898
Views
33
CrossRef citations to date
0
Altmetric
Articles

Polymer-drug conjugates as nanomedicine: a review

, & ORCID Icon
Pages 990-1014 | Received 28 Mar 2019, Accepted 11 Aug 2019, Published online: 19 Sep 2019

References

  • Danhier, F.; Feron, O.; Préat, V. To Exploit the Tumor Microenvironment: passive and Active Tumor Targeting of Nanocarriers for anti-Cancer Drug Delivery. J. Control Release. 2010, 148, 135–146.
  • Khan, J.; Alexander, A.; Saraf, S.; Saraf, S. Exploring the Role of Polymeric Conjugates Toward Anti-Cancer Drug Delivery: Current Trends and Future Projections. Int. J. Pharm. 2018, 548, 500–514.
  • Bhoskar, M.; Patil, P. Development and Evaluation of Paclitaxel Loaded Nanoparticles Using 24 Factorial Design. Int.J.Curr.Pharm.Res. 2015, 7, 64–72.
  • Xu, H.; Ma, H.; Yang, P.; Zhang, X.; Wu, X.; Yin, W.; Wang, H.; Xu, D. Targeted Polymer-Drug Conjugates: current Progress and Future Perspective. Colloid Surface B. 2015, 136, 729–734.
  • Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016, 116, 5338–5431.
  • D'souza, A. A.; Devarajan, P. V. Asialoglycoprotein Receptor Mediated Hepatocyte Targeting—Strategies and Applications. J. Control Release. 2015, 203, 126–139.
  • Dahms, N. M.; Lobel, P.; Kornfeld, S. Mannose 6-Phosphate Receptors and Lysosomal Enzyme Targeting. J. Biol. Chem. 1989, 264, 12115–12118.
  • Le Droumaguet, B.; Nicolas, J.; Brambilla, D.; Mura, S.; Maksimenko, A.; De Kimpe, L.; Salvati, E.; Zona, C.; Airoldi, C.; Canovi, M.; et al. Versatile and Efficient Targeting Using a Single Nanoparticulate Platform: application to Cancer and Alzheimer’s Disease. ACS Nano. 2012, 6, 5866–5879.
  • Sudimack, J.; Lee, R. J. Targeted Drug Delivery via the Folate Receptor. Adv. Drug Deliv. Rev. 2000, 41, 147–162.
  • Garanger, E.; Boturyn, D.; Dumy, P. Tumor Targeting with RGD Peptide Ligands-Design of New Molecular Conjugates for Imaging and Therapy of Cancers. Acamc. 2007, 7, 552–558.
  • Vannucci, L.; Falvo, E.; Fornara, M.; Di Micco, P.; Benada, O.; Krizan, J.; Svoboda, J.; Hulikova-Capkova, K.; Morea, V.; Boffi, A.; Ceci, P. Selective Targeting of Melanoma by PEG-Masked Protein-Based Multifunctional Nanoparticles. Int.J. Nanomed. 2012, 7, 1489.
  • Mendelsohn, J.; Baselga, J. The EGF Receptor Family as Targets for Cancer Therapy. Oncogene. 2000, 19, 6550.
  • Suresh, T.; Lee, L. X.; Joshi, J.; Barta, S. K. New Antibody Approaches to Lymphoma Therapy. J. Hematol. Oncol. 2014, 7, 58.
  • Mollgard, L.; Rebello, P.; Hale, G.; Waldmann, H.; Mellstedt, H.; Osterborg, A.; Lundin, J.; Kimby, E.; Bjorkholm, M.; Broliden, P. A.; et al. Phase II Trial of Subcutaneous anti-CD52 Monoclonal Antibody. Blood. 2002, 100, 768–773.
  • Jain, R. K.; Duda, D. G.; Clark, J. W.; Loeffler, J. S. Lessons from Phase III Clinical Trials on anti-VEGF Therapy for Cancer. Nat. Rev. Clin. Oncol. 2006, 3, 24.
  • Tai, W.; Mahato, R.; Cheng, K. The Role of HER2 in Cancer Therapy and Targeted Drug Delivery. J. Control. Release. 2010, 146, 264–275.
  • Daniels, T. R.; Delgado, T.; Rodriguez, J. A.; Helguera, G.; Penichet, M. L. The Transferrin Receptor Part I: Biology and Targeting with Cytotoxic Antibodies for the Treatment of Cancer. Clin Immunol. 2006, 121, 144–158.
  • Daniels, T. R.; Bernabeu, E.; Rodríguez, J. A.; Patel, S.; Kozman, M.; Chiappetta, D. A.; Holler, E.; Ljubimova, J. Y.; Helguera, G.; Penichet, M. L. The Transferrin Receptor and the Targeted Delivery of Therapeutic Agents Against Cancer. BBA. 2012, 1820, 291–317.
  • Kuan, C. T.; Wikstrand, C. J.; Archer, G.; Beers, R.; Pastan, I.; Zalutsky, M. R.; Bigner, D. D. Increased Binding Affinity Enhances Targeting of Glioma Xenografts by EGFRvIII‐Specific scFv. Int. J. Cancer. 2000, 88, 962–969.
  • Moghimi, S. M.; Hunter, A. C.; Murray, J. C. Nanomedicine: Current Status and Future Prospects. FASEB. 2005, 19, 311–330.
  • Langer, R. Drug Delivery and Targeting. Nature-London. 1998, 5, 2551–2556.
  • Matsumura, Y.; Maeda, H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 1986, 46, 6387–6392.
  • Hawkins, M. J.; Soon-Shiong, P.; Desai, N. Protein Nanoparticles as Drug Carriers in Clinical Medicine. Adv. Drug Deliv, Rev. 2008, 60, 876–885.
  • Gabizon, A.; Shmeeda, H.; Barenholz, Y. Pharmacokinetics of Pegylated Liposomal Doxorubicin. Clin Pharmacokinet. 2003, 42, 419–436.
  • Patil, P.; Mahajan, H. S. A Review on Polymer Drug Conjugate‒What, Why and How. IJPSR. 2015, 6, 4611–4621.
  • Feng, Q.; Tong, R. Anticancer Nano Particulate Polymer‐Drug Conjugate. Bioeng. Transl. Med. 2016, 1, 277–296.
  • Vogus, D. R.; Krishnan, V.; Mitragotri, S. A Review on Engineering Polymer Drug Conjugates to Improve Combination Chemotherapy. Curr Opin Colloid Interface Sci. 2017, 31, 75–85.
  • Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic Therapy. JNCI. 1998, 90, 889–905.
  • Ochsner, M. Photophysical and Photobiological Processes in the Photodynamic Therapy of Tumours. J. Photoche Photobio. B. 1997, 39, 1–18.
  • McCarthy, J. R.; Perez, J. M.; Brückner, C.; Weissleder, R. Polymeric Nanoparticle Preparation That Eradicates Tumors. Nano Lett. 2005, 5, 2552–2556.
  • Jiang, H.; Taranekar, P.; Reynolds, J. R.; Schanze, K. S. Conjugated Polyelectrolytes: Synthesis, Photophysics, and Applications. Angew. Chem. Int. Ed. 2009, 48, 4300–4316.
  • Lu, L.; Rininsland, F. H.; Wittenburg, S. K.; Achyuthan, K. E.; McBranch, D. W.; Whitten, D. G. Biocidal Activity of a Light-Absorbing Fluorescent Conjugated Polyelectrolyte. Langmuir. 2005, 21, 10154–10159.
  • Yuan, Y.; Liu, J.; Liu, B. Conjugated‐Polyelectrolyte‐Based Polyprodrug: targeted and Image‐Guided Photodynamic and Chemotherapy with on‐Demand Drug Release upon Irradiation with a Single Light Source. Angew. Chem. 2014, 126, 7291–7296.
  • Chilkoti, A.; Dreher, M. R.; Meyer, D. E.; Raucher, D. Targeted Drug Delivery by Thermally Responsive Polymers. Adv. Drug Deliv. Rev. 2002, 54, 613–630.
  • Meyer, D. E.; Kong, G. A.; Dewhirst, M. W.; Zalutsky, M. R.; Chilkoti, A. Targeting a Genetically Engineered Elastin-like Polypeptide to Solid Tumors by Local Hyperthermia. Cancer Res. 2001, 61, 1548–1554.
  • Liu, W.; Dreher, M. R.; Furgeson, D. Y.; Peixoto, K. V.; Yuan, H.; Zalutsky, M. R.; Chilkoti, A. Tumor Accumulation, Degradation and Pharmacokinetics of Elastin-like Polypeptides in Nude Mice. J. Control. Release. 2006, 116, 170–178.
  • Dreher, M. R.; Liu, W.; Michelich, C. R.; Dewhirst, M. W.; Chilkoti, A. Thermal Cycling Enhances the Accumulation of a Temperature-Sensitive Biopolymer in Solid Tumors. Cancer Res. 2007, 67, 4418–4424.
  • Furgeson, D. Y.; Dreher, M. R.; Chilkoti, A. Structural Optimization of a “Smart” Doxorubicin–Polypeptide Conjugate for Thermally Targeted Delivery to Solid Tumors. J. Control. Release. 2006, 110, 362–369.
  • Goodarzi, N.; Varshochian, R.; Kamalinia, G.; Atyabi, F.; Dinarvand, R. A Review of Polysaccharide Cytotoxic Drug Conjugates for Cancer Therapy. Carbohydr. Polymers. 2013, 92, 1280–1293.
  • Noguchi, Y.; Wu, J.; Duncan, R.; Strohalm, J.; Ulbrich, K.; Akaike, T.; Maeda, H. Early Phase Tumor Accumulation of Macromolecules: A Great Difference in Clearance Rate between Tumor and Normal Tissues. Japanese J. Cancer Res. 1998, 89, 307–314.
  • Lee, C. C.; Cramer, A. T.; Szoka, F. C.; Fréchet, J. M. An Intramolecular Cyclization Reaction Is Responsible for the in Vivo Inefficacy and Apparent pH Insensitive Hydrolysis Kinetics of Hydrazone Carboxylate Derivatives of Doxorubicin. Bioconjugate Chem. 2006, 17, 1364–1368.
  • Kakinoki, A.; Kaneo, Y.; Ikeda, Y.; Tanaka, T.; Fujita, K. Synthesis of Poly (Vinyl Alcohol)–Doxorubicin Conjugates Containing Cis-Aconityl Acid-Cleavable Bond and Its Isomer Dependent Doxorubicin Release. Biol. Pharm. Bull. 2008, 31, 103–110.
  • Pechar, M.; Braunová, A.; Ulbrich, K.; Jelínková, M.; Ríhová, B. Poly (Ethylene Glycol)-Doxorubicin Conjugates with pH-Controlled Activation. J. bioactive and Compatible Polymers 2005, 20, 319–341.
  • Greenwald, R. B. PEG Drugs: An overview. J Control. Release. 2001, 74, 159–171.
  • Delplace, V.; Couvreur, P.; Nicolas, J. Recent trends in the design of anticancer polymer prodrug nanocarriers. Polymer Chem. 2014, 5, 1529–1544.
  • Chang, M.; Zhang, F.; Wei, T.; Zuo, T.; Guan, Y.; Lin, G.; Shao, W. Smart Linkers in Polymer–Drug Conjugates for Tumor-Targeted Delivery. J. Drug Target. 2016, 24, 475–491.
  • Ulbrich, K.; Šubr, V. Polymeric Anticancer Drugs with pH-Controlled Activation. Adv. Drug Deliv. Rev. 2004, 56, 1023–1050.
  • Boghaert, E. R.; Khandke, K. M.; Sridharan, L.; Dougher, M.; DiJoseph, J. F.; Kunz, A.; Hamann, P. R.; Moran, J.; Chaudhary, I.; Damle, N. K. Determination of Pharmacokinetic Values of Calicheamicin-Antibody Conjugates in Mice by Plasmon Resonance Analysis of Small (5 μl) Blood Samples. Cancer Chemother. Pharmacol. 2008, 61, 1027–1035.
  • Schafer, F. Q.; Buettner, G. R. Redox Environment of the Cell as Viewed Through the Redox State of the Glutathione Disulfide/Glutathione Couple. Free Radic Biol Med. 2001, 30, 1191–1212.
  • Gamcsik, M. P.; Kasibhatla, M. S.; Teeter, S. D.; Colvin, O. M. Glutathione Levels in Human Tumors. Biomarkers. 2012, 17, 671–691.
  • Meng, F.; Hennink, W. E.; Zhong, Z. Reduction-Sensitive Polymers and Bioconjugates for Biomedical Applications. Biomaterials. 2009, 30, 2180–2198.
  • Egeblad, M.; Werb, Z. New Functions for the Matrix Metalloproteinases in Cancer Progression. Nature Rev. Cancer. 2002, 2, 161.
  • Senter, P. D.; Sievers, E. L. The Discovery and Development of Brentuximabvedotin for Use in Relapsed Hodgkin Lymphoma and Systemic Anaplastic Large Cell Lymphoma. Nature Biotechnol. 2012, 30, 631.
  • Chau, Y.; Tan, F. E.; Langer, R. Synthesis and Characterization of Dextran − Peptide − Methotrexate Conjugates for Tumor Targeting via Mediation by Matrix Metalloproteinase II and Matrix Metalloproteinase IX. Bioconjug. Chem. 2004, 15, 931–941.
  • Tong, R.; Kohane, D. S. Shedding Light on Nanomedicine. Wiley Interdiscip. Rev.2012, 4, 638–662.
  • Tong, R.; Tang, L.; Ma, L.; Tu, C.; Baumgartner, R.; Cheng, J. Smart Chemistry in Polymeric Nanomedicine. Chemical Soc Rev. 2014, 43, 6982–7012.
  • Scott, L. C.; Yao, J. C.; Benson, A. B.; Thomas, A. L.; Falk, S.; Mena, R. R.; Picus, J.; Wright, J.; Mulcahy, M. F.; Ajani, J. A.; et al. A Phase II Study of Pegylated-Camptothecin (Pegamotecan) in the Treatment of Locally Advanced and Metastatic Gastric and Gastro-oesophageal Junction Adenocarcinoma. Cancer chemotherapy and pharmacology 2009, 63, 363–370.
  • Eldon, M. A.; Staschen, C. M.; Viegas, T.; Bentley, M. NKTR-102, a Novel PEGylated-Irinotecan Conjugate, Results in Sustained Tumor Growth Inhibition in Mouse Models of Human Colorectal and Lung Tumors that is Associated with Increased and Sustained Tumor SN38 exposure. Poster presented at the, 2007, 22–26.
  • Zhao, H.; Rubio, B.; Sapra, P.; Wu, D.; Reddy, P.; Sai, P.; Martinez, A.; Gao, Y.; Lozanguiez, Y.; Longley, C.; et al. Novel Prodrugs of SN38 Using Multiarm Poly (Ethylene Glycol) Linkers. Bioconjug. Chem. 2008, 19, 849–859.
  • Choe, Y. H.; Greenwald, R. B.; Conover, C. D.; Zhao, H.; Longley, C. B.; Guan, S.; Zhao, Q.; Xia, J. PEG Prodrugs of 6-Mercaptopurine for Parenteral Administration Using Benzyl Elimination of Thiols. Oncol. Res. Featur. Preclin. Clin. Cancer Therap. 2004, 14, 455–468.
  • Pasut, G.; Canal, F.; Dalla Via, L.; Arpicco, S.; Veronese, F. M.; Schiavon, O. Antitumoral Activity of PEG–Gemcitabine Prodrugs Targeted by Folic Acid. J. Control. Release. 2008, 127, 239–248.
  • Senevirathne, S. A.; Washington, K. E.; Biewer, M. C.; Stefan, M. C. PEG Based Anti-Cancer Drug Conjugated Prodrug Micelles for the Delivery of Anti-Cancer Agents. J. Mater. Chemistry B. 2016, 4, 360–370.
  • Bae, Y.; Jang, W. D.; Nishiyama, N.; Fukushima, S.; Kataoka, K. Multifunctional Polymeric Micelles with Folate-Mediated Cancer Cell Targeting and pH-Triggered Drug Releasing Properties for Active Intracellular Drug Delivery. Mol BioSyst 2005, 1, 242–250.
  • Yoo, H. S.; Lee, E. A.; Park, T. G. Doxorubicin-Conjugated Biodegradable Polymeric Micelles having Acid-Cleavable Linkages. J. Control. Release. 2002, 82, 17–27.
  • Wang, J.; Li, S.; Han, Y.; Guan, J.; Chung, S.; Wang, C.; Li, D. Poly (Ethylene Glycol)–Polylactide Micelles for Cancer Therapy. Front. Pharmacol, 2018, 9, 202.
  • Vetvicka, D.; Hruby, M.; Hovorka, O.; Etrych, T.; Vetrik, M.; Kovar, L.; Kovar, M.; Ulbrich, K.; Rihova, B. Biological Evaluation of Polymeric Micelles with Covalently Bound Doxorubicin. Bioconjug. Chemistry. 2009, 20, 2090–2097.
  • Sui, B.; Xu, H.; Jin, J.; Gou, J.; Liu, J.; Tang, X.; Zhang, Y.; Xu, J.; Zhang, H.; Jin, X. Self-Assembled Micelles Composed of Doxorubicin Conjugated Y-Shaped PEG-Poly (Glutamic Acid) 2 Copolymers via Hydrazone Linkers. Molecules. 2014, 19, 11915–11932.
  • Zhang, X.; Li, Y.; Chen, X.; Wang, X.; Xu, X.; Liang, Q.; Hu, J.; Jing, X. Synthesis and Characterization of the Paclitaxel/MPEG-PLA Block Copolymer Conjugate. Biomaterials. 2005, 26, 2121–2128.
  • Yang, R.; Zhang, S.; Kong, D.; Gao, X.; Zhao, Y.; Wang, Z. Biodegradable Polymer-Curcumin Conjugate Micelles Enhance the Loading and Delivery of Low-Potency Curcumin. Pharmaceut. Res. 2012, 29, 3512–3525.
  • Jin, Q.; Mitschang, F.; Agarwal, S. Biocompatible Drug Delivery System for Photo-Triggered Controlled Release of 5-Fluorouracil. Biomacromolecules. 2011, 12, 3684–3691.
  • Li, Y.; Kwon, G. S. Methotrexate esTers of Poly (Ethylene Oxide)-Block-Poly (2-Hydroxyethyl-L-Aspartamide). Part I: Effects of the Level of Methotrexate Conjugation on the Stability of Micelles and on Drug Release. Pharmaceut. Res. 2000, 17, 607–611.
  • Li, X.; Wang, M.; Liu, C.; Jing, X.; Huang, Y. TAT‐Modified Mixed Micelles as Biodegradable Targeting and Delivering System for Cancer Therapeutics. J. Appl. Polymer Sci. 2013, 130, 4598–4607.
  • Bae, Y.; Nishiyama, N.; Fukushima, S.; Koyama, H.; Yasuhiro, M.; Kataoka, K. Preparation and Biological Characterization of Polymeric Micelle Drug Carriers with Intracellular pH-Triggered Drug Release Property: tumor Permeability, Controlled Subcellular Drug Distribution, and Enhanced in Vivo Antitumor Efficacy. Bioconjugate Chem. 2005, 16, 122–130.
  • Svenson, S.; Wolfgang, M.; Hwang, J.; Ryan, J.; Eliasof, S. Preclinical to Clinical Development of the Novel Camptothecinnanopharmaceutical CRLX101. J. Control. Release. 2011, 153, 49–55.
  • Masayuki, Y.; Mizue, M.; Noriko, Y.; Teruo, O.; Yasuhisa, S.; Kazunori, K.; Shohei, I. Polymer Micelles as Novel Drug Carrier: Adriamycin-Conjugated Poly (Ethylene Glycol)-Poly (Aspartic Acid) Block Copolymer. J. Control. Release. 1990, 11, 269–278.
  • Yokoyama, M.; Miyauchi, M.; Yamada, N.; Okano, T.; Sakurai, Y.; Kataoka, K.; Inoue, S. Characterization and Anticancer Activity of the Micelle-Forming Polymeric Anticancer Drug Adriamycin-Conjugated Poly (Ethylene Glycol)-Poly (Aspartic Acid) Block Copolymer. Cancer Res. 1990, 50, 1693–1700.
  • Liu, J.; Liu, W.; Weitzhandler, I.; Bhattacharyya, J.; Li, X.; Wang, J.; Qi, Y.; Bhattacharjee, S.; Chilkoti, A. Ring‐Opening Polymerization of Prodrugs: A Versatile Approach to Prepare Well‐Defined Drug‐Loaded Nanoparticles. AngewandteChemie. 2015, 127, 1016–1020.
  • Wang, Y.; Chen, L.; Tan, L.; Zhao, Q.; Luo, F.; Wei, Y.; Qian, Z. PEG–PCL Based Micelle Hydrogels as Oral Docetaxel Delivery Systems for Breast Cancer Therapy. Biomaterials. 2014, 35, 6972–6985.
  • Mikhail, A. S.; Allen, C. Poly (Ethylene Glycol)-b-Poly (ε-Caprolactone) Micelles Containing Chemically Conjugated and Physically Entrapped Docetaxel: Synthesis, Characterization, and the Influence of the Drug on Micelle Morphology. Biomacromolecules. 2010, 11, 1273–1280.
  • Shahin, M.; Lavasanifar, A. Novel Self-Associating Poly (Ethylene Oxide)-b-Poly (ɛ-Caprolactone) Based Drug Conjugates and Nano-Containers for Paclitaxel Delivery. Int. J. Pharm 2010, 389, 213–222.
  • Forrest, M. L.; Yáñez, J. A.; Remsberg, C. M.; Ohgami, Y.; Kwon, G. S.; Davies, N. M. Paclitaxel Prodrugs with Sustained Release and High Solubility in Poly (Ethylene Glycol)-b-Poly (ε-Caprolactone) Micelle Nanocarriers: Pharmacokinetic Disposition, Tolerability, and Cytotoxicity. Pharmaceut. Res. 2008, 25, 194–206.
  • Shahin, M.; Safaei-Nikouei, N.; Lavasanifar, A. Polymeric Micelles for pH-Responsive Delivery of Cisplatin. J. Drug Target. 2014, 22, 629–637.
  • Gharebaghi, F.; Dalali, N.; Ahmadi, E.; Danafar, H. Preparation of Wormlike Polymeric Nanoparticles Coated with Silica for Delivery of Methotrexate and Evaluation of Anticancer Activity Against MCF7 Cells. J. Biomater. Appl. 2017, 31, 1305–1316.
  • Asem, H.; Zhao, Y.; Ye, F.; Barrefelt, Å.; Abedi-Valugerdi, M.; El-Sayed, R.; El-Serafi, I.; Abu-Salah, K. M.; Hamm, J.; Muhammed, M.; et al. Biodistribution of Biodegradable Polymeric Nano-Carriers Loaded with Busulphan and Designed for Multimodal Imaging. J. Nanobiotechnol. 2016, 14, 82.
  • Dragojevic, S.; Ryu, J.; Raucher, D. Polymer-Based Prodrugs: Improving Tumor Targeting and the Solubility of Small Molecule Drugs in Cancer Therapy. Molecules. 2015, 20, 21750–21769.
  • Vasey, P. A.; Duncan, R.; Kaye, S. B. Clinical phase I trial of PK1(HPMA Co-Polymer Doxorubicin) oral, 1995,31, S193.
  • Vasey, P. A.; Kaye, S. B.; Morrison, R.; Twelves, C.; Wilson, P.; Duncan, R.; Thomson, A. H.; Murray, L. S.; Hilditch, T. E.; Murray, T.; et al.. Phase I Clinical and Pharmacokinetic Study of PK1 [N-(2-Hydroxypropyl) Methacrylamide Copolymer Doxorubicin]: First Member of a New Class of Chemotherapeutic Agents—Drug-Polymer Conjugates. Clin. Cancer Res. 1999, 5, 83–94.
  • Yang, J.; Kopeček, J. The Light at the End of the Tunnel—Second Generation HPMA Conjugates for Cancer Treatment. Curr. Opin. Colloid Interface Sci. 2017, 31, 30–42.
  • Bissett, D.; Cassidy, J.; de Bono, J. S.; Muirhead, F.; Main, M.; Robson, L.; Fraier, D.; Magnè, M. L.; Pellizzoni, C.; Porro, M. G.; et al. Phase I and Pharmacokinetic (PK) Study of MAG-CPT (PNU 166148): A Polymeric Derivative of Camptothecin (CPT). British J. Cancer. 2004, 91, 50.
  • Terwogt, J. M. M.; ten BokkelHuinink, W. W.; Schellens, J. H.; Schot, M.; Mandjes, I. A.; Zurlo, M. G.; Rocchetti, M.; Rosing, H.; Koopman, F. J.; Beijnen, J. H. Phase I Clinical and Pharmacokinetic Study of PNU166945, A Novel Water-Soluble Polymer-Conjugated Prodrug of Paclitaxel. Anti Cancer Drugs. 2001, 12, 315–323.
  • Greco, F.; Vicent, M. J. Polymer-Drug Conjugates: Current Status and Future Trends. Front. Biosci. 2008, 13, 2744–2756.
  • Šubr, V.; Strohalm, J.; Hirano, T.; Ito, Y.; Ulbrich, K. Poly [N-(2-hydroxypropyl) methacrylamide] conjugates of methotrexate: synthesis and in vitro drug release. J. Control. Release. 1997, 49, 123–132.
  • United State Patent, Lee et al.. HPMA-Docetaxel conjugates and uses therefore. Patent no.: US 9,434,610 B2, September 6, 2016.
  • Khare, V.; Kour, S.; Alam, N.; Dubey, R. D.; Saneja, A.; Koul, M.; Gupta, A. P.; Singh, D.; Singh, S. K.; Saxena, A. K.; Gupta, P. N. Synthesis, Characterization and Mechanistic-Insight into the Anti-Proliferative Potential of PLGA-Gemcitabine Conjugate. Int. J. Pharm. 2014, 470, 51–62.
  • Aggarwal, S.; Gupta, S.; Pabla, D.; Murthy, R. S. R. Gemcitabine-Loaded PLGA-PEG Immunonanoparticles for Targeted Chemotherapy of Pancreatic Cancer. Cancer nanotechnology 2013, 4, 145.
  • Maleki, H.; Dorkoosh, F.; Adabi, M.; Khosravani, M.; Arzani, H.; Kamali, M. Methotrexate-Loaded PLGA Nanoparticles: Preparation, Characterization and their Cytotoxicity Effect on Human Glioblastoma U87MG Cells. Int. J. Med. Nano. Res. 2017, 4, 020.
  • Singer, J. W.; Baker, B.; de Vries, P.; Kumar, A.; Shaffer, S.; Vawter, E.; Bolton, M.; Garzone, P. 2004. Poly-(l)-Glutamic Acid-Paclitaxel (CT-2103)[XYOTAX™], a Biodegradable Polymeric Drug Conjugate. In Polymer Drugs in the Clinical Stage. Springer: Boston, MA; pp 81–99
  • United States Patent, Tsang et al. Reduction of Endotoxins from Polyanionic Polymer Conjugates. Patent no.: US 9,839,694 B2, December 12, 2017.
  • Pun, S. H.; Hoffman, A. S. Polymer drug conjugate Application of biomaterials Section, 14, 1007–1017.
  • Guan, H.; McGuire, M. J.; Li, S.; Brown, K. C. Peptide-Targeted Polyglutamic Acid Doxorubicin Conjugates for the Treatment of αvβ6-Positive Cancers. Bioconjug. Chemistry. 2008, 19, 1813–1821.
  • Luo, Y.; Bernshaw, N. J.; Lu, Z. R.; Kopecek, J.; Prestwich, G. D. Targeted Delivery of Doxorubicin by HPMA copolymer-hyaluronanbioconjugates. Pharmaceut. Res. 2002, 19, 396–402.
  • Auzenne, E.; Ghosh, S. C.; Khodadadian, M.; Rivera, B.; Farquhar, D.; Price, R. E.; Ravoori, M.; Kundra, V.; Freedman, R. S.; Klostergaard, J. Hyaluronic Acid-Paclitaxel: Antitumor Efficacy Against CD44 (+) Human Ovarian Carcinoma Xenografts. Neoplasia. 2007, 9, 479–486.
  • Luo, Y.; Ziebell, M. R.; Prestwich, G. D. A Hyaluronic Acid − Taxol Antitumor Bioconjugate Targeted to Cancer Cells. Biomacromolecules. 2000, 1, 208–218.
  • Bassi, P. F.; Volpe, A.; D'Agostino, D.; Palermo, G.; Renier, D.; Franchini, S.; Rosato, A.; Racioppi, M. Paclitaxel-Hyaluronic Acid for Intravesical Therapy of Bacillus Calmette-Guerin Refractory Carcinoma in situ of the Bladder: Results of a Phase I Study. J. Urol. 2011, 185, 445–449.
  • Cai, S.; Thati, S.; Bagby, T. R.; Diab, H. M.; Davies, N. M.; Cohen, M. S.; Forrest, M. L. Localized Doxorubicin Chemotherapy with a Biopolymericnanocarrier Improves Survival and Reduces Toxicity in Xenografts of Human Breast Cancer. J. Control. Release. 2010, 146, 212–218.
  • Fu, C.; Yang, R. M.; Wang, L.; Li, N. N.; Qi, M.; Xu, X. D.; Wei, X. H.; Jiang, X. Q.; Zhang, L. M. Surface Functionalization of Superparamagnetic Nanoparticles by an Acid-Liable Polysaccharide-Based Prodrug for Combinatorial Monitoring and Chemotherapy of Hepatocellular Carcinoma. RSC Adv. 2017, 7, 41919–41928.
  • Lee, H.; Lee, K.; Park, T. G. Hyaluronic Acid − Paclitaxel Conjugate Micelles: Synthesis, Characterization, and Antitumor Activity. Bioconjug. Chemistry. 2008, 19, 1319–1325.
  • Coradini, D.; Pellizzaro, C.; Miglierini, G.; Daidone, M. G.; Perbellini, A. Hyaluronic Acid as Drug Delivery for Sodium Butyrate: Improvement of the Anti‐Proliferative Activity on a Breast‐Cancer Cell Line. Int. J. Cancer. 1999, 81, 411–416.
  • Manju, S.; Sreenivasan, K. Enhanced Drug Loading on Magnetic Nanoparticles by Layer-by-Layer Assembly Using Drug Conjugates: Blood Compatibility Evaluation and Targeted Drug Delivery in Cancer Cells. Langmuir. 2011, 27, 14489–14496.
  • Manju, S.; Sreenivasan, K. Conjugation of Curcumin onto Hyaluronic Acid Enhances its Aqueous Solubility and Stability. J. Colloid Interface Sci. 2011, 359, 318–325.
  • Homma, A.; Sato, H.; Okamachi, A.; Emura, T.; Ishizawa, T.; Kato, T.; Matsuura, T.; Sato, S.; Tamura, T.; Higuchi, Y.; et al. Novel Hyaluronic Acid–Methotrexate Conjugates for Osteoarthritis Treatment. Bioorg. Med. Chemistry. 2009, 17, 4647–4656.
  • Li, Q.; Chen, Y.; Zhou, X.; Chen, D.; Li, Y.; Yang, J.; Zhu, X. Hyaluronic Acid–Methotrexate Conjugates Coated Magnetic Polydopamine Nanoparticles for Multimodal Imaging-Guided Multistage Targeted Chemo-Photothermal Therapy. Mol. Pharmaceut. 2018, 15, 4049–4062.
  • Okuno, S.; Harada, M.; Yano, T.; Yano, S.; Kiuchi, S.; Tsuda, N.; Sakamura, Y.; Imai, J.; Kawaguchi, T.; Tsujihara, K. Complete Regression of Xenografted Human Carcinomas by Camptothecin Analogue-Carboxymethyl Dextran Conjugate (T-0128). Cancer Res. 2000, 60, 2988–2995.
  • Danhauser-Riedl, S.; Hausmann, E.; Schick, H. D.; Bender, R.; Dietzfelbinger, H.; Rastetter, J.; Hanauske, A. R. Phase I Clinical and Pharmacokinetic Trial of Dextran Conjugated Doxorubicin (AD-70, DOX-OXD). Investig. New Drugs. 1993, 11, 187–195.
  • Dang, W.; Colvin, O. M.; Brem, H.; Saltzman, W. M. Covalent Coupling of Methotrexate to Dextran Enhances the Penetration of Cytotoxicity into a Tissue-Like Matrix. Cancer research 1994, 54, 1729–1735.
  • Nevozhay, D.; Budzynska, R.; Kanska, U.; Jagiello, M.; Omar, M. S.; Boratynski, J.; Opolski, A. Antitumor Properties and Toxicity of Dextran-Methotrexate Conjugates are Dependent on the Molecular Weight of the Carrier. Anticancer Res. 2006, 26, 1135–1143.
  • Chau, Y.; Dang, N. M.; Tan, F. E.; Langer, R. Investigation of Targeting Mechanism of New Dextran-Peptide-Methotrexate Conjugates Using Biodistribution Study in Matrix-Metalloproteinase-Overexpressing Tumor Xenograft Model. J. Pharm. Sci. 2006, 95, 542–551
  • Kato, Y.; Onishi, H.; Machida, Y. N-Succinyl-Chitosan as a Drug Carrier: Water-Insoluble and Water-Soluble Conjugates. Biomaterials. 2004, 25, 907–915.
  • Sato, M.; Onishi, H.; Kitano, M.; Machida, Y.; Nagai, T. Preparation and Drug Release Characteristics of the Conjugates of Mitomycin C with Glycol-Chitosan and N-Succinyl-Chitosan. Biol, Pharm. Bull. 1996, 19, 241–245.
  • Mukherjee, C. B.; Maji, R.; Dey, N. S.; Mukherjee, B.; Mondal, S. Int. J. Nanomed. Dovepress submit your manuscript| www.dovepress.com.
  • Park, J. H.; Kwon, S.; Lee, M.; Chung, H.; Kim, J. H.; Kim, Y. S.; Park, R. W.; Kim, I. S.; Seo, S. B.; Kwon, I. C.; Jeong, S. Y. Self-Assembled Nanoparticles Based on Glycol Chitosan Bearing Hydrophobic Moieties as Carriers for Doxorubicin: In vivo Biodistribution and Anti-Tumor Activity. Biomaterials. 2006, 27, 119–126.
  • Lee, E.; Lee, J.; Lee, I. H.; Yu, M.; Kim, H.; Chae, S. Y.; Jon, S. Conjugated Chitosan as a Novel Platform for ORAL Delivery of paclitaxel. J. Med. Chemistry. 2008, 51, 6442–6449.
  • Lee, E.; Kim, H.; Lee, I. H.; Jon, S. In vivo Antitumor Effects of Chitosan-Conjugated Docetaxel After Oral Administration. J. Control. Release. 2009, 140, 79–85.
  • Yuan, H.; Lu, L. J.; Du, Y. Z.; Hu, F. Q. Stearic Acid-g-Chitosan Polymeric Micelle for Oral Drug Delivery: In Vitro Transport and In Vivo Absorption. Mol. Pharmaceut. 2011, 8, 225–238.
  • Hou, L.; Fan, Y.; Yao, J.; Zhou, J.; Li, C.; Fang, Z.; Zhang, Q. Low Molecular Weight Heparin-All-Trans-Retinoid Acid Conjugate as a Drug Carrier for Combination Cancer Chemotherapy of Paclitaxel and All-Trans-Retinoid Acid. Carbohydr. Polym. 2011, 86, 1157–1166.
  • Park, I. K.; Kim, Y. J.; Tran, T. H.; Huh, K. M.; Lee, Y. K. Water-Soluble Heparin–PTX Conjugates for Cancer Targeting. Polymer. 2010, 51, 3387–3393.
  • Wang, Y.; Xin, D.; Liu, K.; Zhu, M.; Xiang, J. Heparin − paclitaxel Conjugates as Drug Delivery System: Synthesis, Self-Assembly Property, Drug Release, and Antitumor Activity. Bioconjug. Chemistry. 2009, 20, 2214–2221.
  • Cheng, J.; Khin, K. T.; Jensen, G. S.; Liu, A.; Davis, M. E. Synthesis of Linear, β-Cyclodextrin-Based Polymers and their Camptothecin Conjugates. Bioconjug. Chemistry. 2003, 14, 1007–1017.
  • Davis, M. E. Design and Development of IT-101, a Cyclodextrin-Containing Polymer Conjugate of Camptothecin. Adv. Drug Deliv. Rev. 2009, 61, 1189–1192.
  • Al-Shamkhani, A.; Duncan, R. Synthesis, Controlled Release Properties and Antitumour Activity of Alginate-Cis-Aconityl-Daunomycin Conjugates. Int. J. Pharm. 1995, 122, 107–119.
  • Zhang, H.; Li, F.; Yi, J.; Gu, C.; Fan, L.; Qiao, Y.; Tao, Y.; Cheng, C.; Wu, H. Folate-Decorated Maleilated Pullulan–Doxorubicin Conjugate for Active Tumor-Targeted Drug Delivery. Eur. J. Pharm. Sci. 2011, 42, 517–526.
  • Luo, Q.; Wang, P.; Miao, Y.; He, H.; Tang, X. A Novel 5-Fluorouracil Prodrug Using Hydroxyethyl Starch as a Macromolecular Carrier for Sustained Release. Carbohydr. Polym. 2012, 87, 2642–2647.
  • Banerjee, S. S.; Aher, N.; Patil, R.; Khandare, J. Poly (Ethylene Glycol)-Prodrug Conjugates: Concept, Design, and Applications. J. Drug Deliv. 2012, 2012, 1.
  • Duncan, R. Polymer Conjugates as Anticancer Nanomedicines. Nature Rev. Cancer. 2006, 6, 688.
  • Hu, X.; Liu, S.; Huang, Y.; Chen, X.; Jing, X. Biodegradable Block Copolymer-Doxorubicin Conjugates via Different Linkages: preparation, Characterization, and in Vitro Evaluation. Biomacromolecules. 2016, 11, 2094–2102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.