419
Views
13
CrossRef citations to date
0
Altmetric
Articles

Hybrid chitosan/amniotic membrane-based hydrogels for articular cartilage tissue engineering application

, , , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 961-970 | Received 02 Apr 2019, Accepted 22 Jun 2019, Published online: 09 Jul 2019

References

  • Camarero-Espinosa, S.; Rothen-Rutishauser, B.; Foster, E. J.; Weder, C. Articular Cartilage: From Formation to Tissue Engineering. Biomater. Sci. 2016, 4, 734–767. DOI: 10.1039/C6BM00068A.
  • Huey, D. J.; Hu, J. C.; Athanasiou, K. A. Unlike Bone, Cartilage Regeneration Remains Elusive. Science (80-). 2012, 338, 917–921. DOI: 10.1126/science.1222454.
  • Litwic, A.; Edwards, M. H.; Dennison, E. M.; Cooper, C. Epidemiology and Burden of Osteoarthritis. Br. Med. Bull. 2013, 105, 185–199. DOI: 10.1093/bmb/lds038.
  • Helmick, C. G.; Felson, D. T.; Lawrence, R. C.; Gabriel, S.; Hirsch, R.; Kwoh, C. K.; Liang, M. H.; Kremers, H. M.; Mayes, M. D.; Merkel, P. A.; et al. Estimates of the Prevalence of Arthritis and Other Rheumatic Conditions in the United States. Part I. Arthritis Rheum. 2008, 58, 15–25. DOI: 10.1002/art.23177.
  • Hunter, D. J.; Schofield, D.; Callander, E. The Individual and Socioeconomic Impact of Osteoarthritis. Nat. Rev. Rheumatol. 2014, 10, 437–441. DOI: 10.1038/nrrheum.2014.44.
  • Bernhard, J. C.; Vunjak-Novakovic, G. Should we Use Cells, Biomaterials, or Tissue Engineering for Cartilage Regeneration? Stem Cell Res. Ther. 2016, 7, 56. DOI: 10.1186/s13287-016-0314-3.
  • Nelson, A. E. Osteoarthritis Year in Review 2017: Clinical. Osteoarthr. Cartil. 2018, 26, 319–325. DOI: 10.1016/j.joca.2017.11.014.
  • Yan, L.-P.; Oliveira, J. M.; Oliveira, A. L.; Reis, R. L. Current Concepts and Challenges in Osteochondral Tissue Engineering and Regenerative Medicine. ACS Biomater. Sci. Eng. 2015, 1, 183–200. DOI: 10.1021/ab500038y.
  • Kon, E.; Filardo, G.; Perdisa, F.; Venieri, G.; Marcacci, M. Clinical Results of Multilayered Biomaterials for Osteochondral Regeneration. J. Exp. Orthop. 2014, 1, 10.
  • Di Luca, A.; Longoni, A.; Criscenti, G.; Lorenzo-Moldero, I.; Klein-Gunnewiek, M.; Vancso, J.; Van Blitterswijk, C.; Mota, C.; Moroni, L. Surface Energy and Stiffness Discrete Gradients in Additive Manufactured Scaffolds for Osteochondral Regeneration. Biofabrication. 2016, 8, 015014. DOI: 10.1088/1758-5090/8/1/015014.
  • Nooeaid, P.; Salih, V.; Beier, J. P.; Boccaccini, A. R. Osteochondral Tissue Engineering: Scaffolds, Stem Cells and Applications. J. Cell. Mol. Med. 2012, 16, 2247–2270.
  • Chuah, Y. J.; Peck, Y.; Lau, J. E. J.; Hee, H. T.; Wang, D. A. Hydrogel Based Cartilaginous Tissue Regeneration: Recent Insights and Technologies. Biomater. Sci. 2017, 5, 613–631.
  • Vega, S. L.; Kwon, M. Y.; Burdick, J. A. Recent Advances in Hydrogels for Cartilage Tissue Engineering. ECM. 2017, 33, 59–75.
  • Hoffman, A. S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23.
  • Chifiriuc, M.; Grumezescu, A.; Grumezescu, V.; Bezirtzoglou, E.; Lazar, V.; Bolocan, A. Biomedical Applications of Natural Polymers for Drug Delivery. COC. 2014, 18, 152–164.
  • Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. Injectable Hydrogels for Cartilage and Bone Tissue Engineering. Bone Res. 2017, 5, 17014.
  • Zhao, W.; Jin, X.; Cong, Y.; Liu, Y.; Fu, J. Degradable Natural Polymer Hydrogels for Articular Cartilage Tissue Engineering. J. Chem. Technol. Biotechnol. 2013, 88, 327–339.
  • Baker, L. G.; Specht, C. A.; Donlin, M. J.; Lodge, J. K. Chitosan, the Deacetylated Form of Chitin, Is Necessary for Cell Wall Integrity in Cryptococcus neoformans. Eukaryot. Cell. 2007, 6, 855–867.
  • Mittmann, N.; Stout, N. K.; Lee, P.; Tosteson, A. N.; Trentham-Dietz, A.; Alagoz, O.; Yaffe, M. J. Total Cost-Effectiveness of Mammography Screening Strategies. Heal. Rep. 2015, 26, 16–25.
  • Croisier, F.; Jérôme, C. Chitosan-Based Biomaterials for Tissue Engineering. Eur. Polym. J. 2013, 49, 780–792.
  • Comblain, F.; Rocasalbas, G.; Gauthier, S.; Henrotin, Y. Chitosan: A Promising Polymer for Cartilage Repair and Viscosupplementation. BME. 2017, 28, S209–S215.
  • Jin, R.; Moreira Teixeira, L. S.; Dijkstra, P. J.; Karperien, M.; van Blitterswijk, C. A.; Zhong, Z. Y.; Feijen, J. Injectable Chitosan-Based Hydrogels for Cartilage Tissue Engineering. Biomaterials. 2009, 30, 2544–2551.
  • Sánchez-Téllez, D.; Téllez-Jurado, L.; Rodríguez-Lorenzo, L. Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids. Polymers (Basel). 2017, 9, 671.
  • Taghiabadi, E.; Nasri, S.; Shafieyan, S.; Firoozinezhad, S. J.; Aghdami, N. Fabrication and Characterization of Spongy Denuded Amniotic Membrane Based Scaffold for Tissue Engineering. Cell J. 2015, 16, 476–487.
  • Niknejad, H.; Peirovi, H.; Seifalian, A.; Ahmadiani, A.; Ghanavi, J.; Jorjani, M. Properties of the Amniotic Membrane for Potential Use in Tissue Engineering. ECM. 2008, 7, 88–99.
  • Francisco, J. C.; Correa Cunha, R.; Cardoso, M. A.; Baggio Simeoni, R.; Mogharbel, B. F.; Picharski, G. L.; Silva Moreira Dziedzic, D.; Guarita-Souza, L. C.; Carvalho, K. A. Decellularized Amniotic Membrane Scaffold as a Pericardial Substitute: An in Vivo Study. Transplant. Proc. 2016, 48, 2845–2849.
  • Jin, C. Z.; Park, S. R.; Choi, B. H.; Lee, K.-Y.; Kang, C. K.; Min, B.-H. Human Amniotic Membrane as a Delivery Matrix for Articular Cartilage Repair. Tissue Eng. 2007, 13, 693–702.
  • Jerman, U. D.; Veranič, P.; Kreft, M. E. Amniotic Membrane Scaffolds Enable the Development of Tissue-Engineered Urothelium with Molecular and Ultrastructural Properties Comparable to That of Native Urothelium. Tissue Eng. Part C Methods. 2014, 20, 317–327.
  • Mahmoudi-Rad, M.; Abolhasani, E.; Moravvej, H.; Mahmoudi-Rad, N.; Mirdamadi, Y. Acellular Amniotic Membrane: An Appropriate Scaffold for Fibroblast Proliferation. Clin. Exp. Dermatol. 2013, 38, 646–651.
  • Hussin, I. H.; Pingguan-Murphy, B.; Osman, S. Z. The Fabrication of Human Amniotic Membrane Based Hydrogel for Cartilage Tissue Engineering Applications: A Preliminary Study. In IFMBE Proc. 2011, 35, 841–844.
  • Martínez, a.; Blanco, M. D.; Davidenko, N.; Cameron, R. E. Tailoring Chitosan/Collagen Scaffolds for Tissue Engineering: Effect of Composition and Different Crosslinking Agents on Scaffold Properties. Carbohydr. Polym. 2015, 132, 606–619.
  • Shen, Z. S.; Cui, X.; Hou, R. X.; Li, Q.; Deng, H. X.; Fu, J. Tough Biodegradable Chitosan-Gelatin Hydrogels via in Situ Precipitation for Potential Cartilage Tissue Engineering. RSC Adv. 2015, 5, 55640–55647.
  • Hong, Y.; Gong, Y.; Gao, C.; Shen, J. Collagen-Coated Polylactide Microcarriers/Chitosan Hydrogel Composite: Injectable Scaffold for Cartilage Regeneration. J. Biomed. Mater. Res. 2008, 85, 628–637.
  • Fiamingo, A.; Delezuk, J. A. D. M.; Trombotto, S.; David, L.; Campana-Filho, S. P. Extensively Deacetylated High Molecular Weight Chitosan from the Multistep Ultrasound-Assisted Deacetylation of Beta-Chitin. Ultrason. Sonochem. 2016, 32, 79–85.
  • Hirai, A.; Odani, H.; Nakajima, A. Determination of Degree of Deacetylation of Chitosan by 1H NMR Spectroscopy. Polym. Bull. 1991, 26, 87–94.
  • Rinaudo, M.; Milas, M.; Dung, P. L. Characterization of Chitosan. Influence of Ionic Strength and Degree of Acetylation on Chain Expansion. Int. J. Biol. Macromol. 1993, 15, 281–285.
  • Tan, H.; Luan, H.; Hu, Y.; Hu, X. Covalently Crosslinked Chitosan-Poly(Ethylene Glycol) Hybrid Hydrogels to Deliver Insulin for Adipose-Derived Stem Cells Encapsulation. Macromol. Res. 2013, 21, 392–399.
  • Gorgieva, S.; Kokol, V. Collagen- vs. Gelatine-Based Biomaterials and Their Biocompatibility: Review and Perspectives. Biomater. Appl. Nanomedicine 2011, 17–51.
  • Patino, M. G.; Neiders, M. E.; Andreana, S.; Noble, B.; Cohen, R. E. Collagen: An Overview. Implant Dent. 2002, 11, 280–285.
  • Shoulders, M. D.; Raines, R. T. Collagen Structure and Stability. Annu. Rev. Biochem. 2009, 78, 929–958.
  • Ushiki, T. Collagen Fibers, Reticular Fibers and Elastic Fibers. A Comprehensive Understanding from a Morphological Viewpoint. Arch. Histol. Cytol. 2002, 65, 109–126.
  • Wilshaw, S.-P.; Kearney, J. N.; Fisher, J.; Ingham, E. Production of an Acellular Amniotic Membrane Matrix for Use in Tissue Engineering. Tissue Eng. 2006, 12, 2117–2129.
  • Liu, D.; Nikoo, M.; Boran, G.; Zhou, P.; Regenstein, J. M. Collagen and Gelatin. Annu. Rev. Food Sci. Technol. 2015, 6, 527–557.
  • Sionkowska, a. Molecular Interactions in Collagen and Chitosan Blends. Biomaterials. 2004, 25, 795–801.
  • Kumar, T. R.; Shanmugasundaram, N.; Babu, M. Biocompatible Collagen Scaffolds from a Human Amniotic Membrane: Physicochemical and in Vitro Culture Characteristics. J. Biomater. Sci. Polym. Ed. 2003, 14, 689–706.
  • Sastry, T. P.; Rao, K. P. Hydrogels Based on Amniotic Collagen Poly(Hydroxyethyl Methacrylate) Graft Copolymers. J. Bioact. Compat. Polym. 1990, 5, 430–438.
  • Payne, K. J.; Veis, a. Fourier Transform ir Spectroscopy of Collagen and Gelatin Solutions: Deconvolution of the Amide I Band for Conformational Studies. Biopolymers. 1988, 27, 1749–1760.
  • Sylvester, M. F.; Yannas, I. V.; Salzman, E. W.; Forbes, M. J. Collagen Banded Fibril Structure and the Collagen-Platelet Reaction. Thromb. Res. 1989, 55, 135–148.
  • Boucard, N.; Viton, C.; Domard, A. New Aspects of the Formation of Physical Hydrogels of Chitosan in a Hydroalcoholic Medium. Biomacromolecules. 2005, 6, 3227–3237.
  • Montembault, A.; Viton, C.; Domard, A. Rheometric Study of the Gelation of Chitosan in a Hydroalcoholic Medium. Biomaterials. 2005, 26, 1633–1643.
  • Popa-Nita, S.; Montembault, A.; Alcouffe, P.; Rochas, C.; David, L. Domard, A. Control of the Hydrophilic/Hydrophobic Interaction Balance in the Processing of Chitosan Physical Hydrogels for Tissue Engineering. ECM. 2008, 16, 45.
  • Wu, X.; Black, L.; Santacana-Laffitte, G.; Patrick, C. W. Preparation and Assessment of Glutaraldehyde-Crosslinked Collagen-Chitosan Hydrogels for Adipose Tissue Engineering. J. Biomed. Mater. Res. 2007, 81, 59–65.
  • Xu, H.; Xu, B.; Yang, Q.; Li, X.; Ma, X.; Xia, Q.; Zhang, Y.; Zhang, C.; Wu, Y.; Zhang, Y. Comparison of Decellularization Protocols for Preparing a Decellularized Porcine Annulus Fibrosus Scaffold. PLOS One. 2014, 9, e86723.
  • Moura, M. J.; Figueiredo, M. M.; Gil, M. H. Rheological Study of Genipin Cross-Linked Chitosan Hydrogels. Biomacromolecules. 2007, 8, 3823–3829.
  • Singh, a.; Narvi, S. S.; Dutta, P. K.; Pandey, N. D. External Stimuli Response on a Novel Chitosan Hydrogel Crosslinked with Formaldehyde. Bull. Mater. Sci. 2006, 29, 233–238.
  • Hirano, S.; Yamaguchi, R.; Fukui, N.; Iwata, M. A Chitosan Oxalate Gel: Its Conversion to an N-Acetylchitosan Gel via a Chitosan Gel. Carbohydr. Res. 1990, 201, 145–149.
  • Song, K.; Li, L.; Li, W.; Zhu, Y.; Jiao, Z.; Lim, M.; Fang, M.; Shi, F.; Wang, L.; Liu, T. Three-Dimensional Dynamic Fabrication of Engineered Cartilage Based on Chitosan/Gelatin Hybrid Hydrogel Scaffold in a Spinner Flask with a Special Designed Steel Frame. Mater. Sci. Eng. C. 2015, 55, 384–392.
  • Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Peppas, N. A.; Gurny, R. Structure and Interactions in Covalently and Ionically Crosslinked Chitosan Hydrogels for Biomedical Applications. Eur. J. Pharm. Biopharm. 2004, 57, 19–34.
  • Tan, W.; Krishnaraj, R.; Desai, T. A. Evaluation of Nanostructured Composite Collagen–Chitosan Matrices for Tissue Engineering. Tissue Eng. 2001, 7, 203–210.
  • Staroszczyk, H.; Sztuka, K.; Wolska, J.; Wojtasz-Pająk, A.; Kołodziejska, I. Interactions of Fish Gelatin and Chitosan in Uncrosslinked and Crosslinked with EDC Films: FT-IR Study. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2014, 117, 707–712.
  • Brånemark, R.; Brånemark, P.I.; Rydevik, B.; Myers, R.R. Osseointegration in Skeletal Reconstruction and Rehabilitation: A Review. J Rehabil Res Dev. 2001, 38, 175–181.Brånemark, R.; Brånemark, P.I.; Rydevik, B.; Myers, R.R. Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev 2001, 38(2), 175-181.
  • Francis Suh, J.-K.; Matthew, H. W. T. Application of Chitosan-Based Polysaccharide Biomaterials in Cartilage Tissue Engineering: A Review. Biomaterials. 2000, 21, 2589–2598.
  • Grolik, M.; Szczubiałka, K.; Wowra, B.; Dobrowolski, D.; Orzechowska-Wylęgała, B.; Wylęgała, E.; Nowakowska, M. Hydrogel Membranes Based on Genipin-Cross-Linked Chitosan Blends for Corneal Epithelium Tissue Engineering. J. Mater. Sci: Mater. Med. 2012, 23, 1991–2000.
  • Alizadeh, M.; Abbasi, F.; Khoshfetrat, a. B.; Ghaleh, H. Microstructure and Characteristic Properties of Gelatin/Chitosan Scaffold Prepared by a Combined Freeze-Drying/Leaching Method. Mater. Sci. Eng. C. 2013, 33, 3958–3967.
  • Zhang, L.; Yuan, T.; Guo, L.; Zhang, X. An in Vitro Study of Collagen Hydrogel to Induce the Chondrogenic Differentiation of Mesenchymal Stem Cells. J. Biomed. Mater. Res. 2012, 100 A, 2717–2725.
  • Zhou, Y.; Liang, K.; Zhao, S.; Zhang, C.; Li, J.; Yang, H.; Liu, X.; Yin, X.; Chen, D.; Xu, W.; Xiao, P. Photopolymerized Maleilated Chitosan/Methacrylated Silk Fibroin Micro/Nanocomposite Hydrogels as Potential Scaffolds for Cartilage Tissue Engineering. Int. J. Biol. Macromol. 2018, 108, 383–390.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.