Appl. Polym. Sci. 2012, 125, 3221–3227. DOI: 10.1002/app.36504.
  • Kim, H. W.; Yu, H. S.; Lee, H. H. Nanofibrous Matrices of Poly(Lactic Acid) and Gelatin Polymeric Blends for the Improvement of Cellular Responses. J. Biomed. Mater. Res. 2008, 87, 25–32. DOI: 10.1002/jbm.a.31677.
  • Zhao, P.; Jiang, H.; Pan, H.; Zhu, K.; Chen, W. Biodegradable Fibrous Scaffolds Composed of Gelatin Coated Poly(ε-Caprolactone) Prepared by Coaxial Electrospinning. J. Biomed. Mater. Res. Part 2007, 83A, 372–382. DOI: 10.1002/jbm.a.31242.
  • Chew, S. Y.; Hufnagel, T. C.; Lim, C. T.; Leong, K. W. Mechanical Properties of Single Electrospun Drug-Encapsulated Nanofibres. Nanotechnology 2006, 17, 3880–3891. DOI: 10.1088/0957-4484/17/15/045.
  • Zong, X.; Li, S.; Chen, E.; Garlick, B.; Kim, K.-S.; Fang, D.; Chiu, J.; Zimmerman, T.; Brathwaite, C.; Hsiao, B. S.; et al. Prevention of Postsurgery-Induced Abdominal Adhesions by Electrospun Bioabsorbable Nanofibrous Poly(Lactide-Co-Glycolide)-Based Membranes. Ann. Surg. 2004, 240, 910–915. DOI: 10.1097/01.sla.0000143302.48223.7e.
  • Kim, K.; Yu, M.; Zong, X.; Chiu, J.; Fang, D.; Seo, Y.-S.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, M. Control of Degradation Rate and Hydrophilicity in Electrospun Non-Woven Poly(D,L-Lactide) Nanofiber Scaffolds for Biomedical Applications. Biomaterials 2003, 24, 4977–4985. DOI: 10.1016/S0142-9612(03)00407-1.
  • Holzwarth, J. M.; Ma, P. X. Biomimetic Nanofibrous Scaffolds for Bone Tissue Engineering. Biomaterials 2011, 32, 9622–9629. DOI: 10.1016/j.biomaterials.2011.09.009.
  • Li, X.; Wang, L.; Fan, Y.; Feng, Q.; Cui, F. Z.; Watari, F. Nanostructured Scaffolds for Bone Tissue Engineering. J. Biomed. Mater. Res. 2013, 101 A, 2424–2435. DOI: 10.1002/jbm.a.34539.
  • Cantu, D. A.; Kao, W. J. Combinatorial Biomatrix/Cell-Based Therapies for Restoration of Host Tissue Architecture and Function. Adv. Healthc. Mater. 2013, 2, 1544–1563. DOI: 10.1002/adhm.201300063.
  • Goh, Y. F.; Shakir, I.; Hussain, R. Electrospun Fibers for Tissue Engineering, Drug Delivery, and Wound Dressing. J. Mater. Sci. 2013, 48, 3027–3054. DOI: 10.1007/s10853-013-7145-8.
  • Li, X.; Yang, Y.; Fan, Y.; Feng, Q.; Cui, F. Z.; Watari, F. Biocomposites Reinforced by Fibers or Tubes as Scaffolds for Tissue Engineering or Regenerative Medicine. J. Biomed. Mater. Res. - 2014, 102, 1580–1594. DOI: 10.1002/jbm.a.34801.
  • Liao, S.; Li, B.; Ma, Z.; Wei, H.; Chan, C.; Ramakrishna, S. Biomimetic Electrospun Nanofibers for Tissue Regeneration. Biomed. Mater. 2006, 1, R45–R53. DOI: 10.1088/1748-6041/1/3/R01.
  • Tamayol, A.; Akbari, M.; Annabi, N.; Paul, A.; Khademhosseini, A.; Juncker, D. Fiber-Based Tissue Engineering: Progress, Challenges, and Opportunities. Biotechnol. Adv. 2013, 31, 669–687. DOI: 10.1016/j.biotechadv.2012.11.007.
  • Khajavi, R.; Abbasipour, M.; Bahador, A. Electrospun Biodegradable Nanofibers Scaffolds for Bone Tissue Engineering. J. Appl. Polym. Sci. 2016, 133, 42883. DOI: 10.1002/app.42883.
  • Torricelli, P.; Gioffrè, M.; Fiorani, A.; Panzavolta, S.; Gualandi, C.; Fini, M.; Focarete, M. L.; Bigi, A. Co-Electrospun Gelatin-Poly(l-Lactic Acid) Scaffolds: Modulation of Mechanical Properties and Chondrocyte Response as a Function of Composition. Mater. Sci. Eng. C 2014, 36, 130–138. DOI: 10.1016/j.msec.2013.11.050.
  • Kim, M. J.; Kim, J.-H.; Yi, G.; Lim, S.-H.; Hong, Y. S.; Chung, D. J. In Vitro Andin Vivo Application of PLGA Nanofiber for Artificial Blood Vessel. Macromol. Res. 2008, 16, 345–352. DOI: 10.1007/BF03218527.
  • Mo, X. M.; Xu, C. Y.; Kotaki, M.; Ramakrishna, S. Electrospun P(LLA-CL) Nanofiber: A Biomimetic Extracellular Matrix for Smooth Muscle Cell and Endothelial Cell Proliferation. Biomaterials 2004, 25, 1883–1890. DOI: 10.1016/j.biomaterials.2003.08.042.
  • Salacinski, H. J.; Punshon, G.; Krijgsman, B.; Hamilton, G.; Seifalian, A. M. A Hybrid Compliant Vascular Graft Seeded with Microvascular Endothelial Cells Extracted from Human Omentum. Artif. Organs 2001, 25, 974–982. DOI: 10.1046/j.1525-1594.2001.06716.x.
  • Bhat, V. D.; Klitzman, B.; Koger, K.; Truskey, G. A.; Reichert, W. M. Improving Endothelial Cell Adhesion to Vascular Graft Surfaces: Clinical Need and Strategies. J. Biomater. Sci. Polym. Ed 1998, 9, 1117–1135. DOI: 10.1163/156856298X00686.
  • Balguid, A.; Mol, A.; van Marion, M. H.; Bank, R. A.; Bouten, C. V. C.; Baaijens, F. P. T. Tailoring Fiber Diameter in Electrospun Poly(ɛ-Caprolactone) Scaffolds for Optimal Cellular Infiltration in Cardiovascular Tissue Engineering. Tissue Eng. Part A 2009, 15, 437–444. DOI: 10.1089/ten.tea.2007.0294.
  • Chung, T. W.; Liu, D. Z.; Wang, S. Y.; Wang, S. S. Enhancement of the Growth of Human Endothelial Cells by Surface Roughness at Nanometer Scale. Biomaterials 2003, 24, 4655–4661. DOI: 10.1016/S0142-9612(03)00361-2.
  • Vaz, C. M.; van Tuijl, S.; Bouten, C. V. C.; Baaijens, F. P. T. Design of Scaffolds for Blood Vessel Tissue Engineering Using a Multi-Layering Electrospinning Technique. Acta Biomater. 2005, 1, 575–582. DOI: 10.1016/j.actbio.2005.06.006.
  • Woerly, S.; Plant, G. W.; Harvey, A. R. Neural Tissue Engineering: From Polymer to Biohybrid Organs. Biomaterials 1996, 17, 301–310. DOI: 10.1016/0142-9612(96)85568-2.
  • Hudson, T. W.; Evans, G. R. D.; Schmidt, C. E. Engineering Strategies for Peripheral Nerve Repair. Orthop. Clin. North Am. 2000, 31, 485–497. DOI: 10.1016/S0030-5898(05)70166-8.
  • Desai, T. A. Micro- and Nanoscale Structures for Tissue Engineering Constructs. Med. Eng. Phys. 2000, 22, 595–606. DOI: 10.1016/S1350-4533(00)00087-4.
  • Hudlikar, M.; Balasubramanian, K.; Kodam, K. Towards the Enhancement of Antimicrobial Efficacy and Hydrophobization of Chitosan. J. Chitin Chitosan Sci. 2014, 2, 273–279. DOI: 10.1166/jcc.2014.1080.
  • Yang, F.; Xu, C. Y.; Kotaki, M.; Wang, S.; Ramakrishna, S. Characterization of Neural Stem Cells on Electrospun Poly(L-Lactic Acid) Nanofibrous Scaffold. J. Biomater. Sci. Polym. Ed 2004, 15, 1483–1497. DOI: 10.1163/1568562042459733.
  • Griffin, J.; Delgado-Rivera, R.; Meiners, S.; Uhrich, K. E. Salicylic Acid-Derived Poly(Anhydride-Ester) Electrospun Fibers Designed for Regenerating the Peripheral Nervous System. J. Biomed. Mater. Res. 2011, 97 A, 230–242. DOI: 10.1002/jbm.a.33049.
  • Whitesides, G. M. The “right” Size in Nanobiotechnology. Nature Biotechnol. 2003, 21, 1161–1165. DOI: 10.1038/nbt872.
  • Ferrari, M. Cancer Nanotechnology: Opportunities and Challenges. Nature Reviews: Cancer. 2005, 5, 161–171. DOI: 10.1038/nrc1566.
  • Farokhzad, O. C.; Karp, J. M.; Langer, R. Nanoparticle–aptamer Bioconjugates for Cancer Targeting. Expert Opin. Drug Deliv. 2006, 3, 311–324. DOI: 10.1517/17425247.3.3.311.
  • Zhang, L.; Gu, F.; Chan, J.; Wang, A.; Langer, R.; Farokhzad, O. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clin. Pharmacol. Ther. 2008, 83, 761–769. DOI: 10.1038/sj.clpt.6100400.
  • Yadav, R.; Balasubramanian, K. Polyacrylonitrile/Syzygium Aromaticum Hierarchical Hydrophilic Nanocomposite as a Carrier for Antibacterial Drug Delivery Systems. RSC Adv. 2015, 5, 3291–3298. DOI: 10.1039/C4RA12755B.
  • Langer, R. New Methods of Drug Delivery. Science (80-.) 1990, 249, 1527–1533. DOI: 10.1126/science.2218494.
  • LaVan, D. A.; McGuire, T.; Langer, R. Small-Scale Systems for in Vivo Drug Delivery. Nat. Biotechnol. 2003, 21, 1184–1191. DOI: 10.1038/nbt876.
  • Rutledge, G. C.; Fridrikh, S. V. Formation of Fibers by Electrospinning. Adv. Drug Deliv. Rev. 2007, 59, 1384–1391. DOI: 10.1016/j.addr.2007.04.020.
  • Soppimath, K. S.; Aminabhavi, T. M.; Kulkarni, A. R.; Rudzinski, W. E. Biodegradable Polymeric Nanoparticles as Drug Delivery Devices. J. Control. Release 2001, 70, 1–20. DOI: 10.1016/S0168-3659(00)00339-4.
  • Leuner, C.; Dressman, J. Improving Drug Solubility for Oral Delivery Using Solid Dispersions. Eur. J. Pharm. Biopharm. 2000, 50, 47–60. DOI: 10.1016/S0939-6411(00)00076-X.
  • Chen, Z.; Chen, Z.; Zhang, A.; Hu, J.; Wang, X.; Yang, Z. Electrospun Nanofibers for Cancer Diagnosis and Therapy. Biomater. Sci. 2016, 4, 922–932. DOI: 10.1039/C6BM00070C.
  • Shen, X.-X.; Yu, D.-G.; Zhu, L.-M.; Branford-White, C. Preparation and Characterization of Ultrafine Eudragit L100 Fibers via Electrospinning. In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering; IEEE 2009, pp 1–4.
  • Xu, X.; Chen, X.; Wang, Z.; Jing, X. Ultrafine PEG–PLA Fibers Loaded with Both Paclitaxel and Doxorubicin Hydrochloride and Their in Vitro Cytotoxicity. Eur. J. Pharm. Biopharm. 2009, 72, 18–25. DOI: 10.1016/j.ejpb.2008.10.015.
  • Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of Polymeric Nanofibers for Drug Delivery Applications. J. Control. Release 2014, 185, 12–21. DOI: 10.1016/j.jconrel.2014.04.018.
  • Ignatious, F.; Sun, L.; Lee, C.-P.; Baldoni, J. Electrospun Nanofibers in Oral Drug Delivery. Pharm. Res. 2010, 27, 576–588. DOI: 10.1007/s11095-010-0061-6.
  • Noyes, A. A.; Whitney, W. R. The Rate of Solution of Solid Substances in Their Own Solutions. J. Am. Chem. Soc. 1897, 19, 930–934. DOI: 10.1021/ja02086a003.
  • Jiang, H.; Fang, D.; Hsiao, B.; Chu, B.; Chen, W. Preparation and Characterization of Ibuprofen-Loaded Poly(Lactide-Co-Glycolide)/Poly(Ethylene Glycol)-g-Chitosan Electrospun Membranes. J. Biomater. Sci. Polym. Ed 2004, 15, 279–296. DOI: 10.1163/156856204322977184.
  • Katti, D. S.; Robinson, K. W.; Ko, F. K.; Laurencin, C. T. Bioresorbable Nanofiber-Based Systems for Wound Healing and Drug Delivery: Optimization of Fabrication Parameters. J. Biomed. Mater. Res. 2004, 70B, 286–296. DOI: 10.1002/jbm.b.30041.
  • Zeng, J.; Xu, X.; Chen, X.; Liang, Q.; Bian, X.; Yang, L.; Jing, X. Biodegradable Electrospun Fibers for Drug Delivery. J. Control. Release 2003, 92, 227–231. DOI: 10.1016/S0168-3659(03)00372-9.
  • Verreck, G.; Chun, I.; Peeters, J.; Rosenblatt, J.; Brewster, M. E. Preparation and Characterization of Nanofibers Containing Amorphous Drug Dispersions Generated by Electrostatic Spinning. Pharm. Res 2003, 20, 810–817.
  • Kanawung, K.; Panitchanapan, K.; Puangmalee, S.; Utok, W.; Kreua-Ongarjnukool, N.; Rangkupan, R.; Meechaisue, C.; Supaphol, P. Preparation and Characterization of Polycaprolactone/Diclofenac Sodium and Poly(Vinyl Alcohol)/Tetracycline Hydrochloride Fiber Mats and Their Release of the Model Drugs. Polym. J. 2007, 39, 369–378. DOI: 10.1295/polymj.PJ2006011.
  • Sadri, M.; Mohammadi, A.; Hosseini, H.; History, A. Drug Release Rate and Kinetic Investigation of Composite Polymeric Nanofibers. Nanomed. Res. J. 2016, 1, 112–121. DOI: 10.7508/nmrj.2016.02.008.
  • Kiaee, G.; Etaat, M.; Kiaee, B.; Kiaei, S.; Javar, H. A. Multilayered Controlled Released Topical Patch Containing Tetracycline for Wound Dressing. J. Silico Vitr. Pharmacol. 2016, 2, 1–7. DOI: 10.21767/2469-6692.10009.
  • Wang, Z.; Wu, Y.; Wang, J.; Zhang, C.; Yan, H.; Zhu, M.; Wang, K.; Li, C.; Xu, Q.; Kong, D. Effect of Resveratrol on Modulation of Endothelial Cells and Macrophages for Rapid Vascular Regeneration from Electrospun Poly(ε-Caprolactone) Scaffolds. ACS Appl. Mater. Interfaces 2017, 9, 19541–19551. DOI: 10.1021/acsami.6b16573.
  • Haroosh, H. J.; Dong, Y.; Lau, K.-T. Tetracycline Hydrochloride (TCH)-Loaded Drug Carrier Based on PLA:PCL Nanofibre Mats: Experimental Characterisation and Release Kinetics Modelling. J. Mater. Sci. 2014, 49, 6270–6281. DOI: 10.1007/s10853-014-8352-7.
  • Alavarse, A. C.; de Oliveira Silva, F. W.; Colque, J. T.; da Silva, V. M.; Prieto, T.; Venancio, E. C.; Bonvent, J.-J. Tetracycline Hydrochloride-Loaded Electrospun Nanofibers Mats Based on PVA and Chitosan for Wound Dressing. Mater. Sci. Eng. C 2017, 77, 271–281. DOI: 10.1016/j.msec.2017.03.199.
  • Taepaiboon, P.; Rungsardthong, U.; Supaphol, P. Drug-Loaded Electrospun Mats of Poly(Vinyl Alcohol) Fibres and Their Release Characteristics of Four Model Drugs. Nanotechnology 2006, 17, 2317–2329. DOI: 10.1088/0957-4484/17/9/041.
  • Taepaiboon, P.; Rungsardthong, U.; Supaphol, P. Effect of Cross-Linking on Properties and Release Characteristics of Sodium Salicylate-Loaded Electrospun Poly(Vinyl Alcohol) Fibre Mats. Nanotechnology 2007, 18, 175102. DOI: 10.1088/0957-4484/18/17/175102.
  • Akduman, Ç.; Kumbasar, E. P. A.; Özgüney, I. Development and Characterization of Naproxen-Loaded Poly(Vinyl Alcohol) Nanofibers Crosslinked with Polycarboxylic Acids. AATCC J. Res. 2018, 5, 29–38. DOI: 10.14504/ajr.5.1.4.
  • Xie, J.; Wang, C.-H. Electrospun Micro- and Nanofibers for Sustained Delivery of Paclitaxel to Treat C6 Glioma in Vitro. Pharm. Res. 2006, 23, 1817–1826. DOI: 10.1007/s11095-006-9036-z.
  • Sikareepaisan, P.; Suksamrarn, A.; Supaphol, P. Electrospun Gelatin Fiber Mats Containing a Herbal—Centella Asiatica —extract and Release Characteristic of Asiaticoside. Nanotechnology 2008, 19, 015102. DOI: 10.1088/0957-4484/19/01/015102.
  • Yu, D.-G.; Zhu, L.-M.; White, K.; Branford-White, C. Electrospun Nanofiber-Based Drug Delivery Systems. Health (Irvine. Calif) 2009, 1, 67–75. DOI: 10.4236/health.2009.12012.
  • Kenawy, E. R.; Bowlin, G. L.; Mansfield, K.; Layman, J.; Simpson, D. G.; Sanders, E. H.; Wnek, G. E. Release of Tetracycline Hydrochloride from Electrospun Poly(Ethylene-Co-Vinylacetate), Poly(Lactic Acid), and a Blend. J. Control. Release 2002, 81, 57–64. DOI: 10.1016/S0168-3659(02)00041-X.
  • Kim, K.; Luu, Y. K.; Chang, C.; Fang, D.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, M. Incorporation and Controlled Release of a Hydrophilic Antibiotic Using Poly(Lactide-Co-Glycolide)-Based Electrospun Nanofibrous Scaffolds. J. Control. Release 2004, 98, 47–56. DOI: 10.1016/j.jconrel.2004.04.009.
  • Zhang, Y. Z.; Wang, X.; Feng, Y.; Li, J.; Lim, C. T.; Ramakrishna, S. Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine Serum Albumin)-Encapsulated Poly(ε-Caprolactone) Nanofibers for Sustained Release. Biomacromolecules 2006, 7, 1049–1057. DOI: 10.1021/bm050743i.
  • Valmikinathan, C. M.; Defroda, S.; Yu, X. Polycaprolactone and Bovine Serum Albumin Based Nanofibers for Controlled Release of Nerve Growth Factor. Biomacromolecules 2009, 10, 1084–1089. DOI: 10.1021/bm8012499.
  • Wei, J.; Hu, J.; Li, M.; Chen, Y.; Chen, Y. Multiple Drug-Loaded Electrospun PLGA/Gelatin Composite Nanofibers Encapsulated with Mesoporous ZnO Nanospheres for Potential Postsurgical Cancer Treatment. RSC Adv. 2014, 4, 28011–28019. DOI: 10.1039/C4RA03722G.
  • Yao, J.; Zhang, S.; Li, W.; Du, Z.; Li, Y. In Vitro Drug Controlled-Release Behavior of an Electrospun Modified Poly(Lactic Acid)/Bacitracin Drug Delivery System. RSC Adv. 2016, 6, 515–521. DOI: 10.1039/C5RA22467E.
  • Luu, Y. K.; Kim, K.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, M. Development of a Nanostructured DNA Delivery Scaffold via Electrospinning of PLGA and PLA-PEG Block Copolymers. J. Control Release 2003, 89, 341–353.
  • Yang, D.; Ma, P.; Hou, Z.; Cheng, Z.; Li, C.; Lin, J. Current Advances in Lanthanide Ion (Ln3+) -Based Upconversion Nanomaterials for Drug Delivery. Chem. Soc. Rev. 2015, 44, 1416–1448. DOI: 10.1039/C4CS00155A.
  • Lee, J. E.; Lee, N.; Kim, T.; Kim, J.; Hyeon, T. Multifunctional Mesoporous Silica Nanocomposite Nanoparticles for Theranostic Applications. Acc. Chem. Res. 2011, 44, 893–902. DOI: 10.1021/ar2000259.
  • Zeng, J.; Yang, L.; Liang, Q.; Zhang, X.; Guan, H.; Xu, X.; Chen, X.; Jing, X. Influence of the Drug Compatibility with Polymer Solution on the Release Kinetics of Electrospun Fiber Formulation. J. Control. Release 2005, 105, 43–51. DOI: 10.1016/j.jconrel.2005.02.024.
  • Xu, X.; Yang, L.; Xu, X.; Wang, X.; Chen, X.; Liang, Q.; Zeng, J.; Jing, X. Ultrafine Medicated Fibers Electrospun from W/O Emulsions. J. Control. Release 2005, 108, 33–42. DOI: 10.1016/j.jconrel.2005.07.021.
  • Ranganath, S. H.; Wang, C.-H. Biodegradable Microfiber Implants Delivering Paclitaxel for Post-Surgical Chemotherapy against Malignant Glioma. Biomaterials 2008, 29, 2996–3003. DOI: 10.1016/j.biomaterials.2008.04.002.
  • Devalapally, H.; Chakilam, A.; Amiji, M. M. Role of Nanotechnology in Pharmaceutical Product Development. J. Pharm. Sci. 2007, 96, 2547–2565. DOI: 10.1002/jps.20875.
  • Thompson, C. H.; Zoratti, M. J.; Langhals, N. B.; Purcell, E. K. Regenerative Electrode Interfaces for Neural Prostheses. Tissue Eng. Part B Rev. 2016, 22, 125–135. DOI: 10.1089/ten.teb.2015.0279.
  • Londborg, G.; Dahlin, L.; Dohi, D.; Kanje, M.; Terada, N. A New Type of “Bioartificial” Nerve Graft for Bridging Extended Defects in Nerves. J. Hand Surg. Am. 1997, 22, 299–303. DOI: 10.1016/S0266-7681(97)80390-7.
  • Martin, P. Wound healing-aiming for perfect skin regeneration. Science 1997, 276, 75–81.
  • Winter, G. D. Formation of the Scab and the Rate of Epithelization of Superficial Wounds in the Skin of the Young Domestic Pig. Nature 1962, 193, 293–294. DOI: 10.1038/193293a0.
  • Steenfos, H. H. Growth Factors and Wound Healing. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1994, 28, 95–105. DOI: 10.3109/02844319409071186.
  • Eatemadi, A.; Daraee, H.; Zarghami, N.; Yar, H. M.; Akbarzadeh, A. Nanofiber: Synthesis and Biomedical Applications. Artif. Cells, Nanomedicine Biotechnol. 2016, 44, 111–121. DOI: 10.3109/21691401.2014.922568.
  • Wang, H.; Liu, Y.; Li, M.; Huang, H.; Xu, H. M.; Hong, R. J.; Shen, H. Multifunctional TiO2nanowires-Modified Nanoparticles Bilayer Film for 3D Dye-Sensitized Solar Cells. Optoelectron. Adv. Mater. Rapid Commun. 2010, 4, 1166–1169. DOI: 10.1039/b000000x.
  • Schneider, A.; Wang, X. Y.; Kaplan, D. L.; Garlick, J. A.; Egles, C. Biofunctionalized Electrospun Silk Mats as a Topical Bioactive Dressing for Accelerated Wound Healing. Acta Biomater. 2009, 5, 2570–2578. DOI: 10.1016/j.actbio.2008.12.013.
  • Rho, K. S.; Jeong, L.; Lee, G.; Seo, B. M.; Park, Y. J.; Hong, S. D.; Roh, S.; Cho, J. J.; Park, W. H.; Min, B. M. Electrospinning of Collagen Nanofibers: Effects on the Behavior of Normal Human Keratinocytes and Early-Stage Wound Healing. Biomaterials 2006, 27, 1452–1461. DOI: 10.1016/j.biomaterials.2005.08.004.
  • Spasova, M.; Paneva, D.; Manolova, N.; Radenkov, P.; Rashkov, I. Electrospun Chitosan-Coated Fibers of Poly(L-Lactide) and Poly(L-Lactide)/Poly(Ethylene Glycol): Preparation and Characterization. Macromol. Biosci. 2008, 8, 153–162. DOI: 10.1002/mabi.200700129.
  • Yuan, T. T.; Jenkins, P. M.; DiGeorge Foushee, A. M.; Jockheck-Clark, A. R.; Stahl, J. M. Electrospun Chitosan/Polyethylene Oxide Nanofibrous Scaffolds with Potential Antibacterial Wound Dressing Applications. J. Nanomater. 2016, 2016, 1–10. DOI: 10.1155/2016/6231040.
  • Heo, D. N.; Yang, D. H.; Lee, J. B.; Bae, M. S.; Kim, J. H.; Moon, S. H.; Chun, H. J.; Kim, C. H.; Lim, H.-N.; Kwon, I. K. Burn-Wound Healing Effect of Gelatin/Polyurethane Nanofiber Scaffold Containing Silver-Sulfadiazine. J. Biomed. Nanotechnol. 2013, 9, 511–515. DOI: 10.1166/jbn.2013.1509.
  • Verreck, G.; Chun, I.; Rosenblatt, J.; Peeters, J.; Dijck, A. V.; Mensch, J.; Noppe, M.; Brewster, M. E. Incorporation of Drugs in an Amorphous State into Electrospun Nanofibers Composed of a Water-Insoluble, Nonbiodegradable Polymer. J. Control. Release 2003, 92, 349–360. DOI: 10.1016/S0168-3659(03)00342-0.
  • Powell, H. M.; Supp, D. M.; Boyce, S. T. Influence of Electrospun Collagen on Wound Contraction of Engineered Skin Substitutes. Biomaterials 2008, 29, 834–843. DOI: 10.1016/j.biomaterials.2007.10.036.
  • Mostepaniuk, A. Corporate Governance. In: Corporate Governance and Strategic Decision Making, Okechukwu Lawrence; Emeagwali O. L., ed., IntechOpen, 2017. DOI: 10.5772/intechopen.69704.
  • Khurana, L.; Balasubramanian, K. Adsorption Potency of Imprinted Starch/PVA Polymers Confined Ionic Liquid with Molecular Simulation Framework. J. Environ. Chem. Eng. 2016, 4, 2147–2154. DOI: 10.1016/j.jece.2016.03.032.
  • Nimje, S. V.; Balasubramanian, K.; Manhas, N. High Performance Eco-Friendly Nanofillers from Palm Fibers 2015, Vol. 2.
  • Verma, V.; Balasubramanian, K. Experimental and Theoretical Investigations of Lantana Camara Oil Diffusion from Polyacrylonitrile Membrane for Pulsatile Drug Delivery System. Mater. Sci. Eng. C 2014, 41, 292–300. DOI: 10.1016/j.msec.2014.04.061.
  • Govindaraj, P.; Kandasubramanian, B.; Kodam, K. M. Molecular Interactions and Antimicrobial Activity of Curcumin (Curcuma Longa) Loaded Polyacrylonitrile Films. Mater. Chem. Phys. 2014, 147, 934–941. DOI: 10.1016/j.matchemphys.2014.06.040.
  • Yadav, R.; Balasubramanian, K. Bioabsorbable Engineered Nanobiomaterials for Antibacterial Therapy. In Engineering of Nanobiomaterials: Applications of Nanobiomaterials 2016, pp 77–117. DOI: 10.1016/B978-0-323-41532-3.00003-8.
  • RamdayalBalasubramanian, K. Antibacterial Application of Polyvinylalcohol-Nanogold Composite Membranes. Colloids Surf. A Physicochem. Eng. Asp. 2014, 455, 174–178. DOI: 10.1016/j.colsurfa.2014.04.050.
  • Yadav, R.; Kandasubramanian, B. Egg Albumin PVA Hybrid Membranes for Antibacterial Application. Mater. Lett. 2013, 110, 130–133. DOI: 10.1016/j.matlet.2013.07.109.
  • Choi, J. S.; Kim, H. S.; Yoo, H. S. Electrospinning Strategies of Drug-Incorporated Nanofibrous Mats for Wound Recovery. Drug Deliv. Transl. Res. 2015, 5, 137–145. DOI: 10.1007/s13346-013-0148-9.
  • Lee, K. Y.; Jeong, L.; Kang, Y. O.; Lee, S. J.; Park, W. H. Electrospinning of Polysaccharides for Regenerative Medicine. Adv. Drug Del. Rev. 2009, 61, 1020–1032. DOI: 10.1016/j.addr.2009.07.006.
  • Mitchell, G. R.; Davis, F. Electrospinning and Tissue Engineering. Comp. Methods Appl. Sci. 2011, 20, 111–136. DOI: 10.1007/978-94-007-1254-6_7.
  • Wendorff, J. H.; Agarwal, S.; Greiner, A. Medicinal Applications for Electrospun Nanofibers. Electrospinning; Wiley, VCH, Verlag GmbH & Co. KGaA, 2012, pp 217–236. DOI: 10.1002/9783527647705.ch9.
  • Jin, G.; Prabhakaran, M. P.; Kai, D.; Annamalai, S. K.; Arunachalam, K. D.; Ramakrishna, S. Tissue Engineered Plant Extracts as Nanofibrous Wound Dressing. Biomaterials 2013, 34, 724–734. DOI: 10.1016/j.biomaterials.2012.10.026.
  • Liu, S. J.; Kau, Y. C.; Chou, C. Y.; Chen, J. K.; Wu, R. C.; Yeh, W. L. Electrospun PLGA/Collagen Nanofibrous Membrane as Early-Stage Wound Dressing. J. Memb. Sci. 2010, 355, 53–59. DOI: 10.1016/j.memsci.2010.03.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.