1,293
Views
55
CrossRef citations to date
0
Altmetric
Articles

Electrospinning of biomimetic fibrous scaffolds for tissue engineering: a review

&
Pages 947-960 | Received 31 Mar 2019, Accepted 22 Jun 2019, Published online: 09 Jul 2019

References

  • Cohen, S.; Baño, M. C.; Cima, L. G.; Allcock, H. R.; Vacanti, J. P.; Vacanti, C. A.; Langer, R. Design of Synthetic Polymeric Structures for Cell Transplantation and Tissue Engineering. Clin. Mater. 1993, 13, 3–10. doi:10.1016/0267-6605(93)90082-I.
  • Ye, H.; Zhang, K.; Kai, D.; Li, Z.; Loh, X. J. Polyester Elastomers for Soft Tissue Engineering. Chem. Soc. Rev. 2018, 47, 4545. doi:10.1039/C8CS00161H.
  • Regenerative Medicine Market Analysis By Product (Primary Cell-based, Stem Cell-based, Immunotherapies, & Gene Therapies, Tools, Banks, & Services), By Therapeutic Category, And Segment Forecasts, 2018 –2025. 2017, Grand View Research.
  • Grindem, H.; Snyder-Mackler, L.; Moksnes, H.; Engebretsen, L.; Risberg, M. A. Simple Decision Rules Can Reduce Reinjury Risk by 84% after ACL Reconstruction: The Delaware-Oslo ACL Cohort Study. Br. J. Sports Med. 2016, 50, 804–808. doi:10.1136/bjsports-2016-096031.
  • Colvin, A. C.; Egorova, N.; Harrison, A. K.; Moskowitz, A.; Flatow, E. L. National Trends in Rotator Cuff Repair. J. Bone Joint Surg. Am. 2012, 94, 227. doi:10.2106/JBJS.J.00739.
  • Baker, B. E.; Peckham, A. C.; Pupparo, F.; Sanborn, J. C. Review of Meniscal Injury and Associated Sports. Am. J. Sports Med. 1985, 13, 1–4. doi:10.1177/036354658501300101.
  • Jones, J. C.; Burks, R.; Owens, B. D.; Sturdivant, R. X.; Svoboda, S. J.; Cameron, K. L. Incidence and Risk Factors Associated with Meniscal Injuries among Active-Duty US Military Service Members. Journal of Athletic Training 2012, 47, 67–73. doi:10.4085/1062-6050-47.1.67.
  • De Jong, O. G.; Van Balkom, B. W. M.; Schiffelers, R. M.; Bouten, C. V. C.; Verhaar, M. C. Extracellular Vesicles: Potential Roles in Regenerative Medicine. Front. Immunol. 2014, 5, 608. doi:10.3389/fimmu.2014.00608.
  • Chan, B.; Leong, K. Scaffolding in Tissue Engineering: general Approaches and Tissue-Specific Considerations. Eur. Spine J. 2008, 17, 467–479. doi:10.1007/s00586-008-0745-3.
  • O'Brien, F. J. Biomaterials and Scaffolds for Tissue Engineering. Mater. Today. 2011, 14, 88–95. doi:10.1016/S1369-7021(11)70058-X.
  • Carletti, E.; Motta, A.; Migliaresi, C. Scaffolds for Tissue Engineering and 3D Cell Culture. 3D Cell Culture: Methods and Protocols. Humana Press, 2011. 17–39.
  • Lewis, M. C.; MacArthur, B. D.; Malda, J.; Pettet, G.; Please, C. P. Heterogeneous Proliferation within Engineered Cartilaginous Tissue: The Role of Oxygen Tension. Biotechnol. Bioeng. 2005, 91, 607–615. doi:10.1002/bit.20508.
  • Loh, Q. L.; Choong, C. Three-Dimensional Scaffolds for Tissue Engineering Applications: role of Porosity and Pore Size. Tissue Eng. B Rev. 2013, 19, 485–502. doi:10.1089/ten.teb.2012.0437.
  • O’Brien, F. J.; Harley, B. A., Yannas, I. V., Gibson, L. J. The Effect of Pore Size on Cell Adhesion in collagen-GAG Scaffolds. Biomaterials 2005, 26, 433–441. doi:10.1016/j.biomaterials.2004.02.052.
  • Novitskaya, E.; Chen, P.-Y.; Lee, S.; Castro-Ceseña, A.; Hirata, G.; Lubarda, V. A.; McKittrick, J. Anisotropy in the Compressive Mechanical Properties of Bovine Cortical Bone and the Mineral and Protein Constituents. Acta Biomater. 2011, 7, 3170–3177. doi:10.1016/j.actbio.2011.04.025.
  • Oh, S. H.; Park, I. K.; Kim, J. M.; Lee, J. H. In Vitro and in Vivo Characteristics of PCL Scaffolds with Pore Size Gradient Fabricated by a Centrifugation method. Biomaterials. 2007, 28, 1664–1671. doi:10.1016/j.biomaterials.2006.11.024.
  • Hirata, Y.; Inaba, Y.; Kobayashi, N.; Ike, H.; Fujimaki, H.; Saito, T. Comparison of Mechanical Stress and Change in Bone Mineral Density between Two Types of Femoral Implant Using Finite Element Analysis. J. Arthroplasty. 2013, 28, 1731–1735. doi:10.1016/j.arth.2013.04.034.
  • Duyck, J.; Vandamme, K.; Geris, L.; Van Oosterwyck, H.; De Cooman, M.; Vandersloten, J.; Puers, R.; Naert, I. The Influence of Micro-Motion on the Tissue Differentiation around Immediately Loaded Cylindrical Turned Titanium Implants. Arch Oral Biol. 2006, 51, 1–9. doi:10.1016/j.archoralbio.2005.04.003.
  • Lee, J.; Cuddihy, M. J.; Kotov, N. A. Three-Dimensional Cell Culture Matrices: State of the Art. Tissue Eng. B Rev. 2008, 14, 61–86. doi:10.1089/teb.2007.0150.
  • Sachlos, E.; Czernuszka, J. Making Tissue Engineering Scaffolds Work. Review: The Application of Solid Freeform Fabrication Technology to the Production of Tissue Engineering Scaffolds. ECM. 2003, 5, 29–40. doi:10.22203/eCM.v005a03.
  • Fielding, G. A.; Bandyopadhyay, A.; Bose, S. Effects of Silica and Zinc Oxide Doping on Mechanical and Biological Properties of 3D Printed Tricalcium Phosphate Tissue Engineering Scaffolds. Dental Mater. 2012, 28, 113–122. doi:10.1016/j.dental.2011.09.010.
  • Subia, B.; Kundu, J.; Kundu, S. Biomaterial scaffold fabrication techniques for potential tissue engineering applications, Tissue Eng. 2010., InTech.
  • Lund, A. W.; Yener, B.; Stegemann, J. P.; Plopper, G. E. The Natural and Engineered 3D Microenvironment as a Regulatory Cue during Stem Cell Fate Determination. Tissue Eng. Part B Rev. 2009, 15, 371–380. doi:10.1089/ten.teb.2009.0270.
  • Mandrycky, C.; Wang, Z.; Kim, K.; Kim, D.-H. 3D Bioprinting for Engineering Complex Tissues. Biotechnol. Adv. 2016, 34, 422–434. doi:10.1016/j.biotechadv.2015.12.011.
  • Murphy, S. V.; Atala, A. 3D Bioprinting of Tissues and Organs. Nat. Biotechnol. 2014, 32, 773–785. doi:10.1038/nbt.2958.
  • Michel, G.; Tonon, T.; Scornet, D.; Cock, J. M.; Kloareg, B. The Cell Wall Polysaccharide Metabolism of the Brown Alga Ectocarpus Siliculosus. Insights into the Evolution of Extracellular Matrix Polysaccharides in Eukaryotes. New Phytol. 2010, 188, 82–97. doi:10.1111/j.1469-8137.2010.03374.x.
  • Alberts, B.; Bray, D.; Hopkin, K.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Essential Cell Biology. Garland Sci. 2013.
  • Mendes, P. M. Cellular Nanotechnology: making Biological Interfaces Smarter. Chem. Soc. Rev. 2013, 42, 9207–9218. doi:10.1039/c3cs60198f.
  • Baker, B. M.; Chen, C. S. Deconstructing the Third Dimension–How 3D Culture Microenvironments Alter Cellular Cues. J. Cell Sci. 2012, 125, 3015–3024. doi:10.1242/jcs.079509.
  • Chen, C. S. Mechanotransduction – A Field Pulling Together? J. Cell. Sci. 2008, 121, 3285–3292. doi:10.1242/jcs.023507.
  • Stitzel, J.; Liu, J.; Lee, S. J.; Komura, M.; Berry, J.; Soker, S.; Lim, G.; Van Dyke, M.; Czerw, R.; Yoo, J. J.; et al. Controlled Fabrication of a Biological Vascular Substitute. Biomaterials. 2006, 27, 1088–1094. doi:10.1016/j.biomaterials.2005.07.048.
  • Hochleitner, G.; Jüngst, T.; Brown, T. D.; Hahn, K.; Moseke, C.; Jakob, F.; Dalton, P. D.; Groll, J. Additive Manufacturing of Scaffolds with Sub-Micron Filaments via Melt Electrospinning Writing. Biofabrication. 2015, 7, 035002. doi:10.1088/1758-5090/7/3/035002.
  • Xu, W.; Ding, Y.; Huang, R.; Zhu, Z.; Fong, H.; Hou, H. High‐Performance Polyimide Nanofibers Reinforced Polyimide Nanocomposite Films Fabricated by co‐Electrospinning Followed by Hot‐Pressing. J. Appl. Polym. Sci. 2018, 135, 46849. doi:10.1002/app.46849.
  • Xu, Y.; Gong, L.; Jiang, Y. Uniaxially Aligned P (VDF-TrFE)/BaTiO 3 Composite Nanofibers with High Piezoelectric Constants Fabricated by Electrospinning. In 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). 2018. IEEE.
  • Zhou, Y.; Tan, G. Z. Fabrication of Nanofiber Mats with Microstructure Gradient by Cone Electrospinning. Nanomat Nanotechnol. 2017, 7, 184798041774847–1847980417748478. doi:10.1177/1847980417748478.
  • Nowlin, J.; Bismi, M. A.; Delpech, B.; Dumas, P.; Zhou, Y.; Tan, G. Z. Engineering the Hard–Soft Tissue Interface with Random-to-Aligned Nanofiber Scaffolds. Nanobiomedicine. 2018, 5, 184954351880353. p. 1849543518803538. doi:10.1177/1849543518803538.
  • Jin, L.; Feng, Z.-Q.; Zhu, M.-L.; Wang, T.; Leach, M. K.; Jiang, Q. A Novel Fluffy Conductive Polypyrrole Nano-Layer Coated PLLA Fibrous Scaffold for Nerve Tissue Engineering. J Biomed Nanotechnol. 2012, 8, 779–785. doi:10.1166/jbn.2012.1443.
  • Zhou, Y.; Hu, Z.; Du, D.; Tan, G. Z. The Effects of Collector Geometry on the Internal Structure of the 3D Nanofiber Scaffold Fabricated by Divergent Electrospinning. Int. J. Adv. Manuf. Technol. 2019, 100, 3045–3054. doi:10.1007/s00170-018-2899-4.
  • Greiner, A.; Wendorff, J. H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chem. Int. Ed. 2007, 46, 5670–5703. doi:10.1002/anie.200604646.
  • Wang, X.; Ding, B.; Li, B. Biomimetic Electrospun Nanofibrous Structures for Tissue Engineering. Mater. Today. 2013, 16, 229–241. doi:10.1016/j.mattod.2013.06.005.
  • Gautam, S.; Dinda, A. K.; Mishra, N. C. Fabrication and Characterization of PCL/Gelatin Composite Nanofibrous Scaffold for Tissue Engineering Applications by Electrospinning Method. Mater. Sci. Eng. C. 2013, 33, 1228–1235. doi:10.1016/j.msec.2012.12.015.
  • Cooper, A.; Bhattarai, N.; Zhang, M. Fabrication and Cellular Compatibility of Aligned Chitosan–PCL Fibers for Nerve Tissue Regeneration. Carbohydr. Polym. 2011, 85, 149–156. doi:10.1016/j.carbpol.2011.02.008.
  • Zhu, Y.; et al. Macro‐Alignment of Electrospun Fibers for Vascular Tissue Engineering. J. Biomed. Mater. Res. 2010, 92, 508–516. doi:10.1002/jbm.b.31544.
  • Gerhardt, L.-C.; Boccaccini, A. R. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials. 2010, 3, 3867–3910. doi:10.3390/ma3073867.
  • Cui, W.; Zhou, Y.; Chang, J. Electrospun Nanofibrous Materials for Tissue Engineering and Drug Delivery. Sci. Technol. Adv. Mater. 11.1 (2010): 014108 doi:10.1088/1468-6996/11/1/014108.
  • Li, W.-J.; Laurencin, C. T.; Caterson, E. J.; Tuan, R. S.; Ko, F. K. Electrospun Nanofibrous Structure: A Novel Scaffold for Tissue Engineering. J. Biomed. Mater. Res. 2002, 60, 613–621. doi:10.1002/jbm.10167.
  • Rezvani, Z.; et al. A Bird's Eye View on the Use of Electrospun Nanofibrous Scaffolds for Bone Tissue Engineering: Current State‐of‐the‐art, emerging directions and future trends. Nanomed. Nanotechnol. Biol. Med. 12.7 (2016): 2181-2200. doi:10.1016/j.nano.2016.05.014.
  • Rim, N. G.; Shin, C. S.; Shin, H. Current Approaches to Electrospun Nanofibers for Tissue Engineering. Biomed. Mater. 2013, 8, 014102. doi:10.1088/1748-6041/8/1/014102.
  • Tan, G. Z.; Zhou, Y. Tunable 3D Nanofiber Architecture of Polycaprolactone by Divergence Electrospinning for Potential Tissue Engineering Applications. Nano-Micro Lett. 2018, 10, 73. doi:10.1007/s40820-018-0226-0.
  • Jiang, T.; Carbone, E. J.; Lo, K. W.-H.; Laurencin, C. T. Electrospinning of Polymer Nanofibers for Tissue Regeneration. Prog. Polym. Sci. 2015, 46, 1–24. doi:10.1016/j.progpolymsci.2014.12.001.
  • Clements, I. P.; Kim, Y-t.; English, A. W.; Lu, X.; Chung, A.; Bellamkonda, R. V. Thin-Film Enhanced Nerve Guidance Channels for Peripheral Nerve Repair. Biomaterials. 2009, 30, 3834–3846. doi:10.1016/j.biomaterials.2009.04.022.
  • Nirmala, R.; Navamathavan, R.; Kang, H.-S.; El-Newehy, M. H.; Kim, H. Y. Preparation of Polyamide-6/Chitosan Composite Nanofibers by a Single Solvent System via Electrospinning for Biomedical Applications. Colloid. Surface B. 2011, 83, 173–178. doi:10.1016/j.colsurfb.2010.11.026.
  • Kontogiannopoulos, K. N.; Assimopoulou, A. N.; Tsivintzelis, I.; Panayiotou, C.; Papageorgiou, V. P. Electrospun Fiber Mats Containing Shikonin and Derivatives with Potential Biomedical Applications. Int. J. Pharm. 2011, 409, 216–228. doi:10.1016/j.ijpharm.2011.02.004.
  • Kolambkar, Y. M.; Dupont, K. M.; Boerckel, J. D.; Huebsch, N.; Mooney, D. J.; Hutmacher, D. W.; Guldberg, R. E. An Alginate-Based Hybrid System for Growth Factor Delivery in the Functional Repair of Large Bone Defects. Biomaterials. 2011, 32, 65–74. doi:10.1016/j.biomaterials.2010.08.074.
  • Shim, I. K.; Jung, M. R.; Kim, K. H.; Seol, Y. J.; Park, Y. J.; Park, W. H.; Lee, S. J. Novel Three‐Dimensional Scaffolds of Poly (L‐Lactic Acid) Microfibers Using Electrospinning and Mechanical Expansion: Fabrication and Bone Regeneration. J. Biomed. Mater. Res. 2010, 95, 150–160. doi:10.1002/jbm.b.31695.
  • Seyedjafari, E.; Soleimani, M.; Ghaemi, N.; Shabani, I. Nanohydroxyapatite-Coated Electrospun Poly (l-Lactide) Nanofibers Enhance Osteogenic Differentiation of Stem Cells and Induce Ectopic Bone Formation. Biomacromolecules. 2010, 11, 3118–3125. doi:10.1021/bm1009238.
  • Cai, Y. Z.; Wang, L. L.; Cai, H. X.; Qi, Y. Y.; Zou, X. H.; Ouyang, H. W. Electrospun Nanofibrous Matrix Improves the Regeneration of Dense Cortical Bone. J. Biomed. Mater. Res. 2010, 95, 49–57. doi:10.1002/jbm.a.32816.
  • Hutmacher, D.; Woodfield, T. B. F.; Dalton, P. D. Scaffold Design and Fabrication. 2008,
  • Bose, S.; Roy, M.; Bandyopadhyay, A. Recent Advances in Bone Tissue Engineering Scaffolds. Trend Biotechnol. 2012, 30, 546–554. doi:10.1016/j.tibtech.2012.07.005.
  • Huang, C.; Fu, X.; Liu, J.; Qi, Y.; Li, S.; Wang, H. The Involvement of Integrin β1 Signaling in the Migration and Myofibroblastic Differentiation of Skin Fibroblasts on Anisotropic Collagen-Containing Nanofibers. Biomaterials. 2012, 33, 1791–1800. doi:10.1016/j.biomaterials.2011.11.025.
  • Yin, Z.; Chen, X.; Chen, J. L.; Shen, W. L.; Hieu Nguyen, T. M.; Gao, L.; Ouyang, H. W. The Regulation of Tendon Stem Cell Differentiation by the Alignment of Nanofibers. Biomaterials. 2010, 31, 2163–2175. doi:10.1016/j.biomaterials.2009.11.083.
  • Xie, J.; MacEwan, M. R.; Ray, W. Z.; Liu, W.; Siewe, D. Y.; Xia, Y. Radially Aligned, Electrospun Nanofibers as Dural Substitutes for Wound Closure and Tissue Regeneration Applications. ACS Nano. 2010, 4, 5027–5036. doi:10.1021/nn101554u.
  • Li, W. J.; Danielson, K. G.; Alexander, P. G.; Tuan, R. S. Biological Response of Chondrocytes Cultured in Three‐Dimensional Nanofibrous Poly (ϵ‐Caprolactone) Scaffolds. J. Biomed. Mater. Res. 2003, 67, 1105–1114. doi:10.1002/jbm.a.10101.
  • Li, W.-J.; Tuli, R.; Huang, X.; Laquerriere, P.; Tuan, R. S. Multilineage Differentiation of Human Mesenchymal Stem Cells in a Three-Dimensional Nanofibrous Scaffold. Biomaterials. 2005, 26, 5158–5166. doi:10.1016/j.biomaterials.2005.01.002.
  • Lee, P.; Tran, K.; Chang, W.; Shelke, N. B.; Kumbar, S. G.; Yu, X. Influence of Chondroitin Sulfate and Hyaluronic Acid Presence in Nanofibers and Its Alignment on the Bone Marrow Stromal Cells: cartilage Regeneration. J. Biomed. Nanotechnol. 2014, 10, 1469–1479.
  • Shin, M.; Yoshimoto, H.; Vacanti, J. P. In Vivo Bone Tissue Engineering Using Mesenchymal Stem Cells on a Novel Electrospun Nanofibrous Scaffold. Tissue Eng. 2004, 10, 33–41. doi:10.1089/107632704322791673.
  • Fu, S.; Ni, P.; Wang, B. Y.; Chu, B.; Peng, J.; Zheng, L.; Zhao, X.; Luo, F.; Wei, Y.; Qian, Z.; et al. In Vivo Biocompatibility and Osteogenesis of Electrospun Poly (ε-Caprolactone)–Poly (Ethylene Glycol)–Poly (ε-Caprolactone)/Nano-Hydroxyapatite Composite Scaffold. Biomaterials. 2012, 33, 8363–8371. doi:10.1016/j.biomaterials.2012.08.023.
  • Son, S.-R.; Linh, N.-T. B.; Yang, H.-M.; Lee, B.-T. In Vitro and in Vivo Evaluation of Electrospun PCL/PMMA Fibrous Scaffolds for Bone Regeneration. Sci. Technol. Adv. Mater. 14.1 (2013): 015009. doi:10.1088/1468-6996/14/1/015009.
  • Genin, G. M.; Kent, A.; Birman, V.; Wopenka, B.; Pasteris, J. D.; Marquez, P. J.; Thomopoulos, S. Functional Grading of Mineral and Collagen in the Attachment of Tendon to Bone. Biophys. J. 2009, 97, 976–985. doi:10.1016/j.bpj.2009.05.043.
  • Tseng, Q.; Duchemin-Pelletier, E.; Deshiere, A.; Balland, M.; Guillou, H.; Filhol, O.; Thery, M. Spatial Organization of the Extracellular Matrix Regulates Cell–Cell Junction Positioning. Proc. Natl. Acad. Sci, 2012, 109, 1506–1511. doi:10.1073/pnas.1106377109.
  • Geckil, H.; Xu, F.; Zhang, X.; Moon, S.; Demirci, U. Engineering Hydrogels as Extracellular Matrix Mimics. Nanomedicine (Lond). 2010, 5, 469–484. doi:10.2217/nnm.10.12.
  • Du, F.; Wang, H.; Zhao, W.; Li, D.; Kong, D.; Yang, J.; Zhang, Y. Gradient Nanofibrous Chitosan/Poly ɛ-Caprolactone Scaffolds as Extracellular Microenvironments for Vascular Tissue Engineering. Biomaterials. 2012, 33, 762–770. doi:10.1016/j.biomaterials.2011.10.037.
  • Ramalingam, M.; Young, M. F.; Thomas, V.; Sun, L.; Chow, L. C.; Tison, C. K.; Chatterjee, K.; Miles, W. C.; Simon, C. G. Nanofiber Scaffold Gradients for Interfacial Tissue Engineering. J. Biomater. Appl. 2013, 27, 695–705. doi:10.1177/0885328211423783.
  • Son, Y. J.; Kim, W. J.; Yoo, H. S. Therapeutic Applications of Electrospun Nanofibers for Drug Delivery Systems. Arch. Pharm. Res. 2014, 37, 69–78. doi:10.1007/s12272-013-0284-2.
  • Tang, S.; Zhu, J.; Xu, Y.; Xiang, A. P.; Jiang, M. H.; Quan, D. The Effects of Gradients of Nerve Growth Factor Immobilized PCLA Scaffolds on Neurite Outgrowth in Vitro and Peripheral Nerve Regeneration in Rats. Biomaterials. 2013, 34, 7086–7096. doi:10.1016/j.biomaterials.2013.05.080.
  • Moore, N. M.; Lin, N. J.; Gallant, N. D.; Becker, M. L. Synergistic Enhancement of Human Bone Marrow Stromal Cell Proliferation and Osteogenic Differentiation on BMP-2-Derived and RGD Peptide Concentration Gradients. Acta Biomaterialia 2011, 7, 2091–2100. doi:10.1016/j.actbio.2011.01.019.
  • Sobral, J. M.; Caridade, S. G.; Sousa, R. A.; Mano, J. F.; Reis, R. L. Three-Dimensional Plotted Scaffolds with Controlled Pore Size Gradients: Effect of Scaffold Geometry on Mechanical Performance and Cell Seeding Efficiency. Acta Biomater. 2011, 7, 1009–1018. doi:10.1016/j.actbio.2010.11.003.
  • Khorshidi, S.; Karkhaneh, A. Electrically Conductive Gel/Fibers Composite Scaffold with Graded Properties. Mater. Sci. Eng. C. 2017, 74, 238–245. doi:10.1016/j.msec.2016.12.014.
  • Timnak, A.; Gerstenhaber, J. A.; Dong, K.; Har-el, Y-e.; Lelkes, P. I. Gradient Porous Fibrous Scaffolds: A Novel Approach to Improving Cell Penetration in Electrospun Scaffolds. Biomed. Mater. 2018, 13, 065010. doi:10.1088/1748-605X/aadbbe.
  • Jelen, C.; Mattei, G.; Montemurro, F.; De Maria, C.; Mattioli-Belmonte, M.; Vozzi, G. Bone Scaffolds with Homogeneous and Discrete Gradient Mechanical Properties. Mater. Sci, Eng. C. 2013, 33, 28–36. doi:10.1016/j.msec.2012.07.046.
  • Seidi, A.; Ramalingam, M.; Elloumi-Hannachi, I.; Ostrovidov, S.; Khademhosseini, A. Gradient Biomaterials for Soft-to-Hard Interface Tissue Engineering. Acta Biomater. 2011, 7, 1441–1451. doi:10.1016/j.actbio.2011.01.011.
  • Dormer, N. H.; et al. Osteochondral Interface Regeneration of the Rabbit Knee with Macroscopic Gradients of Bioactive Signals. J. Biomed. Mater. Res. 2012, 100, 162–170. doi:10.1002/jbm.a.33225.
  • Levingstone, T. J.; Matsiko, A.; Dickson, G. R.; O’Brien, F. J.; Gleeson, J. P. A Biomimetic Multi-Layered Collagen-Based Scaffold for Osteochondral Repair. Acta Biomater. 2014, 10, 1996–2004. doi:10.1016/j.actbio.2014.01.005.
  • Xu, T.; Zhao, W.; Zhu, J.-M.; Albanna, M. Z.; Yoo, J. J.; Atala, A. Complex Heterogeneous Tissue Constructs Containing Multiple Cell Types Prepared by Inkjet Printing Technology. Biomaterials. 2013, 34, 130–139. doi:10.1016/j.biomaterials.2012.09.035.
  • He, J.; Jiang, N.; Qin, T.; Zhang, W.; Liu, Z.; Liu, Y.; Li, D. Microfiber-Reinforced Nanofibrous Scaffolds with Structural and Material Gradients to Mimic Ligament-to-Bone Interface. J. Mater. Chem. B. 2017, 5, 8579–8590. doi:10.1039/C7TB02089A.
  • Sridhar, R.; Lakshminarayanan, R.; Madhaiyan, K.; Amutha Barathi, V.; Lim, K. H. C.; Ramakrishna, S. Electrosprayed Nanoparticles and Electrospun Nanofibers Based on Natural Materials: applications in Tissue Regeneration, Drug Delivery and Pharmaceuticals. Chem. Soc. Rev. 2015, 44, 790–814. doi:10.1039/C4CS00226A.
  • He, J.; Qin, T.; Liu, Y.; Li, X.; Li, D.; Jin, Z. Electrospinning of Nanofibrous Scaffolds with Continuous Structure and Material Gradients. Mater. Lett. 2014, 137, 393–397. doi:10.1016/j.matlet.2014.09.045.
  • Samavedi, S.; Olsen Horton, C.; Guelcher, S. A.; Goldstein, A. S.; Whittington, A. R. Fabrication of a Model Continuously Graded Co-electrospun Mesh for Regeneration of the Ligament-Bone Interface . Acta Biomater. 2011, 7, 4131–4138. doi:10.1016/j.actbio.2011.07.008.
  • Singh, M.; Dormer, N.; Salash, J. R.; Christian, J. M.; Moore, D. S.; Berkland, C.; Detamore, M. S. Three‐Dimensional Macroscopic Scaffolds with a Gradient in Stiffness for Functional Regeneration of Interfacial Tissues. J. Biomed. Mater. Res. 2010, 94, 870–876. doi:10.1002/jbm.a.32765.
  • Kishan, A. P.; Robbins, A. B.; Mohiuddin, S. F.; Jiang, M.; Moreno, M. R.; Cosgriff-Hernandez, E. M. Fabrication of Macromolecular Gradients in Aligned Fiber Scaffolds Using a Combination of in-Line Blending and Air-Gap Electrospinning. Acta Biomater. 2017, 56, 118–128. doi:10.1016/j.actbio.2016.12.041.
  • Wu, T.; Xue, J., Li, H.; Zhu, C.; Mo, X.; Xia, Y. General Method for Generating Circular Gradients of Active Proteins on Nanofiber Scaffolds Sought for Wound Closure and Related Applications. ACS Appl. Mater. Interfaces 2018, 10, 8536–8545. doi:10.1021/acsami.8b00129.
  • Fisher, M. B.; Henning, E. A.; Söegaard, N.; Esterhai, J. L.; Mauck, R. L. Organized Nanofibrous Scaffolds That Mimic the Macroscopic and Microscopic Architecture of the Knee Meniscus. Acta Biomater. 2013, 9, 4496–4504. doi:10.1016/j.actbio.2012.10.018.
  • Rinker, T. E.; Temenoff, J. S. Micro-and Nanotechnology Engineering Strategies for Tissue Interface Regeneration and Repair. Tissue Organ Regen. (2014): 105–155.
  • Malda, J.; Woodfield, T. B. F.; van der Vloodt, F.; Wilson, C.; Martens, D. E.; Tramper, J.; van Blitterswijk, C. A.; Riesle, J. The Effect of PEGT/PBT Scaffold Architecture on the Composition of Tissue Engineered Cartilage. Biomaterials. 2005, 26, 63–72. doi:10.1016/j.biomaterials.2004.02.046.
  • Hwang, N. S.; Kim, M. S.; Sampattavanich, S.; Baek, J. H.; Zhang, Z.; Elisseeff, J. Effects of Three‐Dimensional Culture and Growth Factors on the Chondrogenic Differentiation of Murine Embryonic Stem Cells. Stem Cells. 2006, 24, 284–291. doi:10.1634/stemcells.2005-0024.
  • Liu, H.; Lin, J.; Roy, K. Effect of 3D Scaffold and Dynamic Culture Condition on the Global Gene Expression Profile of Mouse Embryonic Stem Cells. Biomaterials. 2006, 27, 5978–5989. doi:10.1016/j.biomaterials.2006.05.053.
  • Yang, X.; Shah, J. D.; Wang, H. Nanofiber Enabled Layer-by-Layer Approach Toward Three-Dimensional Tissue Formation. Tissue Eng. A. 2009, 15, 945–956. doi:10.1089/ten.tea.2007.0280.
  • Madurantakam, P. A.; Rodriguez, I. A.; Garg, K.; McCool, J. M.; Moon, P. C.; Bowlin, G. L. Compression of Multilayered Composite Electrospun Scaffolds: A Novel Strategy to Rapidly Enhance Mechanical Properties and Three Dimensionality of Bone Scaffolds. Adv. Mater. Sci. Eng. 2013, 2013, 1. doi:10.1155/2013/561273.
  • Pham, Q. P.; Sharma, U.; Mikos, A. G. Electrospun Poly (ε-Caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds: Characterization of Scaffolds and Measurement of Cellular Infiltration. Biomacromolecules. 2006, 7, 2796–2805. doi:10.1021/bm060680j.
  • He, F.-L.; Li, D.-W.; He, J.; Liu, Y.-Y.; Ahmad, F.; Liu, Y.-L.; Deng, X.; Ye, Y.-J.; Yin, D.-C. A Novel Layer-Structured Scaffold with Large Pore Sizes Suitable for 3D Cell Culture Prepared by near-Field Electrospinning. Mater. Sci. Eng. C. 2018, 86, 18–27. doi:10.1016/j.msec.2017.12.016.
  • Teo, W. E.; Kotaki, M.; Mo, X. M.; Ramakrishna, S. Porous Tubular Structures with Controlled Fibre Orientation Using a Modified Electrospinning Method. Nanotechnology. 2005, 16, 918. doi:10.1088/0957-4484/16/6/049.
  • Sun, Z.; Zussman, E.; Yarin, A. L.; Wendorff, J. H.; Greiner, A. Compound Core–Shell Polymer Nanofibers by co‐Electrospinning. Adv. Mater. 2003, 15, 1929–1932. doi:10.1002/adma.200305136.
  • Yokoyama, Y.; Hattori, S.; Yoshikawa, C.; Yasuda, Y.; Koyama, H.; Takato, T.; Kobayashi, H. Novel Wet Electrospinning System for Fabrication of Spongiform Nanofiber 3-Dimensional Fabric. Mater. Lett. 2009, 63, 754–756. doi:10.1016/j.matlet.2008.12.042.
  • Hashizume, R.; Fujimoto, K. L.; Hong, Y.; Amoroso, N. J.; Tobita, K.; Miki, T.; Keller, B. B.; Sacks, M. S.; Wagner, W. R. Morphological and Mechanical Characteristics of the Reconstructed Rat Abdominal Wall following Use of a Wet Electrospun Biodegradable Polyurethane Elastomer Scaffold. Biomaterials. 2010, 31, 3253–3265. doi:10.1016/j.biomaterials.2010.01.051.
  • Khil, M. S. Novel Fabricated Matrix via Electrospinning for Tissue Engineering. J. Biomed. Mater. Res. 2005, 72, 117–124. doi:10.1002/jbm.b.30122.
  • Nam, J.; Huang, Y.; Agarwal, S.; Lannutti, J. Improved Cellular Infiltration in Electrospun Fiber via Engineered Porosity. Tissue Eng. 2007, 13, 2249–2257. doi:10.1089/ten.2006.0306.
  • Baker, B. M.; Gee, A. O.; Metter, R. B.; Nathan, A. S.; Marklein, R. A.; Burdick, J. A.; Mauck, R. L. The Potential to Improve Cell Infiltration in Composite Fiber-Aligned Electrospun Scaffolds by the Selective Removal of Sacrificial Fibers. Biomaterials. 2008, 29, 2348–2358. doi:10.1016/j.biomaterials.2008.01.032.
  • Bonino, C. A.; Efimenko, K.; Jeong, S. I.; Krebs, M. D.; Alsberg, E.; Khan, S. A. Three‐Dimensional Electrospun Alginate Nanofiber Mats via Tailored Charge Repulsions. Small. 2012, 8, 1928–1936. doi:10.1002/smll.201101791.
  • Sun, B.; Long, Y.-Z.; Yu, F.; Li, M.-M.; Zhang, H.-D.; Li, W.-J.; Xu, T.-X. Self-Assembly of a Three-Dimensional Fibrous Polymer Sponge by Electrospinning. Nanoscale. 2012, 4, 2134–2137. doi:10.1039/c2nr11782g.
  • Martins, A.; Chung, S.; Pedro, A. J.; Sousa, R. A.; Marques, A. P.; Reis, R. L.; Neves, N. M. Hierarchical Starch‐Based Fibrous Scaffold for Bone Tissue Engineering Applications. J. Tissue Eng. Regen. Med. 2009, 3, 37–42. doi:10.1002/term.132.
  • Silva, N. A.; Salgado, A. J.; Sousa, R. A.; Oliveira, J. T.; Pedro, A. J.; Leite-Almeida, H.; Cerqueira, R.; Almeida, A.; Mastronardi, F.; Mano, J. F.; et al. Development and Characterization of a Novel Hybrid Tissue Engineering–Based Scaffold for Spinal Cord Injury Repair. Tissue Eng. A. 2010, 16, 45–54. doi:10.1089/ten.tea.2008.0559.
  • Kim, G.; Son, J.; Park, S. A.; Kim, W. Hybrid Process for Fabricating 3D Hierarchical Scaffolds Combining Rapid Prototyping and Electrospinning. Macromol. Rapid Commun. 2008, 29, 1577–1581. doi:10.1002/marc.200800277.
  • Shah Hosseini, N.; Bölgen, N.; Khenoussi, N.; Yılmaz, ŞN.; Yetkin, D.; Hekmati, A. H.; Schacher, L.; Adolphe, D. Novel 3D Electrospun Polyamide Scaffolds Prepared by 3D Printed Collectors and Their Interaction with Chondrocytes. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 143–150. doi:10.1080/00914037.2017.1309541.
  • Kriebel, A.; Rumman, M.; Scheld, M.; Hodde, D.; Brook, G.; Mey, J. Three‐Dimensional Configuration of Orientated Fibers as Guidance Structures for Cell Migration and Axonal Growth. J. Biomed. Mater. Res. 2014, 102, 356–365. doi:10.1002/jbm.b.33014.
  • Sankar, S.; Sharma, C. S.; Rath, S. N. Enhanced Osteodifferentiation of MSC Spheroids on Patterned Electrospun Fiber mats-An Advanced 3D Double Strategy for Bone Tissue Regeneration. Mater. Sci. Eng. C. 2019, 94, 703–712. doi:10.1016/j.msec.2018.10.025.
  • Yao, Q.; Cosme, J. G. L.; Xu, T.; Miszuk, J. M.; Picciani, P. H. S.; Fong, H.; Sun, H. Three Dimensional Electrospun PCL/PLA Blend Nanofibrous Scaffolds with Significantly Improved Stem Cells Osteogenic Differentiation and Cranial Bone Formation. Biomaterials. 2017, 115, 115–127. doi:10.1016/j.biomaterials.2016.11.018.
  • Lee, S.-J.; Nowicki, M.; Harris, B.; Zhang, L. G. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning. Tissue Eng. A. 2017, 23, 491–502. doi:10.1089/ten.tea.2016.0353.
  • Gao, Q.; Gu, H.; Zhao, P.; Zhang, C.; Cao, M.; Fu, J.; He, Y. Fabrication of Electrospun Nanofibrous Scaffolds with 3D Controllable Geometric Shapes. Mater. Design. 2018, 157, 159–169. doi:10.1016/j.matdes.2018.07.042.
  • Wu, Y.; Fuh, J.; Wong, Y. S.; Sun, J. A Hybrid Electrospinning and Electrospraying 3D Printing for Tissue Engineered Scaffolds. Rapid Prototyp. J. 2017, 23, 1011–1019. doi:10.1108/RPJ-08-2015-0111.
  • Holzapfel, B. M.; Reichert, J. C.; Schantz, J.-T.; Gbureck, U.; Rackwitz, L.; Nöth, U.; Jakob, F.; Rudert, M.; Groll, J.; Hutmacher, D. W.; et al. How Smart Do Biomaterials Need to Be? a Translational Science and Clinical Point of View. Adv. Drug Deliv. Rev. 2013, 65, 581–603. doi:10.1016/j.addr.2012.07.009.
  • Lu, H. H.; Subramony, S. D.; Boushell, M. K.; Zhang, X. Tissue Engineering Strategies for the Regeneration of Orthopedic Interfaces. Ann. Biomed. Eng. 38.6 (2010): 2142–2154. doi:10.1007/s10439-010-0046-y.
  • Zhou, Y.; et al. Electrospinning 3D Nanofiber Structure of Polycaprolactone Incorporated with Silver Nanoparticles. JOM, 2018, 1–7. doi:10.1007/s11837-018-3222-4.
  • Place, E. S.; George, J. H.; Williams, C. K.; Stevens, M. M. Synthetic Polymer Scaffolds for Tissue Engineering. Chem. Soc. Rev. 2009, 38, 1139–1151. doi:10.1039/b811392k.
  • Bosworth, L. A.; Turner, L.-A.; Cartmell, S. H. State of the Art Composites Comprising Electrospun Fibres Coupled with Hydrogels: A Review. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 322–335. doi:10.1016/j.nano.2012.10.008.
  • Narayanan, L. K.; et al. 3D-Bioprinting of Polylactic Acid (PLA) Nanofiber–Alginate Hydrogel Bioink Containing Human Adipose-Derived Stem Cells. ACS Biomater. Sci. Eng. 2016, 2, 1732–1742. doi:10.1021/acsbiomaterials.6b00196.
  • Bruggeman, K. F.; Wang, Y.; Maclean, F. L.; Parish, C. L.; Williams, R. J.; Nisbet, D. R. Temporally Controlled Growth Factor Delivery from a Self-Assembling Peptide Hydrogel and Electrospun Nanofibre Composite Scaffold. Nanoscale. 2017, 9, 13661–13669. doi:10.1039/C7NR05004F.
  • Xu, W.; Ma, J.; Jabbari, E. Material Properties and Osteogenic Differentiation of Marrow Stromal Cells on Fiber-Reinforced Laminated Hydrogel Nanocomposites. Acta Biomater. 2010, 6, 1992–2002. doi:10.1016/j.actbio.2009.12.003.
  • Tonsomboon, K.; Butcher, A. L.; Oyen, M. L. Strong and Tough Nanofibrous Hydrogel Composites Based on Biomimetic Principles. Mater. Sci.Eng. C. 2017, 72, 220–227. doi:10.1016/j.msec.2016.11.025.
  • Zhao, X.; Sun, X.; Yildirimer, L.; Lang, Q.; Lin, Z. Y. (W. ).; Zheng, R.; Zhang, Y.; Cui, W.; Annabi, N.; Khademhosseini, A.; et al. Cell Infiltrative Hydrogel Fibrous Scaffolds for Accelerated Wound Healing. Acta Biomater. 2017, 49, 66–77. doi:10.1016/j.actbio.2016.11.017.
  • Sun, X.; Lang, Q.; Zhang, H.; Cheng, L.; Zhang, Y.; Pan, G.; Zhao, X.; Yang, H.; Zhang, Y.; Santos, H. A.; et al. Electrospun Photocrosslinkable Hydrogel Fibrous Scaffolds for Rapid in Vivo Vascularized Skin Flap Regeneration. Adv. Funct. Mater. 2017, 27, 1604617. doi:10.1002/adfm.201604617.
  • Chen, C.; Tang, J.; Gu, Y.; Liu, L.; Liu, X.; Deng, L.; Martins, C.; Sarmento, B.; Cui, W.; Chen, L.; et al. Bioinspired Hydrogel Electrospun Fibers for Spinal Cord Regeneration. Adv. Funct. Mater. 2019, 29, 1806899. doi:10.1002/adfm.201806899.
  • Brunelle, A. R.; Horner, C. B.; Low, K.; Ico, G.; Nam, J. Electrospun Thermosensitive Hydrogel Scaffold for Enhanced Chondrogenesis of Human Mesenchymal Stem Cells. Acta Biomater. 2018, 66, 166–176. doi:10.1016/j.actbio.2017.11.020.
  • Nguyen, L. H.; Gao, M.; Lin, J.; Wu, W.; Wang, J.; Chew, S. Y. Three-Dimensional Aligned Nanofibers-Hydrogel Scaffold for Controlled Non-Viral Drug/Gene Delivery to Direct Axon Regeneration in Spinal Cord Injury Treatment. Sci. Rep. 2017, 7, 42212. doi:10.1038/srep42212.
  • Wu, Y.; Wang, L.; Guo, B.; Ma, P. X. Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy. Acs Nano. 2017, 11, 5646–5659. doi:10.1021/acsnano.7b01062.
  • Khalili, S.; Nouri Khorasani, S.; Razavi, M.; Hashemi Beni, B.; Heydari, F.; Tamayol, A. Nanofibrous Scaffolds with Biomimetic Structure. J. Biomed. Mater. Res. 2018, 106, 370–376. doi:10.1002/jbm.a.36246.
  • Choi, J. S.; Lee, S. J.; Christ, G. J.; Atala, A.; Yoo, J. J. The Influence of Electrospun Aligned Poly (Epsilon-Caprolactone)/Collagen Nanofiber Meshes on the Formation of Self-Aligned Skeletal Muscle Myotubes. Biomaterials. 2008, 29, 2899–2906. doi:10.1016/j.biomaterials.2008.03.031.
  • Yeo, M.; Kim, G. H. Anisotropically Aligned Cell‐Laden Nanofibrous Bundle Fabricated via Cell Electrospinning to Regenerate Skeletal Muscle Tissue. Small. 2018, 14, 1803491. doi:10.1002/smll.201803491.
  • Ghasemi-Mobarakeh, L.; Prabhakaran, M. P.; Morshed, M.; Nasr-Esfahani, M.-H.; Ramakrishna, S. Electrospun Poly (ɛ-Caprolactone)/Gelatin Nanofibrous Scaffolds for Nerve Tissue Engineering. Biomaterials. 2008, 29, 4532–4539. doi:10.1016/j.biomaterials.2008.08.007.
  • Gnavi, S.; Fornasari, B. E.; Tonda-Turo, C.; Laurano, R.; Zanetti, M.; Ciardelli, G.; Geuna, S. In Vitro Evaluation of Gelatin and Chitosan Electrospun Fibres as an Artificial Guide in Peripheral Nerve Repair: A Comparative Study. J. Tissue Eng. Regen. Med. 2018, 12, e679–e694. doi:10.1002/term.2351.
  • Kitsara, M.; Agbulut, O.; Kontziampasis, D.; Chen, Y.; Menasché, P. Fibers for Hearts: A Critical Review on Electrospinning for Cardiac Tissue Engineering. Acta Biomater. 2017, 48, 20–40. doi:10.1016/j.actbio.2016.11.014.
  • Sahoo, S.; Ouyang, H.; Goh, J. C.-H.; Tay, T. E.; Toh, S. L. Characterization of a Novel Polymeric Scaffold for Potential Application in Tendon/Ligament Tissue Engineering. Tissue Eng. 2006, 12, 91–99. doi:10.1089/ten.2006.12.91.
  • Vaquette, C.; Sudheesh Kumar, P. T.; Petcu, E. B.; Ivanovski, S. Combining Electrospinning and Cell Sheet Technology for the Development of a Multiscale Tissue Engineered Ligament Construct (TELC). J. Biomed. Mater. Res. 2018, 106, 399–409. doi:10.1002/jbm.b.33828.
  • Shalumon, K. T.; Sheu, C.; Chen, C.-H.; Chen, S.-H.; Jose, G.; Kuo, C.-Y.; Chen, J.-P. Multi-Functional Electrospun Antibacterial Core-Shell Nanofibrous Membranes for Prolonged Prevention of Post-Surgical Tendon Adhesion and Inflammation. Acta Biomater. 2018, 72, 121–136. doi:10.1016/j.actbio.2018.03.044.
  • Li, W.-J.; Tuli, R.; Okafor, C.; Derfoul, A.; Danielson, K. G.; Hall, D. J.; Tuan, R. S. A Three-Dimensional Nanofibrous Scaffold for Cartilage Tissue Engineering Using Human Mesenchymal Stem Cells. Biomaterials 2005, 26, 599–609. doi:10.1016/j.biomaterials.2004.03.005.
  • Girão, A. F.; Semitela, Â.; Ramalho, G.; Completo, A.; Marques, P. A. A. P. Mimicking Nature: Fabrication of 3D Anisotropic Electrospun Polycaprolactone Scaffolds for Cartilage Tissue Engineering Applications. Comp. B Eng. 2018, 154, 99–107. doi:10.1016/j.compositesb.2018.08.001.
  • Li, X.; Xie, J.; Lipner, J.; Yuan, X.; Thomopoulos, S.; Xia, Y. Nanofiber Scaffolds with Gradations in Mineral Content for Mimicking the Tendon-to-Bone Insertion Site. Nano Lett. 2009, 9, 2763–2768. doi:10.1021/nl901582f.
  • Bruggeman, K. F.; Williams, R. J.; Nisbet, D. R. Dynamic and Responsive Growth Factor Delivery from Electrospun and Hydrogel Tissue Engineering Materials. Adv. Healthcare Mater. 2018, 7, 1700836. doi:10.1002/adhm.201700836.
  • Jun, I.; Han, S. S.; Edwards, J. R. Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication. Int. J. Mol. Sci. 19.3 (2018): 745.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.