4,141
Views
161
CrossRef citations to date
0
Altmetric
Articles

Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-20 | Received 10 Dec 2018, Accepted 09 Feb 2019, Published online: 05 Mar 2019

References

  • Cho, H.; Jammalamadaka, U.; Tappa, K. Nanogels for Pharmaceutical and Biomedical Applications and Their Fabrication Using 3D Printing Technologies. Materials. 2018, 11, 302. DOI: 10.3390/ma11020302.
  • González-Henríquez, C.; Sarabia-Vallejos, M.; Rodriguez-Hernandez, J. Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications. Materials. 2017, 10, 232. DOI: 10.3390/ma10030232.
  • Deligkaris, K.; Tadele, T. S.; Olthuis, W.; van den Berg, A. Hydrogel-based Devices for Biomedical Applications. Sens. Actuators, B 2010, 147, 765–774. DOI: 10.1016/j.snb.2010.03.083.
  • Hoffman, A. S. Hydrogels for Biomedical Applications. Adv. Drug Delivery Rev. 2002, 54, 3–12. DOI: 10.1016/S0169-409X(01)00239-3.
  • Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based Hydrogels for Controlled, Localized Drug Delivery. Adv. Drug Delivery Rev. 2010, 62, 83–99. DOI: 10.1016/j.addr.2009.07.019.
  • Varaprasad, K.; Raghavendra, G. M.; Jayaramudu, T.; Yallapu, M. M.; Sadiku, R. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Mater. Sci. Eng. C. 2017, 79, 958–971. DOI: 10.1016/j.msec.2017.05.096.
  • Kumar, A.; Han, S. S. PVA-based Hydrogels for Tissue Engineering: A Review. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 159–182. DOI: 10.1080/00914037.2016.1190930.
  • Ullah, F.; Othman, M. B. H.; Javed, F.; Ahmad, Z.; Akil, H. M. Classification, Processing and Application of Hydrogels: A Review. Mater. Sci. Eng. C. 2015, 57, 414–433. DOI: 10.1016/j.msec.2015.07.053.
  • Peppas, N. A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in Pharmaceutical Formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. DOI: 10.1016/S0939-6411(00)00090-4.
  • Drury, J. L.; Mooney, D. J. Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications. Biomaterials 2003, 24, 4337–4351. DOI: 10.1016/S0142-9612(03)00340-5.
  • Hoare, T. R.; Kohane, D. S. Hydrogels in Drug Delivery: Progress and Challenges. Polymer. 2008, 49, 1993–2007. DOI: 10.1016/j.polymer.2008.01.027.
  • Kamoun, E. A.; Kenawy, E.-R. S.; Chen, X. A Review on Polymeric Hydrogel Membranes for Wound Dressing Applications: PVA-based Hydrogel Dressings. J. Adv. Res. 2017, 8, 217–233. DOI: 10.1016/j.jare.2017.01.005.
  • Langer, R.; Vacanti, J. Tissue Engineering. Science 1993, 260, 920–926. DOI: 10.1126/science.8493529.
  • Janmohammadi, M.; Nourbakhsh, M. S. Electrospun Polycaprolactone Scaffolds for Tissue Engineering: a Review. Int. J. Polym. Mater. Polym. Biomater. 2018, 1–13. DOI: 10.1080/00914037.2018.1466139.
  • Kouser, R.; Vashist, A.; Zafaryab, M.; Rizvi, M. A.; Ahmad, S. Biocompatible and Mechanically Robust Nanocomposite Hydrogels for Potential Applications in Tissue Engineering. Mater. Sci. Eng. C. 2018, 84, 168–179. DOI: 10.1016/j.msec.2017.11.018.
  • Urbanek, O.; Kołbuk, D.; Wróbel, M. Articular Cartilage: New Directions and Barriers of Scaffolds Development – Review. Int. J. Polym. Mater. Polym. Biomater. 2018, 1–15. DOI: 10.1080/00914037.2018.1452224.
  • Shirani, K.; Nourbakhsh, M. S.; Rafienia, M. Electrospun Polycaprolactone/gelatin/bioactive Glass Nanoscaffold for Bone Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater. 2018, 1–9. DOI: 10.1080/00914037.2018.1482461.
  • Howard, D.; Buttery, L. D.; Shakesheff, K. M.; Roberts, S. J. Tissue Engineering: Strategies, Stem Cells and Scaffolds. J. Anat. 2008, 213, 66–72. DOI: 10.1111/j.1469-7580.2008.00878.x.
  • El-Sherbiny, I. M.; Yacoub, M. H. Hydrogel Scaffolds for Tissue Engineering: Progress and Challenges. Glob. Cardiol. Sci. Pract. 2013, 2013, 38. DOI: 10.5339/gcsp.2013.38.
  • Garnica-Palafox, I. M.; Sánchez-Arévalo, F. M.; Velasquillo, C.; García-Carvajal, Z. Y.; García-López, J.; Ortega-Sánchez, C.; Ibarra, C.; Luna-Bárcenas, G.; Solís-Arrieta, L. Mechanical and Structural Response of a Hybrid Hydrogel Based on Chitosan and Poly(vinyl Alcohol) cross-linked with Epichlorohydrin for Potential Use in Tissue Engineering. J. Biomater. Sci., Polym. Ed. 2014, 25, 32–50. DOI: 10.1080/09205063.2013.833441.
  • Nieto-Suárez, M.; López-Quintela, M. A.; Lazzari, M. Preparation and Characterization of Crosslinked Chitosan/gelatin Scaffolds by Ice Segregation Induced Self-Assembly. Carbohydr. Polym. 2016, 141, 175–183. DOI: 10.1016/j.carbpol.2015.12.064.
  • Li, J.; Mooney, D. J. Designing Hydrogels for Controlled Drug Delivery. Nat. Rev. Mater. 2016, 1, 16071. DOI: 10.1038/natrevmats.2016.71.
  • Zhang, Q.; Lu, H.; Kawazoe, N.; Chen, G. Pore Size Effect of Collagen Scaffolds on Cartilage Regeneration. Acta Biomaterialia. 2014, 10, 2005–2013. DOI: 10.1016/j.actbio.2013.12.042.
  • Rodríguez-Vázquez, M.; Vega-Ruiz, B.; Ramos-Zúñiga, R.; Saldaña-Koppel, D. A.; Quiñones-Olvera, L. F. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine. BioMed Res. Int. 2015, 2015, 1–15, DOI: 10.1155/2015/821279.
  • Shen, X.; Shamshina, J. L.; Berton, P.; Gurau, G.; Rogers, R. D. Hydrogels Based on Cellulose and Chitin: Fabrication, Properties, and Applications. Green Chem. 2016, 18, 53–75. DOI: 10.1039/C5GC02396C.
  • Cyster, L. A.; Grant, D. M.; Howdle, S. M.; Rose, F. R. A. J.; Irvine, D. J.; Freeman, D.; Scotchford, C. A.; Shakesheff, K. M. The Influence of Dispersant Concentration on the Pore Morphology of Hydroxyapatite Ceramics for Bone Tissue Engineering. Biomaterials. 2005, 26, 697–702. DOI: 10.1016/j.biomaterials.2004.03.017.
  • Agrawal, P.; Pramanik, K. Chitosan-poly(vinyl Alcohol) Nanofibers by Free Surface Electrospinning for Tissue Engineering Applications. Tissue Eng. Regen. Med. 2016, 13, 485–497. DOI: 10.1007/s13770-016-9092-3.
  • Levett, P. A.; Hutmacher, D. W.; Malda, J.; Klein, T. J. Hyaluronic Acid Enhances the Mechanical Properties of Tissue-Engineered Cartilage Constructs. PLoS One. 2014, 9, 113216. DOI: 10.1371/journal.pone.0113216.
  • Zhao, H.; Liang, W. A Novel Comby Scaffold with Improved Mechanical Strength for Bone Tissue Engineering. Mater. Lett. 2017, 194, 220–223. DOI: 10.1016/j.matlet.2017.02.059.
  • Qasim, S. B.; Husain, S.; Huang, Y.; Pogorielov, M.; Deineka, V.; Lyndin, M.; Rawlinson, A.; Rehman, I. U. In-vitro and in-vivo Degradation Studies of Freeze Gelated Porous Chitosan Composite Scaffolds for Tissue Engineering Applications. Polym. Degrad. Stab. 2017, 136, 31–38. DOI: 10.1016/j.polymdegradstab.2016.11.018.
  • Sharpe, L. A.; Daily, A. M.; Horava, S. D.; Peppas, N. A. Therapeutic Applications of Hydrogels in Oral Drug Delivery. Expert Opin. Drug Delivery. 2014, 11, 901–915. DOI: 10.1517/17425247.2014.902047.
  • Sun, J.; Tan, H. Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials 2013, 6, 1285. DOI: 10.3390/ma6041285.
  • Siegel, R. A.; Rathbone, M. J. Overview of Controlled Release Mechanisms; Springer US: Boston, MA, 2012, pp. 19–43.
  • Omidian, H.; Park, K. Swelling Agents and Devices in Oral Drug Delivery. J. Drug Delivery Sci. Technol. 2008, 18, 83–93. DOI: 10.1016/S1773-2247(08)50016-5.
  • Gupta, AKumar.; Siddiqui, AWadood.; Datta, MSheo.; Ramchand, D. Interpenetrating Polymeric Network Hydrogel for Stomach-specific Drug Delivery of Clarithromycin: Preparation and Evaluation. Asian J. Pharm. 2010, 4, 179–184. DOI: 10.4103/0973-8398.76738.
  • Lopes, C. M.; Bettencourt, C.; Rossi, A.; Buttini, F.; Barata, P. Overview on Gastroretentive Drug Delivery Systems for Improving Drug Bioavailability. Int. J. Pharm. 2016, 510, 144–158. DOI: 10.1016/j.ijpharm.2016.05.016.
  • Gianino, E.; Miller, C.; Gilmore, J. Smart Wound Dressings for Diabetic Chronic Wounds. Bioengineering. 2018, 5, 51. DOI: 10.3390/bioengineering5030051.
  • Caló, E.; Khutoryanskiy, V. V. Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products. Eur. Polym. J. 2015, 65, 252–267. DOI: 10.1016/j.eurpolymj.2014.11.024.
  • Fletes-Vargas, G.; León-Mancilla, B.; Esquivel-Solís, H. Advances in the Management of Skin Wounds with Synthetic Dressings. Clin Med Rev Case Rep. 2016, 3, 1–6. DOI: 10.23937/2378-3656/1410131.
  • Dang, L. H.; Nguyen, T. H.; Tran, H. L. B.; Doan, V. N.; Tran, N. Q. Injectable Nanocurcumin-Formulated Chitosan-g-Pluronic Hydrogel Exhibiting a Great Potential for Burn Treatment. J. Healthc. Eng. 2018, 2018, 1. DOI: 10.1155/2018/5754890.
  • Straccia, M.; Ayala, G.; Romano, I.; Oliva, A.; Laurienzo, P. Alginate Hydrogels Coated with Chitosan for Wound Dressing. Mar. Drugs. 2015, 13, 2890. DOI: 10.3390/md13052890.
  • Mozalewska, W.; Czechowska-Biskup, R.; Olejnik, A. K.; Wach, R. A.; Ulański, P.; Rosiak, J. M. Chitosan-containing Hydrogel Wound Dressings Prepared by Radiation Technique. Radiat. Phys. Chem. 2017, 134, 1–7. DOI: 10.1016/j.radphyschem.2017.01.003.
  • Gelli, R.; Del Buffa, S.; Tempesti, P.; Bonini, M.; Ridi, F.; Baglioni, P. Multi-scale Investigation of Gelatin/poly(vinyl Alcohol) interactions in Water. Colloids Surf., A. 2017, 532, 18–25. DOI: 10.1016/j.colsurfa.2017.07.049.
  • Wu, T.; Li, Y.; Lee, D. S. Chitosan-based Composite Hydrogels for Biomedical Applications. Macromol. Res. 2017, 25, 480–488. DOI: 10.1007/s13233-017-5066-0.
  • Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D. S. Polymeric Scaffolds in Tissue Engineering Application: A Review. Int. J. Polym. Sci. 2011, 2011, 1–19. DOI: 10.1155/2011/290602.
  • Bhatia, S. Natural Polymers vs Synthetic Polymer; Springer: Tokyo, Japan, 2016.
  • Kobayashi, M.; Hyu, H. S. Development and Evaluation of Polyvinyl Alcohol-Hydrogels as An Artificial Atrticular Cartilage for Orthopedic Implants. Materials 2010, 3, 2753. DOI: 10.3390/ma3042753.
  • Liu, Y.; An, M.; Wang, L.; Qiu, H. Preparation and Characterization of Chitosan-Gelatin/Glutaraldehyde Scaffolds. J. Macromol. Sci., Part B: Phys. 2014, 53, 309–325. DOI: 10.1080/00222348.2013.837290.
  • Racine, L.; Texier, I.; Auzély-Velty, R. Chitosan-based Hydrogels: recent Design Concepts to Tailor Properties and Functions. Polym. Int. 2017, 66, 981–998. DOI: 10.1002/pi.5331.
  • Peng, Z.; Peng, Z.; Shen, Y. Fabrication and Properties of Gelatin/Chitosan Composite Hydrogel. Polym.-Plast. Technol. Eng. 2011, 50, 1160–1164. DOI: 10.1080/03602559.2011.574670.
  • Jana, S.; Florczyk, S. J.; Leung, M.; Zhang, M. High-strength Pristine Porous Chitosan Scaffolds for Tissue Engineering. J. Mater. Chem. 2012, 22, 6291–6299. DOI: 10.1039/c2jm16676c.
  • Shen, Z.-S.; Cui, X.; Hou, R.-X.; Li, Q.; Deng, H.-X.; Fu, J. Tough Biodegradable Chitosan–gelatin Hydrogels via in Situ Precipitation for Potential Cartilage Tissue Engineering. RSC Adv. 2015, 5, 55640–55647. DOI: 10.1039/C5RA06835E.
  • Kanimozhi, K.; Khaleel Basha, S.; Sugantha Kumari, V. Processing and Characterization of Chitosan/PVA and Methylcellulose Porous Scaffolds for Tissue Engineering. Mater. Sci. Eng. C. 2016, 61, 484–491. DOI: 10.1016/j.msec.2015.12.084.
  • Miao, T.; Miller, E. J.; McKenzie, C.; Oldinski, R. A. Physically Crosslinked Polyvinyl Alcohol and Gelatin Interpenetrating Polymer Network Theta-gels for Cartilage Regeneration. J. Mater. Chem. B. 2015, 3, 9242–9249. DOI: 10.1039/C5TB00989H.
  • Hago, E.-E.; Li, X. Interpenetrating Polymer Network Hydrogels Based on Gelatin and PVA by Biocompatible Approaches: Synthesis and Characterization. Adv. Mater. Sci. Eng. 2013, 2013, 1–8, DOI: 10.1155/2013/328763.
  • Slaughter, B. V.; Khurshid, S. S.; Fisher, O. Z.; Khademhosseini, A.; Peppas, N. A. Hydrogels in Regenerative Medicine. Adv. Mater. 2009, 21, 3307–3329. DOI: 10.1002/adma.200802106.
  • Nie, J.; Wang, Z.; Hu, Q. Difference between Chitosan Hydrogels via Alkaline and Acidic Solvent Systems. Sci. Rep. 2016, 6, 36053. DOI: 10.1038/srep36053.
  • Buenger, D.; Topuz, F.; Groll, J. Hydrogels in Sensing Applications. Prog. Polym. Sci. 2012, 37, 1678–1719. DOI: 10.1016/j.progpolymsci.2012.09.001.
  • Nicodemus, G. D.; Bryant, S. J. Cell Encapsulation in Biodegradable Hydrogels for Tissue Engineering Applications. Tissue Eng. Part B. 2008, 14, 149–165. DOI: 10.1089/ten.teb.2007.0332.
  • Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017, 3, 6. DOI: 10.3390/gels3010006.
  • Sen, M.; Yakar, A.; Güven, O. Determination of Average Molecular Weight between Cross-links (Mc) from Swelling Behaviours of Diprotic Acid-containing Hydrogels. Polymer 1999, 40, 2969–2974. DOI: 10.1016/S0032-3861(98)00251-1.
  • Lv, Y.; Lin, Y.; Chen, F.; Li, F.; Shangguan, Y.; Zheng, Q. Chain Entanglement and Molecular Dynamics of Solution-cast PMMA/SMA Blend Films Affected by Hydrogen Bonding between Casting Solvents and Polymer Chains. RSC Adv. 2015, 5, 44800–44811. DOI: 10.1039/C5RA06663H.
  • Qian, R. The Concept of Cohesional Entanglement. Macromol. Symp. 1997, 124, 15–26. DOI: 10.1002/masy.19971240105.
  • Liu, L.; Tang, X.; Wang, Y.; Guo, S. Smart Gelation of Chitosan Solution in the Presence of NaHCO3 for Injectable Drug Delivery System. Int. J. Pharm. 2011, 414, 6–15. DOI: 10.1016/j.ijpharm.2011.04.052.
  • Montembault, A.; Viton, C.; Domard, A. Rheometric Study of the Gelation of Chitosan in Aqueous Solution without Cross-Linking Agent. Biomacromolecules. 2005, 6, 653–662. DOI: 10.1021/bm049593m.
  • Fiamingo, A.; Montembault, A.; Boitard, S.-E.; Naemetalla, H.; Agbulut, O.; Delair, T.; Campana-Filho, S. P.; Menasché, P.; David, L. Chitosan Hydrogels for the Regeneration of Infarcted Myocardium: Preparation, Physicochemical Characterization, and Biological Evaluation. Biomacromolecules. 2016, 17, 1662–1672. DOI: 10.1021/acs.biomac.6b00075.
  • Lu, H.; Wang, W.; Wang, A. Ethanol–NaOH Solidification Method to Intensify Chitosan/poly(vinyl Alcohol)/Attapulgite Composite Film. RSC Adv. 2015, 5, 17775–17781. DOI: 10.1039/C4RA09835H.
  • Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Peppas, N. A.; Gurny, R. Structure and Interactions in Covalently and Ionically Crosslinked Chitosan Hydrogels for Biomedical Applications. Eur. J. Pharm. Biopharm. 2004, 57, 19–34. DOI: 10.1016/S0939-6411(03)00161-9.
  • Sadeghi, F.; Fayazi, A. Analysis of Crystalline Structure of Sodium Tripolyphosphate: Effect of pH of Solution and Calcination Conditions. Ind. Eng. Chem. Res. 2012, 51, 1093–1098. DOI: 10.1021/ie202064e.
  • Galante, R.; Rediguieri, C. F.; Kikuchi, I. S.; Vasquez, P. A. S.; Colaço, R.; Serro, A. P.; Pinto, T. J. A. About the Sterilization of Chitosan Hydrogel Nanoparticles. PLoS One. 2016, 11, e0168862. DOI: 10.1371/journal.pone.0168862.
  • Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel Nanoparticles in Drug Delivery. Adv. Drug Delivery Rev. 2008, 60, 1638–1649. DOI: 10.1016/j.addr.2008.08.002.
  • Ko, J. A.; Park, H. J.; Hwang, S. J.; Park, J. B.; Lee, J. S. Preparation and Characterization of Chitosan Microparticles Intended for Controlled Drug Delivery. Int. J. Pharm. 2002, 249, 165–174. DOI: 10.1016/S0378-5173(02)00487-8.
  • Huang, C.-L.; Chen, Y.-B.; Lo, Y.-L.; Lin, Y.-H. Development of Chitosan/β-glycerophosphate/glycerol Hydrogel as a Thermosensitive Coupling Agent. Carbohydr. Polym. 2016, 147, 409–414. DOI: 10.1016/j.carbpol.2016.04.028.
  • Zhou, H. Y.; Jiang, L. J.; Cao, P. P.; Li, J. B.; Chen, X. G. Glycerophosphate-based Chitosan Thermosensitive Hydrogels and Their Biomedical Applications. Carbohydr. Polym 2015, 117, 524–536. DOI: 10.1016/j.carbpol.2014.09.094.
  • Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M. D.; Hoemann, C. D.; Leroux, J. C.; Atkinson, B. L.; Binette, F.; Selmani, A. Novel Injectable Neutral Solutions of Chitosan Form Biodegradable Gels in Situ. Biomaterials 2000, 21, 2155–2161. DOI: 10.1016/S0142-9612(00)00116-2.
  • Cho, J.; Heuzey, M.-C.; Bégin, A.; Carreau, P. J. Physical Gelation of Chitosan in the Presence of β-Glycerophosphate: The Effect of Temperature. Biomacromolecules 2005, 6, 3267–3275. DOI: 10.1021/bm050313s.
  • Kamoun, E. A.; Chen, X.; Mohy Eldin, M. S.; Kenawy, E.-R. S. Crosslinked Poly(vinyl Alcohol) hydrogels for Wound Dressing Applications: A Review of Remarkably Blended Polymers. Arabian J. Chem. 2015, 8, 1–14. DOI: 10.1016/j.arabjc.2014.07.005.
  • Holloway, J. L.; Spiller, K. L.; Lowman, A. M.; Palmese, G. R. Analysis of the in Vitro Swelling Behavior of Poly(vinyl Alcohol) hydrogels in Osmotic Pressure Solution for Soft Tissue Replacement. Acta Biomater. 2011, 7, 2477–2482. DOI: 10.1016/j.actbio.2011.02.016.
  • Stauffer, S. R.; Peppast, N. A. Poly(vinyl Alcohol) hydrogels Prepared by Freezing-thawing Cyclic Processing. Polymer 1992, 33, 3932–3936. DOI: 10.1016/0032-3861(92)90385-A.
  • Chen, Y.-N.; Peng, L.; Liu, T.; Wang, Y.; Shi, S.; Wang, H. Poly(vinyl Alcohol)–Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors. ACS Appl. Mater. Interfaces. 2016, 8, 27199–27206. DOI: 10.1021/acsami.6b08374.
  • Khan, S.; Ullah, A.; Ullah, K.; Rehman, N-u. Insight into Hydrogels. Des. Monomers Polym. 2016, 19, 456–478. DOI: 10.1080/15685551.2016.1169380.
  • Hennink, W. E.; van Nostrum, C. F. Novel Crosslinking Methods to Design Hydrogels. Adv. Drug Delivery Rev. 2002, 54, 13–36. DOI: 10.1016/S0169-409X(01)00240-X.
  • Akhtar, M. F.; Hanif, M.; Ranjha, N. M. Methods of Synthesis of Hydrogels … A Review. Saudi Pharm. J. 2016, 24, 554–559. DOI: 10.1016/j.jsps.2015.03.022.
  • Baldino, L.; Concilio, S.; Cardea, S.; De Marco, I.; Reverchon, E. Complete Glutaraldehyde Elimination during Chitosan Hydrogel Drying by SC-CO2 Processing. J. Supercrit. Fluids. 2015, 103, 70–76. DOI: 10.1016/j.supflu.2015.04.020.
  • Crini, G. Recent Developments in Polysaccharide-based Materials Used as Adsorbents in Wastewater Treatment. Prog. Polym. Sci. 2005, 30, 38–70. DOI: 10.1016/j.progpolymsci.2004.11.002.
  • Koivurinta, J.; Hämäläinen, E.-R.; Kellomäki, M. The Effect of Cross-Linking Time on a Porous Freeze-Dried Collagen Scaffold Using 1-Ethyl-3-(3-Dimethylaminopropyl)Carbodiimide as a Cross-Linker. J. Appl. Biomater. Biomech. 2008, 6, 89–94. DOI: 10.1177/228080000800600204.
  • Copello, G. J.; Villanueva, M. E.; González, J. A., López Egües S. and Diaz, L. E. TEOS as an Improved Alternative for Chitosan Beads Cross-linking: A Comparative Adsorption Study. J. Appl. Polym. Sci. 2014, 131, 1–8. DOI: 10.1002/app.41005.
  • Yang, G.; Xiao, Z.; Long, H.; Ma, K.; Zhang, J.; Ren, X.; Zhang, J. Assessment of the Characteristics and Biocompatibility of Gelatin Sponge Scaffolds Prepared by Various Crosslinking Methods. Sci. Rep. 2018, 8, 1616. DOI: 10.1038/s41598-018-20006-y.
  • Xu, J. B.; Bartley, J. P.; Johnson, R. A. Preparation and Characterization of Alginate–carrageenan Hydrogel Films Crosslinked Using a Water-soluble Carbodiimide (WSC). J. Membr. Sci. 2003, 218, 131–146. DOI: 10.1016/S0376-7388(03)00165-0.
  • Park, S.-N.; Park, J.-C.; Kim, H. O.; Song, M. J.; Suh, H. Characterization of Porous Collagen/hyaluronic Acid Scaffold Modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Cross-Linking. Biomaterials 2002, 23, 1205–1212. DOI: 10.1016/S0142-9612(01)00235-6.
  • Budnyak, T. M.; Pylypchuk, I. V.; Tertykh, V. A.; Yanovska, E. S.; Kolodynska, D. Synthesis and Adsorption Properties of Chitosan-silica Nanocomposite Prepared by Sol-gel Method. Nanoscale Res. Lett. 2015, 10, 87. DOI: 10.1186/s11671-014-0722-1.
  • Ryan, C. C.; Delezuk, J. A. M.; Pavinatto, A.; Oliveira, O. N.; Fudouzi, H.; Pemble, M. E.; Bardosova, M. Silica-based Photonic Crystals Embedded in a chitosan-TEOS Matrix: preparation, properties and Proposed Applications. J. Mater. Sci. 2016, 51, 5388–5396. DOI: 10.1007/s10853-016-9841-7.
  • Mohd Amin, M. C. I.; Ahmad, N.; Halib, N.; Ahmad, I. Synthesis and Characterization of Thermo- and pH-responsive Bacterial Cellulose/acrylic Acid Hydrogels for Drug Delivery. Carbohydr. Polym. 2012, 88, 465–473. DOI: 10.1016/j.carbpol.2011.12.022.
  • Hennink, W. E.; van Nostrum, C. F. Novel Crosslinking Methods to Design Hydrogels. Adv. Drug Delivery Rev. 2012, 64, 223–236. DOI: 10.1016/j.addr.2012.09.009.
  • Jayakumar, R.; Prabaharan, M.; Sudheesh Kumar, P. T.; Nair, S. V.; Tamura, H. Biomaterials Based on Chitin and Chitosan in Wound Dressing Applications. Biotechnol. Adv. 2011, 29, 322–337. DOI: 10.1016/j.biotechadv.2011.01.005.
  • Rodríguez-Rodríguez, R.; García-Carvajal, Z.; Jiménez-Palomar, I.; Jiménez-Avalos, J.; Espinosa-Andrews, H. Development of Gelatin/chitosan/PVA Hydrogels: Thermal Stability, water State, viscoelasticity, and Cytotoxicity Assays. J. Appl. Polym. Sci. 2018, 136, 47149. DOI: 10.1002/app.47149.
  • Rodríguez-Rodríguez, R.; Espinosa-Andrews, H.; Morales-Hernández, N.; Lobato-Calleros, C.; Vernon-Carter, E. J. Mesquite Gum/chitosan Insoluble Complexes: Relationship Between the Water State and Viscoelastic Properties. J. Dispersion Sci. Technol. 2018, 1–8. DOI: 10.1080/01932691.2018.1513848.
  • Harish Prashanth, K. V.; Kittur, F. S.; Tharanathan, R. N. Solid State Structure of Chitosan Prepared under Different N-deacetylating Conditions. Carbohydr. Polym. 2002, 50, 27–33. DOI: 10.1016/S0144-8617(01)00371-X.
  • Ravi Kumar, M. N. V. A Review of Chitin and Chitosan Applications. React. Funct. Polym. 2000, 46, 27, DOI: 10.1016/S1381-5148(00)00038-9.
  • Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S. V.; Tamura, H. Biomedical Applications of Chitin and Chitosan Based Nanomaterials—A Short Review. Carbohydr. Polym. 2010, 82, 227–232. DOI: 10.1016/j.carbpol.2010.04.074.
  • Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. DOI: 10.1016/j.progpolymsci.2006.06.001.
  • Anitha, A.; Sowmya, S.; Kumar, P. T. S.; Deepthi, S.; Chennazhi, K. P.; Ehrlich, H.; Tsurkan, M.; Jayakumar, R. Chitin and Chitosan in Selected Biomedical Applications. Prog. Polym. Sci. 2014, 39, 1644–1667. DOI: 10.1016/j.progpolymsci.2014.02.008.
  • Farzinfar, E.; Paydayesh, A. Investigation of Polyvinyl Alcohol Nanocomposite Hydrogels Containing Chitosan Nanoparticles as Wound Dressing. Int. J. Polym. Mater. Polym. Biomater. 2018, 1–11. DOI: 10.1080/00914037.2018.1482463.
  • Shemshad, S.; Kamali, S.; Khavandi, A.; Azari, S. Synthesis, characterization and in-vitro Behavior of Natural Chitosan-hydroxyapatite-diopside Nanocomposite Scaffold for Bone Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater. 2018, 1–10. DOI: 10.1080/00914037.2018.1466138.
  • Ikeda, T.; Ikeda, K.; Yamamoto, K.; Ishizaki, H.; Yoshizawa, Y.; Yanagiguchi, K.; Yamada, S.; Hayashi, Y. Fabrication and Characteristics of Chitosan Sponge as a Tissue Engineering Scaffold. BioMed Res. Int. 2014, 2014, 1–8. DOI: 10.1155/2014/786892.
  • Mirzaei B, E.; Ramazani, S. A., A.; Shafiee, M.; Danaei, M. Studies on Glutaraldehyde Crosslinked Chitosan Hydrogel Properties for Drug Delivery Systems. Int. J. Polymeric Mater Polymeric Biomater. 2013, 62, 605–611. DOI: 10.1080/00914037.2013.769165.
  • Dash, M.; Chiellini, F.; Ottenbrite, R. M.; Chiellini, E. Chitosan—A Versatile Semi-synthetic Polymer in Biomedical Applications. Prog. Polym. Sci 2011, 36, 981–1014. DOI: 10.1016/j.progpolymsci.2011.02.001.
  • Croisier, F.; Jérôme, C. Chitosan-based Biomaterials for Tissue Engineering. Eur. Polym. J. 2013, 49, 780–792. DOI: 10.1016/j.eurpolymj.2012.12.009.
  • Nwe, N.; Furuike, T.; Tamura, H. The Mechanical and Biological Properties of Chitosan Scaffolds for Tissue Regeneration Templates Are Significantly Enhanced by Chitosan from Gongronella Butleri. Materials. 2009, 2, 374. DOI: 10.3390/ma2020374.
  • He, Q.; Ao, Q.; Gong, Y.; Zhang, X. Preparation of Chitosan Films Using Different Neutralizing Solutions to Improve Endothelial Cell Compatibility. J. Mater. Sci: Mater. Med. 2011, 22, 2791–2802. DOI: 10.1007/s10856-011-4444-y.
  • Moura, M. J.; Faneca, H.; Lima, M. P.; Gil, M. H.; Figueiredo, M. M. In Situ Forming Chitosan Hydrogels Prepared via Ionic/Covalent Co-Cross-Linking. Biomacromolecules. 2011, 12, 3275–3284. DOI: 10.1021/bm200731x.
  • Izzo, D.; Palazzo, B.; Scalera, F.; Gullotta, F.; Lapesa, V.; Scialla, S.; Sannino, A.; Gervaso, F. Chitosan Scaffolds for Cartilage Regeneration: influence of Different Ionic Crosslinkers on Biomaterial Properties. Int. J. Polym. Mater. Polym. Biomater. 2018, 1–10. DOI: 10.1080/00914037.2018.1525538.
  • Díaz-Calderón, P.; Caballero, L.; Melo, F.; Enrione, J. Molecular Configuration of Gelatin–water Suspensions at Low Concentration. Food Hydrocolloids. 2014, 39, 171–179. DOI: 10.1016/j.foodhyd.2013.12.019.
  • Xing, Q.; Yates, K.; Vogt, C.; Qian, Z.; Frost, M. C.; Zhao, F. Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal. Sci. Rep. 2014, 4, 1–10. DOI: 10.1038/srep04706.
  • Massoumi, H.; Nourmohammadi, J.; Marvi, M. S.; Moztarzadeh, F. Comparative Study of the Properties of Sericin-gelatin Nanofibrous Wound Dressing Containing Halloysite Nanotubes Loaded with Zinc and Copper Ions. Int. J. Polym. Mater. Polym. Biomater. 2018, 1–12. DOI: 10.1080/00914037.2018.1534115.
  • Wang, X.; Ao, Q.; Tian, X.; Fan, J.; Tong, H.; Hou, W.; Bai, S. Gelatin-Based Hydrogels for Organ 3D Bioprinting. Polymers 2017, 9, 401. DOI: 10.3390/polym9090401.
  • Duconseille, A.; Astruc, T.; Quintana, N.; Meersman, F.; Sante-Lhoutellier, V. Gelatin Structure and Composition Linked to Hard Capsule Dissolution: A Review. Food Hydrocolloids. 2015, 43, 360–376. DOI: 10.1016/j.foodhyd.2014.06.006.
  • Gornall, J., L, Terentjev., E, M. Concentration-Temperature Superposition of Helix Folding Rates in Gelatin. Phys. Rev. Lett. 2007, 99, 028304. DOI: 10.1103/PhysRevLett.99.028304.
  • Rose, J.; Pacelli, S.; Haj, A.; Dua, H.; Hopkinson, A.; White, L.; Rose, F. Gelatin-Based Materials in Ocular Tissue Engineering. Materials. 2014, 7, 3106. DOI: 10.3390/ma7043106.
  • Dias, J. R.; Baptista-Silva, S.; Oliveira, C. M. T. d.; Sousa, A.; Oliveira, A. L.; Bártolo, P. J.; Granja, P. L. In Situ Crosslinked Electrospun Gelatin Nanofibers for Skin Regeneration. Eur. Polym. J. 2017, 95, 161–173. DOI: 10.1016/j.eurpolymj.2017.08.015.
  • Thein-Han, W. W.; Saikhun, J.; Pholpramoo, C.; Misra, R. D. K.; Kitiyanant, Y. Chitosan–gelatin Scaffolds for Tissue Engineering: Physico-chemical Properties and Biological Response of Buffalo Embryonic Stem Cells and Transfectant of GFP–buffalo Embryonic Stem Cells. Acta Biomater. 2009, 5, 3453–3466. DOI: 10.1016/j.actbio.2009.05.012.
  • Jaipan, P.; Nguyen, A.; Narayan, R. J. Gelatin-based Hydrogels for Biomedical Applications. MRC. 2017, 7, 416–426. DOI: 10.1557/mrc.2017.92.
  • Kang, H.-W.; Tabata, Y.; Ikada, Y. Fabrication of Porous Gelatin Scaffolds for Tissue Engineering. Biomaterials. 1999, 20, 1339–1344. DOI: 10.1016/S0142-9612(99)00036-8.
  • Timofejeva, A.; D'Este, M.; Loca, D. Calcium Phosphate/polyvinyl Alcohol Composite Hydrogels: A Review on the Freeze-thawing Synthesis Approach and Applications in Regenerative Medicine. Eur. Polym. J. 2017, 95, 547–565. DOI: 10.1016/j.eurpolymj.2017.08.048.
  • Gaaz, T.; Sulong, A.; Akhtar, M.; Kadhum, A., Mohamad A. and Al-Amiery. A., Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules. 2015, 20, 19884. DOI: 10.3390/molecules201219884.
  • Mansur, H. S.; de S. Costa, E.; Mansur, A. A. P.; Barbosa-Stancioli, E. F. Cytocompatibility Evaluation in Cell-culture Systems of Chemically Crosslinked Chitosan/PVA Hydrogels. Mater. Sci. Eng. C. 2009, 29, 1574–1583. DOI: 10.1016/j.msec.2008.12.012.
  • Hassan, C. M.; Peppas, N. A. Structure and Applications of Poly(vinyl Alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods; Springer Berlin Heidelberg: Berlin, Heidelberg, Germany, 2000, pp. 37–65.
  • Bonakdar, S.; Emami, S. H.; Shokrgozar, M. A.; Farhadi, A.; Ahmadi, S. A. H.; Amanzadeh, A. Preparation and Characterization of Polyvinyl Alcohol Hydrogels Crosslinked by Biodegradable Polyurethane for Tissue Engineering of Cartilage. J. Mater. Sci. Eng. C. 2010, 30, 636–643. DOI: 10.1016/j.msec.2010.02.017.
  • Hassan, C. M.; Peppas, N. A. Structure and Morphology of Freeze/Thawed PVA Hydrogels. Macromolecules 2000, 33, 2472–2479. DOI: 10.1021/ma9907587.
  • Marrella, A.; Lagazzo, A.; Dellacasa, E.; Pasquini, C.; Finocchio, E.; Barberis, F.; Pastorino, L.; Giannoni, P.; Scaglione, S. 3D Porous Gelatin/PVA Hydrogel as Meniscus Substitute Using Alginate Micro-Particles as Porogens. Polymers. 2018, 10, 380. DOI: 10.3390/polym10040380.
  • Yin, Y.; Li, Z.; Sun, Y.; Yao, K. A Preliminary Study on Chitosan/gelatin Polyelectrolyte Complex Formation. J. Mater. Sci. 2005, 40, 4649–4652. DOI: 10.1007/s10853-005-3929-9.
  • Chang, Y.; Xiao, L.; Tang, Q. Preparation and Characterization of a Novel Thermosensitive Hydrogel Based on Chitosan and Gelatin Blends. J. Appl. Polym. Sci. 2009, 113, 400–407. DOI: 10.1002/app.29954.
  • Rivero, S.; García, M. A.; Pinotti, A. Composite and bi-layer Films Based on Gelatin and Chitosan. J. Food Eng. 2009, 90, 531–539. DOI: 10.1016/j.jfoodeng.2008.07.021.
  • Peter, M.; Binulal, N. S.; Nair, S. V.; Selvamurugan, N.; Tamura, H.; Jayakumar, R. Novel Biodegradable Chitosan–gelatin/nano-bioactive Glass Ceramic Composite Scaffolds for Alveolar Bone Tissue Engineering. Chem. Eng. J. 2010, 158, 353–361. DOI: 10.1016/j.cej.2010.02.003.
  • Peter, M.; Ganesh, N.; Selvamurugan, N.; Nair, S. V.; Furuike, T.; Tamura, H.; Jayakumar, R. Preparation and Characterization of Chitosan–gelatin/nanohydroxyapatite Composite Scaffolds for Tissue Engineering Applications. Carbohydr. Polym. 2010, 80, 687–694. DOI: 10.1016/j.carbpol.2009.11.050.
  • Tylingo, R.; Gorczyca, G.; Mania, S.; Szweda, P.; Milewski, S. Preparation and Characterization of Porous Scaffolds from Chitosan-collagen-gelatin Composite. React. Funct. Polym. 2016, 103, 131–140. DOI: 10.1016/j.reactfunctpolym.2016.04.008.
  • Jiankang, H.; Dichen, L.; Yaxiong, L.; Bo, Y.; Hanxiang, Z.; Qin, L.; Bingheng, L.; Yi, L. Preparation of Chitosan–gelatin Hybrid Scaffolds with Well-organized Microstructures for Hepatic Tissue Engineering. Acta Biomater. 2009, 5, 453–461. DOI: 10.1016/j.actbio.2008.07.002.
  • Huang, Y.; Onyeri, S.; Siewe, M.; Moshfeghian, A.; Madihally, S. V. In Vitro Characterization of Chitosan–gelatin Scaffolds for Tissue Engineering. Biomaterials 2005, 26, 7616–7627. DOI: 10.1016/j.biomaterials.2005.05.036.
  • Cheng, Y.-H.; Yang, S.-H.; Su, W.-Y.; Chen, Y.-C.; Yang, K.-C.; Cheng, W. T.-K.; Wu, S.-C.; Lin, F.-H. Thermosensitive Chitosan–Gelatin–Glycerol Phosphate Hydrogels as a Cell Carrier for Nucleus Pulposus Regeneration: An in Vitro Study. Tissue Eng., Part A. 2010, 16, 695–703. DOI: 10.1089/ten.tea.2009.0229.
  • Alizadeh, M.; Abbasi, F.; Khoshfetrat, A. B.; Ghaleh, H. Microstructure and Characteristic Properties of Gelatin/chitosan Scaffold Prepared by a Combined Freeze-drying/leaching Method. Mater. Sci. Eng. C. 2013, 33, 3958–3967. DOI: 10.1016/j.msec.2013.05.039.
  • Yang, C.; Xu, L.; Zhou, Y.; Zhang, X.; Huang, X.; Wang, M.; Han, Y.; Zhai, M.; Wei, S.; Li, J. A Green Fabrication Approach of Gelatin/CM-chitosan Hybrid Hydrogel for Wound Healing. Carbohydr. Polym. 2010, 82, 1297–1305. DOI: 10.1016/j.carbpol.2010.07.013.
  • Huang, X.; Zhang, Y.; Zhang, X.; Xu, L.; Chen, X.; Wei, S. Influence of Radiation Crosslinked Carboxymethyl-chitosan/gelatin Hydrogel on Cutaneous Wound Healing. Mater. Sci. Eng. C. 2013, 33, 4816–4824. DOI: 10.1016/j.msec.2013.07.044.
  • Carvalho, I. C.; Mansur, H. S. Engineered 3D-scaffolds of Photocrosslinked Chitosan-gelatin Hydrogel Hybrids for Chronic Wound Dressings and Regeneration. Mater. Sci. Eng. C. 2017, 78, 690–705. DOI: 10.1016/j.msec.2017.04.126.
  • Kanth, V.; Kajjari, P.; Madalageri, P.; Ravindra, S.; Manjeshwar, L.; Aminabhavi, T. Blend Hydrogel Microspheres of Carboxymethyl Chitosan and Gelatin for the Controlled Release of 5-Fluorouracil. Pharmaceutics. 2017, 9, 13. DOI: 10.3390/pharmaceutics9020013.
  • Tormos, C. J.; Abraham, C.; Madihally, S. V. Improving the Stability of Chitosan–gelatin-based Hydrogels for Cell Delivery Using Transglutaminase and Controlled Release of Doxycycline. Drug Deliv. And Transl. Res. 2015, 5, 575–584. DOI: 10.1007/s13346-015-0258-7.
  • Cheng, N.-C.; Lin, W.-J.; Ling, T.-Y.; Young, T.-H. Sustained Release of Adipose-derived Stem Cells by Thermosensitive Chitosan/gelatin Hydrogel for Therapeutic Angiogenesis. Acta Biomater 2017, 51, 258–267. DOI: 10.1016/j.actbio.2017.01.060.
  • Ciobanu, B. C.; Cadinoiu, A. N.; Popa, M.; Desbrières, J.; Peptu, C. A. Modulated Release from Liposomes Entrapped in Chitosan/gelatin Hydrogels. Mater. Sci. Eng. C. 2014, 43, 383–391. DOI: 10.1016/j.msec.2014.07.036.
  • Jătariu, A. N.; Danu, M.; Peptu, C. A.; Ioanid, G.; Ibanescu, C.; Popa, M. Ionically and Covalently Cross-Linked Hydrogels Based on Gelatin and Chitosan. Soft Mater. 2013, 11, 45–54. DOI: 10.1080/1539445X.2011.580409.
  • Jătariu, A. N.; Popa, M.; Curteanu, S.; Peptu, C. A. Covalent and Ionic co-cross-linking—An Original Way to Prepare Chitosan–gelatin Hydrogels for Biomedical Applications. J. Biomed. Mater. Res. 2011, 98A, 342–350. DOI: 10.1002/jbm.a.33122.
  • Dai, T.; Tanaka, M.; Huang, Y.-Y.; Hamblin, M. R. Chitosan Preparations for Wounds and Burns: antimicrobial and Wound-healing Effects. Expert Rev. Anti-Infect. Ther. 2011, 9, 857–879. DOI: 10.1586/eri.11.59.
  • Ahmed, S.; Ikram, S. Chitosan Based Scaffolds and Their Applications in Wound Healing. Achiev. Life Sci. 2016, 10, 27–37. DOI: 10.1016/j.als.2016.04.001.
  • Jawalkar, S.; Raju, S.; Halligudi, S. B.; Sairam, M.; Aminabhavi, T. M. Molecular Modeling Simulations to Predict Compatibility of Poly(vinyl Alcohol) and Chitosan Blends: A Comparison with Experiments. J. Phys. Chem. B. 2007, 111, 2431–2439. DOI: 10.1021/jp0668495.
  • Liang, S.; Huang, Q.; Liu, L.; Yam, K. L. Microstructure and Molecular Interaction in Glycerol Plasticized Chitosan/Poly(vinyl Alcohol) Blending Films. Macromol. Chem. Phys. 2009, 210, 832–839. DOI: 10.1002/macp.200900053.
  • Islam, A.; Yasin, T.; Rehman, I. u. Synthesis of Hybrid Polymer Networks of Irradiated Chitosan/poly(vinyl Alcohol) for Biomedical Applications. Radiat. Phys. Chem. 2014, 96, 115–119. DOI: 10.1016/j.radphyschem.2013.09.009.
  • Sarhan, W. A.; Azzazy, H. M. E.; El-Sherbiny, I. M. The Effect of Increasing Honey Concentration on the Properties of the Honey/polyvinyl Alcohol/chitosan Nanofibers. Mater. Sci. Eng. C. 2016, 67, 276–284. DOI: 10.1016/j.msec.2016.05.006.
  • Fan, L.; Yang, J.; Wu, H.; Hu, Z.; Yi, J.; Tong, J.; Zhu, X. Preparation and Characterization of Quaternary Ammonium Chitosan Hydrogel with Significant Antibacterial Activity. Int. J. Biol. Macromol. 2015, 79, 830–836. DOI: 10.1016/j.ijbiomac.2015.04.013.
  • Zhao, L.; Mitomo, H.; Zhai, M.; Yoshii, F.; Nagasawa, N.; Kume, T. Synthesis of Antibacterial PVA/CM-chitosan Blend Hydrogels with Electron Beam Irradiation. Carbohydr. Polym. 2003, 53, 439–446. DOI: 10.1016/S0144-8617(03)00103-6.
  • Charernsriwilaiwat, N.; Rojanarata, T.; Ngawhirunpat, T.; Opanasopit, P. Electrospun Chitosan/polyvinyl Alcohol Nanofibre Mats for Wound Healing. Int Wound J. 2014, 11, 215–222. DOI: 10.1111/j.1742-481X.2012.01077.x.
  • Gutha, Y.; Pathak, J. L.; Zhang, W.; Zhang, Y.; Jiao, X. Antibacterial and Wound Healing Properties of Chitosan/poly(vinyl Alcohol)/Zinc Oxide Beads (CS/PVA/ZnO). Int. J. Biol. Macromol. 2017, 103, 234–241. DOI: 10.1016/j.ijbiomac.2017.05.020.
  • Ganesh, M.; Aziz, A. S.; Ubaidulla, U.; Hemalatha, P.; Saravanakumar, A.; Ravikumar, R.; Peng, M. M.; Choi, E. Y.; Jang, H. T. Sulfanilamide and Silver Nanoparticles-loaded Polyvinyl Alcohol-chitosan Composite Electrospun Nanofibers: Synthesis and Evaluation on Synergism in Wound Healing. J. Ind. Eng. Chem. 2016, 39, 127–135. DOI: 10.1016/j.jiec.2016.05.021.
  • Amin, M. A.; Abdel-Raheem, I. T. Accelerated Wound Healing and anti-inflammatory Effects of Physically Cross Linked Polyvinyl Alcohol–chitosan Hydrogel Containing Honey Bee Venom in Diabetic Rats. Arch. Pharm. Res. 2014, 37, 1016–1031. DOI: 10.1007/s12272-013-0308-y.
  • Ahmed, R.; Tariq, M.; Ali, I.; Asghar, R.; Noorunnisa Khanam, P.; Augustine, R.; Hasan, A. Novel Electrospun Chitosan/polyvinyl Alcohol/zinc Oxide Nanofibrous Mats with Antibacterial and Antioxidant Properties for Diabetic Wound Healing. Int. J. Biol. Macromol 2018, 120, 385–393. DOI: 10.1016/j.ijbiomac.2018.08.057.
  • Khorasani, M. T.; Joorabloo, A.; Moghaddam, A.; Shamsi, H.; MansooriMoghadam, Z. Incorporation of ZnO Nanoparticles into Heparinised Polyvinyl Alcohol/chitosan Hydrogels for Wound Dressing Application. Int. J. Biol. Macromol. 2018, 114, 1203–1215. DOI: 10.1016/j.ijbiomac.2018.04.010.
  • Abdelgawad, A. M.; Hudson, S. M.; Rojas, O. J. Antimicrobial Wound Dressing Nanofiber Mats from Multicomponent (chitosan/silver-NPs/polyvinyl Alcohol) Systems. Carbohydr. Polym. 2014, 100, 166–178. DOI: 10.1016/j.carbpol.2012.12.043.
  • Liu, Q.; Zuo, Q.; Guo, R.; Hong, A.; Li, C.; Zhang, Y.; He, L.; Xue, W. Fabrication and Characterization of Carboxymethyl Chitosan/poly(vinyl Alcohol) hydrogels Containing Alginate Microspheres for Protein Delivery. J. Bioact. Compat. Polym. 2015, 30, 397–411. DOI: 10.1177/0883911515578761.
  • Islam, A.; Yasin, T. Controlled Delivery of Drug from pH Sensitive Chitosan/poly (vinyl Alcohol) Blend. Int. J. Biol. Macromol. 2012, 88, 1055–1060. DOI: 10.1016/j.carbpol.2012.01.070.
  • Islam, A.; Yasin, T.; Bano, I.; Riaz, M. Controlled Release of Aspirin from pH-sensitive Chitosan/poly(vinyl Alcohol) Hydrogel. J. Appl. Polym. Sci. 2012, 124, 4184–4192. DOI: 10.1002/app.35392.
  • Islam, A.; Riaz, M.; Yasin, T. Structural and Viscoelastic Properties of Chitosan-based Hydrogel and Its Drug Delivery Application. Int. J. Biol. Macromol. 2013, 59, 119–124. DOI: 10.1016/j.ijbiomac.2013.04.044.
  • Zu, Y.; Zhang, Y.; Zhao, X.; Shan, C.; Zu, S.; Wang, K.; Li, Y.; Ge, Y. Preparation and Characterization of Chitosan–polyvinyl Alcohol Blend Hydrogels for the Controlled Release of Nano-Insulin. Int. J. Biol. Macromol 2012, 50, 82–87. DOI: 10.1016/j.ijbiomac.2011.10.006.
  • Cui, Z.; Zheng, Z.; Lin, L.; Si, J.; Wang, Q.; Peng, X.; Chen, W. Electrospinning and Crosslinking of Polyvinyl Alcohol/chitosan Composite Nanofiber for Transdermal Drug Delivery. Adv. Polym. Technol. 2017, 37, 1917–1928. DOI: 10.1002/adv.21850.
  • Jeon, S. J.; Oh, M.; Yeo, W.-S.; Galvão, K. N.; Jeong, K. C. Underlying Mechanism of Antimicrobial Activity of Chitosan Microparticles and Implications for the Treatment of Infectious Diseases. PLoS One. 2014, 9, e92723. DOI: 10.1371/journal.pone.0092723.
  • Divya, K.; Vijayan, S.; George, T. K.; Jisha, M. S. Antimicrobial Properties of Chitosan Nanoparticles: Mode of Action and Factors Affecting Activity. Fibers Polym. 2017, 18, 221–230. DOI: 10.1007/s12221-017-6690-1.
  • Rabea, E. I.; Badawy, M. E. T.; Stevens, C. V.; Smagghe, G.; Steurbaut, W. Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules 2003, 4, 1457–1465. DOI: 10.1021/bm034130m.
  • Latif, U.; Al-Rubeaan, K.; Saeb, A. T. M. A Review on Antimicrobial Chitosan-Silver Nanocomposites: A Roadmap toward Pathogen Targeted Synthesis. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 448–458. DOI: 10.1080/00914037.2014.958834.
  • Kong, M.; Chen, X. G.; Xing, K.; Park, H. J. Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review. Int. J. Food Microbiol. 2010, 144, 51–63. DOI: 10.1016/j.ijfoodmicro.2010.09.012.
  • Celebi, H.; Gurbuz, M.; Koparal, S.; Dogan, A. Development of Antibacterial Electrospun Chitosan/poly(vinyl Alcohol) nanofibers Containing Silver Ion-incorporated HAP Nanoparticles. Compos. Interfaces 2013, 20, 799–812. DOI: 10.1080/15685543.2013.819700.
  • Yang, C.; Wu, X.; Zhao, Y.; Xu, L.; Wei, S. Nanofibrous Scaffold Prepared by Electrospinning of Poly(vinyl Alcohol)/Gelatin Aqueous Solutions. J. Appl. Polym. Sci. 2011, 121, 3047–3055. DOI: 10.1002/app.33934.
  • Linh, N. T. B.; Lee, B.-T. Electrospinning of Polyvinyl Alcohol/gelatin Nanofiber Composites and Cross-linking for Bone Tissue Engineering Application. J. Biomater. Appl. 2012, 27, 255–266. DOI: 10.1177/0885328211401932.
  • Mahnama, H.; Dadbin, S.; Frounchi, M.; Rajabi, S. Preparation of Biodegradable Gelatin/PVA Porous Scaffolds for Skin Regeneration. Artif. Cells, Nanomed., Biotechnol. 2017, 45, 928–935. DOI: 10.1080/21691401.2016.1193025.
  • Merkle, V. M.; Martin, D.; Hutchinson, M.; Tran, P. L.; Behrens, A.; Hossainy, S.; Sheriff, J.; Bluestein, D.; Wu, X.; Slepian, M. J. Hemocompatibility of Poly(vinyl Alcohol)–Gelatin Core–Shell Electrospun Nanofibers: A Scaffold for Modulating Platelet Deposition and Activation. ACS Appl. Mater. Interfaces. 2015, 7, 8302–8312. DOI: 10.1021/acsami.5b01671.
  • Choi, S. M.; Singh, D.; Kumar, A.; Oh, T. H.; Cho, Y. W.; Han, S. S. Porous Three-Dimensional PVA/Gelatin Sponge for Skin Tissue Engineering. Int. J. Polymeric Mater. Polymeric Biomater. 2013, 62, 384–389. DOI: 10.1080/00914037.2012.710862.
  • Kim, H.; Yang, G. H.; Choi, C. H.; Cho, Y. S.; Kim, G. Gelatin/PVA Scaffolds Fabricated Using a 3D-printing Process Employed with a Low-temperature Plate for Hard Tissue Regeneration: Fabrication and Characterizations. Int. J. Biol. Macromol. 2018, 120, 119–127. DOI: 10.1016/j.ijbiomac.2018.07.159.
  • Yang, D-z.; Long, Y-h.; Nie, J. Release of Lysozyme from Electrospun PVA/lysozyme-gelatin Scaffolds. Front. Mater. Sci. China. 2008, 2, 261–265. DOI: 10.1007/s11706-008-0053-1.
  • Oun, R.; Plumb, J. A.; Wheate, N. J. A Cisplatin Slow-release Hydrogel Drug Delivery System Based on a Formulation of the Macrocycle Cucurbit[7]uril, gelatin and Polyvinyl Alcohol. J. Inorg. Biochem. 2014, 134, 100–105. DOI: 10.1016/j.jinorgbio.2014.02.004.
  • Yang, D.; Li, Y.; Nie, J. Preparation of Gelatin/PVA Nanofibers and Their Potential Application in Controlled Release of Drugs. Carbohydr. Polym. 2007, 69, 538–543. DOI: 10.1016/j.carbpol.2007.01.008.
  • Abou Taleb, M. F.; Ismail, S. A.; El-Kelesh, N. A. Radiation Synthesis and Characterization of Polyvinyl Alcohol/Methacrylic Acid–Gelatin Hydrogel for Vitro Drug Delivery. J. Macromol. Sci., Part A. 2008, 46, 170–178. DOI: 10.1080/10601320802594808.
  • Liu, Y.; Geever, L. M.; Kennedy, J. E.; Higginbotham, C. L.; Cahill, P. A.; McGuinness, G. B. Thermal Behavior and Mechanical Properties of Physically Crosslinked PVA/Gelatin Hydrogels. J. Mech. Behav. Biomed. Mater. 2010, 3, 203–209. DOI: 10.1016/j.jmbbm.2009.07.001.
  • Xing, Q.; Yates, K.; Vogt, C.; Qian, Z.; Frost, M. C.; Zhao, F. Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal. Sci. Rep. 2014, 4, 4706. DOI: 10.1038/srep04706.
  • Chen, C.-H.; Wang, F.-Y.; Mao, C.-F.; Liao, W.-T.; Hsieh, C.-D. Studies of Chitosan: II. Preparation and Characterization of Chitosan/poly(vinyl Alcohol)/Gelatin Ternary Blend Films. Int. J. Biol. Macromol. 2008, 43, 37–42. DOI: 10.1016/j.ijbiomac.2007.09.005.
  • Nugraheni, A. D.; Purnawati, D. M.; Chotimah, B. A. P.; Kusumaatmaja, A.; Triyana, K. Study of Thermal Degradation of PVA/Chitosan/Gelatin Electrospun Nanofibers. AIP Conf. Proc. 2016, 1755, 150017. DOI: 10.1063/1.4958590.
  • Fan, L.; Yang, H.; Yang, J.; Peng, M.; Hu, J. Preparation and Characterization of Chitosan/gelatin/PVA Hydrogel for Wound Dressings. Carbohydr. Polym. 2016, 146, 427–434. DOI: 10.1016/j.carbpol.2016.03.002.
  • Tsai, R.-Y.; Hung, S.-C.; Lai, J.-Y.; Wang, D.-M.; Hsieh, H.-J. Electrospun Chitosan–gelatin–polyvinyl Alcohol Hybrid Nanofibrous Mats: Production and Characterization. J. Taiwan Inst. Chem. Eng. 2014, 45, 1975–1981. DOI: 10.1016/j.jtice.2013.11.003.
  • Tsai, R.-Y.; Kuo, T.-Y.; Hung, S.-C.; Lin, C.-M.; Hsien, T.-Y.; Wang, D.-M.; Hsieh, H.-J. Use of Gum Arabic to Improve the Fabrication of Chitosan–gelatin-based Nanofibers for Tissue Engineering. Carbohydr. Polym. 2015, 115, 525–532. DOI: 10.1016/j.carbpol.2014.08.108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.