621
Views
3
CrossRef citations to date
0
Altmetric
Articles

Recent pros and cons of nanomaterials in drug delivery systems

, &
Pages 1090-1100 | Received 06 Jun 2019, Accepted 11 Aug 2019, Published online: 27 Aug 2019

References

  • National Institute of Biomedical Imaging and Bioengineering, Drug delivery systems: Getting drugs to their targets in a controlled manner. https://www.nibib.nih.gov/science-education/science-topics/drug-delivery-systems-getting-drugs-their-targets-controlled-manner, 2018 (accessed March 14, 2018).
  • Wen, H.; Jung, H.; Li, X. Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: Opportunities and Challenges. AAPS J. 2015, 17, 1327–1340. DOI: 10.1208/s12248-015-9814-9.
  • Mukherjee, B.; Dey, N. S.; Maji, R.; Bhowmik, P.; Das, P. J.; Paul, P. Current Status and Future Scope for Nanomaterials in Drug Delivery. In Application of Nanotechnology in Drug Delivery; Sezer, A. D., Eds.; InTech: London, UK, 2014; pp 525–544.
  • Lavik, E. B.; Kuppermann, B. D.; Humayun, M. S. Drug Delivery. In Retina, Fifth Ed.; Ryan, S. J., Sadda, S. R., Schachat, A. P., Eds.; Elsevier Inc: Netherlands, 2013; pp. 734–745.
  • Kerlin, R. L.; Li, X. Pathology in non-clinical drug safety assessment. In Haschek and Rousseaux’s Handbook of Toxicologic Pathology Third Ed.; Haschek, W. M., Rousseaux, C. G., Walig, M. A., Eds.; Elsevier Inc.: Cambridge, MA, 2013; pp. 725–750.
  • Frid, A.; Hirsch, L.; Gaspar, R.; Hicks, D.; Kreugel, G.; Liersch, J.; Letondeur, C.; Sauvanet, J. P.; Tubiana-Rufi, N.; Strau, K. New Injection Recommendations for Patients with Diabetes. Diabetes Metab. 2010, 36, S3–S18. DOI: 10.1016/S1262-3636(10)70002-1.
  • Gabizon, A. A. Liposome Circulation Time and Tumor Targeting: Implications for Cancer Chemotherapy. Adv. Drug Deliv. Rev. 1995, 16, 285–294. DOI: 10.1016/0169-409X(95)00030-B.
  • Lian, T.; Ho, R. J. Y. Trends and Developments in Liposome Drug Delivery Systems. J. Pharm. Sci. 2001, 90, 667–680. DOI: 10.1002/jps.1023.
  • Farokhzad, O. C.; Cheng, J.; Teply, B. A.; Sherifi, I.; Jon, S.; Kantoff, P. W.; Richie, J. P.; Langer, R. Targeted Nanoparticle-Aptamer Bioconjugates for Cancer Chemotherapy in Vivo. Proc. Natl. Acad. Sci. USA. 2006, 103, 6315–6320. DOI: 10.1073/pnas.0601755103.
  • Park, K. Controlled Drug Delivery Systems: Past Forward and Future Back. J. Contr. Rel. 2014, 190, 3–8. DOI: 10.1016/j.jconrel.2014.03.054.
  • Langer, R.; Folkman, J. Polymers for the Sustained Release of Proteins and Other Macromolecules. Nature 1976, 263, 797–800. DOI: 10.1038/263797a0.
  • Peppas, N. A. Historical Perspective on Advanced Drug Delivery: How Engineering Design and Mathematical Modeling Helped the Field Mature. Adv. Drug Deliv. Rev. 2013, 65, 5–9. DOI: 10.1016/j.addr.2012.09.040.
  • Zhang, M.; Gorski, W. Electrochemical Sensing Based on Redox Mediation at Carbon Nanotubes. Anal. Chem. 2005, 77, 3960–3965. DOI: 10.1021/ac050059u.
  • Zhang, W.; Qiao, X.; Chen, J. Synthesis of Silver nanoparticles-Effects of Concerned Parameters in Water/Oil Microemulsion. Mater. Sci. Eng. B. 2007, 142, 1–15. DOI: 10.1016/j.mseb.2007.06.014.
  • Gao, J.; Xu, B. Applications of Nanomaterials inside Cells. Nano Today 2009, 4, 37–51. DOI: 10.1016/j.nantod.2008.10.009.
  • Song, W.; Musetti, S. N.; Huang, L. Nanomaterials for Cancer Immunotherapy. Biomaterials 2017, 148, 16–30. DOI: 10.1016/j.biomaterials.2017.09.017.
  • Ho, J. A. A.; Chang, H. C.; Shih, N. Y.; Wu, L. C.; Chang, Y. F.; Chen, C. C.; Chou, C. Diagnostic Detection of Human Lung Cancer-Associated Antigen Using a Gold Nanoparticle-Based Electrochemical Immunosensor. Anal. Chem. 2010, 82, 5944–5950. DOI: 10.1021/ac1001959.
  • Uzun, S. D.; Kayaci, F.; Uyar, T.; Timur, S.; Toppare, L. Bioactive Surface Design Based on Functional Composite Electrospun Nanofibers for Biomolecule Immobilization and Biosensor Applications. ACS Appl. Mater. Interf. 2014, 6, 5235–5243. DOI: 10.1021/am5005927.
  • Vernickaite, E.; Bubniene, U.; Cesiulis, H.; Ramanavicius, A.; Podlaha, E. J. A Hybrid Approach to Fabricated Nanowire-Nanoparticle Composites of a Co-W Alloy and Au Nanoparticles. J. Electrochem. Soc. 2016, 163, D344–D348. DOI: 10.1149/2.1401607jes.
  • Anik, U.; Timur, S. Towards the Electrochemical Diagnosis of Cancer: Nanomaterial-Based Immunosensors and Cytosensors. RSC Adv. 2016, 6, 111831–111841. DOI: 10.1039/C6RA23686C.
  • (a) Drasler, B.; Sayre, P.; Steinhäuser, K. G.; Petri-Fink, A.; Rothen-Rutishauser, B. In Vitro Approaches to Assess the Hazard of Nanomaterials. NanoImpact 2017, 8, 99–116. (b) Sun, T.; Shrike Zhang, Y.; Pang, B.; Choon Hyun, D.; Yang, M.; Xia, Y. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angewandte Chemie 2014, 53, 12320–12364. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201403036.
  • Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Carbon Nanomaterials for Electronics, Optoelectronics, Photovoltaics, and Sensing. Chem. Soc. Rev. 2013, 42, 2824–2860. DOI: 10.1039/C2CS35335K.
  • De Jong, W. H.; Borm, P. J. A. Drug Delivery and Nanoparticles: Applications and Hazards. Int. J. Nanomed. 2008, 3, 133–149. DOI: 10.2147/ijn.s596.
  • Singh, R.; Lillard, J. W. Jr. Nanoparticle-Based Targeted Drug Delivery. Exp. Mol. Pathol. 2009, 86, 215–223. DOI: 10.1016/j.yexmp.2008.12.004.
  • Spencer, D. S.; Puranik, A. S.; Peppas, N. A. Intelligent Nanoparticles for Advanced Drug Delivery in Cancer Treatment. Curr. Opin. Chem. Eng. 2015, 7, 84–92. DOI: 10.1016/j.coche.2014.12.003.
  • Hassan, S.; Prakash, G.; Ozturk, A. B.; Saghazadeh, S.; Sohail, M. F.; Seo, J.; Dokmeci, M. R.; Zhang, Y. S.; Khademhosseini, A. Evolution and Clinical Translation of Drug Delivery Nanomaterials. Nano Today 2017, 15, 91–106. DOI: 10.1016/j.nantod.2017.06.008.
  • Chen, H.; Li, B.; Ren, X.; Li, S.; Ma, Y.; Cui, S.; Gu, Y. Multifunctional near-Infrared-Emitting Nano-Conjugates Based on Gold Clusters for Tumor Imaging and Therapy. Biomaterials 2012, 33, 8461–8476. DOI: 10.1016/j.biomaterials.2012.08.034.
  • Ruenraroengsak, P.; Novak, P.; Berhanu, D.; Thorley, A. J.; Valsami-Jones, E.; Gorelik, J.; Korchev, Y. E.; Tetley, T. D. Respiratory Epithelial Cytotoxicity and Membrane Damage (Holes) Caused by Amine-Modified Nanoparticles. Nanotoxicology 2012, 6, 94–108. DOI: 10.3109/17435390.2011.558643.
  • Molinaro, R.; Wolfram, J.; Federico, C.; Cilurzo, F.; Di Marzio, L.; Ventura, C. A.; Carafa, M.; Celia, C.; Fresta, M. Polyethylenimine and Chitosan Carriers for the Delivery of RNA Interference Effectors. Expert Opin. Drug Deliv. 2013, 10, 1653–1668. DOI: 10.1517/17425247.2013.840286.
  • Corbo, C.; Molinaro, R.; Parodi, A.; Toledano Furman, N. E.; Salvatore, F.; Tasciotti, E. The Impact of Nanoparticle Protein Corona on Cytotoxicity, Immunotoxicity and Target Drug Delivery. Nanomedicine 2016, 11, 81–100. DOI: 10.2217/nnm.15.188.
  • Maiorano, G.; Sabella, S.; Sorce, B.; Brunetti, V.; Malvindi, M. A.; Cingolani, R.; Pompa, P. P. Effects of Cell Culture Media on the Dynamic Formation of Protein-Nanoparticle Complexes and Influence on the Cellular Response. ACS Nano 2010, 4, 7481–7491. DOI: 10.1021/nn101557e.
  • Walkey, C. D.; Chan, W. C. Understanding and Controlling the Interaction of Nanomaterials with Proteins in a Physiological Environment. Chem. Soc. Rev. 2012, 41, 2780–2799. DOI: 10.1039/C1CS15233E.
  • Cedervall, T.; Lynch, I.; Lindman, S.; Berggard, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S. Understanding the Nanoparticle–Protein Corona Using Methods to Quantify Exchange Rates and Affinities of Proteins for Nanoparticles. Proc. Natl. Acad. Sci. USA. 2007, 104, 2050–2055. DOI: 10.1073/pnas.0608582104.
  • Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Bombelli, F. B.; Dawson, K. A. Physical-Chemical Aspects of Protein Corona: Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles. J. Am. Chem. Soc. 2011, 133, 2525–2534. DOI: 10.1021/ja107583h.
  • Milani, S.; Bombelli, F. B.; Pitek, A. S.; Dawson, K. A.; Rädler, J. Reversible versus Irreversible Binding of Transferrin to Polystyrene Nanoparticles: Soft and Hard Corona. ACS Nano 2012, 6, 2532–2541. DOI: 10.1021/nn204951s.
  • Hubbell, J. A.; Chilkoti, A. Nanomaterials for Drug Delivery. Science 2012, 337, 303–305. DOI: 10.1126/science.1219657.
  • Dobrovolskaia, M. A.; Neun, B. W.; Man, S.; Ye, X.; Hansen, M.; Patri, A. K.; Crist, R. M.; McNeil, S. E. Protein Corona Composition Does Not Accurately Predict Hematocompatibility of Colloidal Gold Nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 1453–1463. DOI: 10.1016/j.nano.2014.01.009.
  • Walkey, C. D.; Olsen, J. B.; Guo, H.; Emili, A.; Chan, W. C. Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake. J. Am. Chem. Soc. 2012, 134, 2139–2147. DOI: 10.1021/ja2084338.
  • Kim, H. R.; Andrieux, K.; Delomenie, C.; Chacun, H.; Appel, M.; Desmaele, D.; Taran, F.; Georgin, D.; Couvreur, P.; Taverna, M. Analysis of Plasma Protein Adsorption onto PEGylated Nanoparticles by Complementary Methods: 2-DE, CE and Protein Lab-on-Chip System. Electrophoresis. 2007, 28, 2252–2261. DOI: 10.1002/elps.200600694.
  • Hamad, I.; Al-Hanbali, O.; Hunter, A. C.; Rutt, K. J.; Andresen, T. L.; Moghimi, S. M. Distinct Polymer Architecture Mediates Switching of Complement Activation Pathways at the Nanosphere–Serum Interface: Implications for Stealth Nanoparticle Engineering. ACS Nano 2010, 4, 6629–6638. DOI: 10.1021/nn101990a.
  • Wolfram, J.; Yang, Y.; Shen, J.; Moten, A.; Chen, C.; Shen, H.; Ferrari, M.; Zhao, Y. The Nano-Plasma Interface: Implications of the Protein Corona. Coll. Surf. B. 2014, 124, 17–24. DOI: 10.1016/j.colsurfb.2014.02.035.
  • Bartucci, R.; Pantusa, M.; Marsh, D.; Sportelli, L. Interaction of Human Serum Albumin with Membranes Containing Polymer-Grafted Lipids: Spin-Label ESR Studies in the Mushroom and Brush Regimes. Biochim. Biophys. Acta, Biomembr. 2002, 1564, 237–242. DOI: 10.1016/S0005-2736(02)00458-3.
  • Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S. Poly(Ethylene Glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew. Chem. Int. Ed 2010, 49, 6288–6308. DOI: 10.1002/anie.200902672.
  • Hamad, I.; Hunter, A. C.; Szebeni, J.; Moghimi, S. M. Poly(Ethylene Glycol)s Generate Complement Activation Products in Human Serum through Increased Alternative Pathway Turnover and a MASP-2-Dependent Process. Mol. Immunol. 2008, 46, 225–232. DOI: 10.1016/j.molimm.2008.08.276.
  • Kreuter, J. Nanoparticles–a Historical Perspective. Int. J. Pharm. 2007, 331, 1–10. DOI: 10.1016/j.ijpharm.2006.10.021.
  • Cao, Y.; Langer, R. A Review of Judah Folkman’s Remarkable Achievements in Biomedicine. Proc. Natl. Acad. Sci. USA. 2008, 105, 13203–13205. DOI: 10.1073/pnas.0806582105.
  • Cagel, M.; Grotz, E.; Bernabeu, E.; Moretton, M. A.; Chiappetta, D. A. Doxorubicin: Nanotechnological Overviews from Bench to Bedside. Drug Discov. Today 2017, 22, 270–281. DOI: 10.1016/j.drudis.2016.11.005.
  • Danhier, F.; Ansorena, E.; Silva, J. M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-Based Nanoparticles: An Overview of Biomedical Applications. J. Control. Rel. 2012, 161, 505–522. DOI: 10.1016/j.jconrel.2012.01.043.
  • Agnihotri, S. A.; Mallikarjuna, N. N.; Aminabhavi, T. M. Recent Advances on Chitosan-Based Micro- and Nanoparticles in Drug Delivery. J. Control. Rel. 2004, 100, 5–28. DOI: 10.1016/j.jconrel.2004.08.010.
  • Gan, Q.; Wang, T. Chitosan Nanoparticle as Protein Delivery Carrier–Systematic Examination of Fabrication Conditions for Efficient Loading and Release. Coll. Surf. B 2007, 59, 24–34. DOI: 10.1016/j.colsurfb.2007.04.009.
  • Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z. Polysaccharides-Based Nanoparticles as Drug Delivery Systems. Adv. Drug Deliv. Rev. 2008, 60, 1650–1662. DOI: 10.1016/j.addr.2008.09.001.
  • Mokhtarzadeh, A.; Alibakhshi, A.; Hejazi, M.; Omidi, Y.; Dolatabadi, J. E. N. Bacterial-Derived Biopolymers: Advanced Natural Nanomaterials for Drug Delivery and Tissue Engineering. TrAC Trends Anal. Chem. 2016, 82, 367–384. DOI: 10.1016/j.trac.2016.06.013.
  • Esfand, R.; Tomalia, D. A. Poly(Amidoamine) (PAMAM) Dendrimers: From Biomimicry to Drug Delivery and Biomedical Applications. Drug Discov. Today 2001, 6, 427–436. DOI: 10.1016/S1359-6446(01)01757-3.
  • Gillies, E. R.; Frechet, J. M. J. Dendrimers and Dendritic Polymers in Drug Delivery. Drug Discov. Today 2005, 10, 35–43. DOI: 10.1016/S1359-6446(04)03276-3.
  • Tomalia, D. A.; Reyna, L. A.; Svenson, S. Dendrimers as Multi-Purpose Nanodevices for Oncology Drug Delivery and Diagnostic Imaging. Biochm. Soc. Trans. 2007, 35, 61–67. DOI: 10.1042/BST0350061.
  • Svenson, S.; Tomalia, D. A. Dendrimers in Biomedical Applications–Reflections on the Field. Adv. Drug Deliv. Rev. 2005, 57, 2106–2129. DOI: 10.1016/j.addr.2005.09.018.
  • Mendes, L. P.; Pan, J. Y.; Torchilin, V. P. Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy. Molecules 2017, 22, 1401. DOI: 10.3390/molecules22091401.
  • Zhu, S.; Hong, M.; Tang, G.; Qian, L.; Lin, J.; Jiang, Y.; Pei, Y. Partly PEGylated Polyamidoamine Dendrimer for Tumor-Selective Targeting of Doxorubicin: The Effects of PEGylation Degree and Drug Conjugation Style. Biomaterials 2010, 31, 1360–1371. DOI: 10.1016/j.biomaterials.2009.10.044.
  • Mecke, A.; Majoros, I. J.; Patri, A. K.; Baker, J. R.; Holl, M. M. B.; Orr, B. G. Lipid Bilayer Disruption by Polycationic Polymers: The Roles of Size and Chemical Functional Group. Langmuir 2005, 21, 10348–10354. DOI: 10.1021/la050629l.
  • Chen, H. T.; Neerman, M. F.; Parrish, A. R.; Simanek, E. E. Cytotoxicity, Hemolysis, and Acute in Vivo Toxicity of Dendrimers Based on Melamine, Candidate Vehicles for Drug Delivery. J. Am. Chem. Soc. 2004, 126, 10044–10048. DOI: 10.1021/ja048548j.
  • Mecke, A.; Lee, D. K.; Ramamoorthy, A.; Orr, B. G.; Holl, M. M. B. Synthetic and Natural Polycationic Polymer Nanoparticles Interact Selectively with Fluid-Phase Domains of DMPC Lipid Bilayers. Langmuir 2005, 21, 8588–8590. DOI: 10.1021/la051800w.
  • Domanski, D. M.; Klajnert, B.; Bryszewska, M. Influence of PAMAM Dendrimers on Human Red Blood Cells. Bioelectrochemistry 2004, 63, 189–191. DOI: 10.1016/j.bioelechem.2003.09.023.
  • (a) Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in Drug Delivery and Targeting: Drug-Dendrimer Interactions and Toxicity Issues. J. Pharm. BioAllied Sci. 2014, 6, 139–150. DOI: 10.4103/0975-7406.130965. (b) Brunetti, V.; Bouchet, L. M.; Strumia, M. C. Nanoparticle-Cored Dendrimers: Functional Hybrid Nanocomposites as a New Platform for Drug Delivery Systems. Nanoscale 2015, 7, 3808–3816.
  • Demir, B.; Barlas, F. B.; Guler, E.; Gumus, P. Z.; Can, M.; Yavuz, M.; Coskunol, H.; Timur, S. Gold Nanoparticle Loaded Phytosomal Systems: Synthesis, Characterization and in Vitro Investigations. RSC Adv. 2014, 4, 34687–34695. DOI: 10.1039/C4RA05108D.
  • Pattni, B. S.; Chupin, V. V.; Torchilin, V. P. New Developments in Liposomal Drug Delivery. Chem. Rev. 2015, 115, 10938–10966. DOI: 10.1021/acs.chemrev.5b00046.
  • (a) Deamer, D. W. From “Banghasomes” to Liposomes: A Memoir of Alec Bangham, 1921–2010. Faseb J. 2010, 24, 1308–1310. DOI: 10.1096/fj.10-0503. (b) Parker, J. P.; Ude, Z.; Marmion, C. J. Exploiting Developments in Nanotechnology for the Preferential Delivery of Platinum-Based anti-Cancer Agents to Tumours: Targeting Some of the Hallmarks of Cancer. Metallomics 2016, 8, 43–60. DOI: 10.1039/C5MT00181A.
  • Kermanizadeh, A.; Jacobsen, N. R.; Roursgaard, M.; Loft, S.; Møller, P. Hepatic Toxicity Assessment of Cationic Liposome Exposure in Healthy and Chronic Alcohol Fed Mice. Heliyon 2017, 3, e00458. DOI: 10.1016/j.heliyon.2017.e00458.
  • Freestone, I.; Meeks, N.; Sax, M.; Higgitt, C. The Lycurgus Cup–a Roman Nanotechnology. Gold Bull. 2007, 40, 270–277. DOI: 10.1007/BF03215599.
  • Thakor, A. S.; Jokerst, J.; Zavaleta, C.; Massoud, T. F.; Gambhir, S. S. Gold Nanoparticles: A Revival in Precious Metal Administration to Patients. Nano Lett. 2011, 11, 4029–4036. DOI: 10.1021/nl202559p.
  • Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 2006, 6, 662–668. DOI: 10.1021/nl052396o.
  • Anık, Ü.; Cubukcu, M.; Yavuz, Y. Nanomaterial Based Composite Biosensor for Glucose Detection in Alcoholic Beverages Artificial Cells. Blood Substitutes, and Biotechnology 2013, 41, 8–12. DOI: 10.3109/10731199.2012.696071.
  • Templeton, A. C.; Wuelfing, W. P.; Murray, R. W. Monolayer-Protected Cluster Molecules. Acc. Chem. Res. 2000, 33, 27–36. DOI: 10.1021/ar9602664.
  • Choi, C. H. J.; Alabi, C. A.; Webster, P.; Davis, M. E. Mechanism of Active Targeting in Solid Tumors with Transferrin-Containing Gold Nanoparticles. Proc. Natl. Acad. Sci. USA. 2010, 107, 1235–1240. DOI: 10.1073/pnas.0914140107.
  • Hirn, S.; Semmler-Behnke, M.; Schleh, C.; Wenk, A.; Lipka, J.; Schaffler, M.; Takenaka, S.; Moller, W.; Schmid, G.; Simon, U.; et al. Particle Size-Dependent and Surface Charge-Dependent Biodistribution of Gold Nanoparticles after Intravenous Administration. Eur. J. Pharm. Biopharm. 2011, 77, 407–416. DOI: 10.1016/j.ejpb.2010.12.029.
  • Mout, R.; Moyano, D. F.; Rana, S.; Rotello, V. M. Surface Functionalization of Nanoparticles for Nanomedicine. Chem. Soc. Rev. 2012, 41, 2539–2544. DOI: 10.1039/c2cs15294k.
  • Moyano, D. F.; Saha, K.; Prakash, G.; Yan, B.; Kong, H.; Yazdani, M.; Rotello, V. M. Fabrication of Corona-Free Nanoparticles with Tunable Hydrophobicity. ACS Nano 2014, 8, 6748–6755. DOI: 10.1021/nn5006478.
  • Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama, Y.; Takahashi, H.; Kawano, T.; Katayama, Y.; Niidome, Y. PEG-Modified Gold Nanorods with a Stealth Character for in Vivo Applications. J. Control. Rel. 2006, 114, 343–347. DOI: 10.1016/j.jconrel.2006.06.017.
  • Wangoo, N.; Suri, C. R.; Shekhawat, G. Interaction of Gold Nanoparticles with Protein: A Spectroscopic Study to Monitor Protein Conformational Changes. Appl. Phys. Lett. 2008, 92, 133104. DOI: 10.1063/1.2902302.
  • Saptarshi, S. R.; Duschl, A.; Lopata, A. L. Interaction of Nanoparticles with Proteins: Relation to Bio-Reactivity of the Nanoparticle. J. Nanobiotechnol. 2013, 11, 26. DOI: 10.1186/1477-3155-11-26.
  • Meyers, P. H.; Nice, C. M.Jr.;, Meckstroth, G. R.; Becker, H. C.; Moser, P. J.; Goldstein, M. Pathologic Studies following Magnetic Control of Metallic Iron Particles in the Lymphatic and Vascular System of Dogs as a Contrast and Isotopic Agent. Am. J. Roentgenol. 1966, 96, 913–921. DOI: 10.2214/ajr.96.4.913.
  • Widder, K. J.; Marino, P. A.; Morris, R. M.; Howard, D. P.; Poore, G. A.; Senyei, A. E. Selective Targeting of Magnetic Albumin Microspheres to the Yoshida Sarcoma: Ultrastructural Evaluation of Microsphere Disposition. Eur. J. Cancer Clin. Oncol. 1983, 19, 141–147. DOI: 10.1016/0277-5379(83)90409-1.
  • Santhosh, P. B.; Ulrih, N. P. Multifunctional Superparamagnetic Iron Oxide Nanoparticles: Promising Tools in Cancer Theranostics. Cancer Lett. 2013, 336, 8–17. DOI: 10.1016/j.canlet.2013.04.032.
  • Espinosa, A.; Di Corato, R.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. ACS Nano 2016, 10, 2436–2446. DOI: 10.1021/acsnano.5b07249.
  • Sakulkhu, U.; Mahmoudi, M.; Maurizi, L.; Salaklang, J.; Hofmann, H. Protein Corona Composition of Superparamagnetic Iron Oxide Nanoparticles with Various Physico-Chemical Properties and Coatings. Sci. Rep. 2015, 4, 5020. DOI: 10.1038/srep05020.
  • Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307, 538–544. DOI: 10.1126/science.1104274.
  • Park, J. Y.; Jeong, D. W.; Lim, K. M.; Choa, Y. H.; Kim, W. B.; Kim, B. S. Multimodal Luminescence Properties of Surface-Treated ZnSe Quantum Dots by Eu. Appl. Surf. Sci. 2017, 415, 8–13. DOI: 10.1016/j.apsusc.2017.02.026.
  • Schulze, A. S.; Tavernaro, I.; Machka, F.; Dakischew, O.; Lips, K. S.; Wickleder, M. S. Tuning Optical Properties of Water-Soluble CdTe Quantum Dots for Biological Applications. J. Nanopart. Res. 2017, 19, 70. DOI: 10.1007/s11051-017-3757-2.
  • Sharma, V. K.; McDonald, T. J.; Sohn, M.; Anquandah, G. A. K.; Pettine, M.; Zboril, R. Assessment of Toxicity of Selenium and Cadmium Selenium Quantum Dots: A Review. Chemosphere 2017, 188, 403–413. DOI: 10.1016/j.chemosphere.2017.08.130.
  • Alivisatos, A. P.; Gu, W.; Larabell, C. Quantum Dots as Cellular Probes. Annu. Rev. Biomed. Eng. 2005, 7, 55–76. DOI: 10.1146/annurev.bioeng.7.060804.100432.
  • He, X.; Ma, N. An Overview of Recent Advances in Quantum Dots for Biomedical Applications. Coll. Surf. B. 2014, 124, 118–131. DOI: 10.1016/j.colsurfb.2014.06.002.
  • Hoshino, A.; Fujioka, K.; Oku, T.; Suga, M.; Sasaki, Y. F.; Ohta, T.; Yasuhara, M.; Suzuki, K.; Yamamoto, K. Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification. Nano Lett. 2004, 4, 2163–2169. DOI: 10.1021/nl048715d.
  • Shiohara, A.; Hoshino, A.; Hanaki, K. I.; Suzuki, K.; Yamamoto, K. On the Cyto-Toxicity Caused by Quantum Dots. Microbiol. Immunol. 2004, 48, 669–675. DOI: 10.1111/j.1348-0421.2004.tb03478.x.
  • Lovric, J.; Bazzi, H. S.; Cuie, Y.; Fortin, G. R. A.; Winnik, F. M.; Maysinger, D. Differences in Subcellular Distribution and Toxicity of Green and Red Emitting CdTe Quantum Dots. J. Mol. Med. 2005, 83, 377–385. DOI: 10.1007/s00109-004-0629-x.
  • Hoshino, A.; Manabe, N.; Fujioka, K.; Suzuki, K.; Yasuhara, M.; Yamamoto, K. Use of Fluorescent Quantum Dot Bioconjugates for Cellular Imaging of Immune Cells, Cell Organelle Labeling, and Nanomedicine: Surface Modification Regulates Biological Function, Including Cytotoxicity. J. Artif. Organs 2007, 10, 149–157. DOI: 10.1007/s10047-007-0379-y.
  • Choi, A. O.; Cho, S. J.; Desbarats, J.; Lovric, J.; Maysinger, D. Quantum Dot-Induced Cell Death Involves Fas Upregulation and Lipid Peroxidation in Human Neuroblastoma Cells. J. Nanobiotechnol. 2007, 12, 1. DOI: 10.1186/1477-3155-5-1.
  • Lovric, J.; Cho, S. J.; Winnik, F. M.; Maysinger, D. Unmodified Cadmium Telluride Quantum Dots Induce Reactive Oxygen Species Formation Leading to Multiple Organelle Damage and Cell Death. Chem. Biol. 2005, 12, 1227–1234. DOI: 10.1016/j.chembiol.2005.09.008.
  • Yoo, J. M.; Kang, J. H.; Hong, B. H. Graphene-Based Nanomaterials for Versatile Imaging Studies. Chem. Soc. Rev. 2015, 44, 4835–4852. DOI: 10.1039/C5CS00072F.
  • Zhao, H.; Ding, R.; Zhao, X.; Li, Y.; Qu, L.; Pei, H.; Yildirimer, L.; Wu, Z.; Zhang, W. Graphene-Based Nanomaterials for Drug and/or Gene Delivery, Bioimaging, and Tissue Engineering. Drug Discov. Today 2017, 22, 1302–1317. DOI: 10.1016/j.drudis.2017.04.002.
  • Timur, S.; Anik, U.; Odaci, D.; Gorton, L. Development of a Microbial Biosensor Based on Carbon Nanotube (CNT) Modified Electrodes. Electrochem. Commun. 2007, 9, 1810–1815. DOI: 10.1016/j.elecom.2007.04.012.
  • Anik, U.; Cubukcu, M. Examination of the Electroanalytic Performance of Carbon Nanotube (CNT) Modified Carbon Paste Electrodes as Xanthine Biosensor Transducers. Turk. J. Chem. 2008, 32, 711–719.
  • Eda, G.; Chhowalla, M. Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. Adv. Mater. 2010, 22, 2392–2415. DOI: 10.1002/adma.200903689.
  • Tans, S. J.; Devoret, M. H.; Dai, H. J.; Thess, A.; Smalley, R. E.; Geerligs, L. J.; Dekker, C. Individual Single-Wall Carbon Nanotubes as Quantum Wires. Nature 1997, 386, 474–477. DOI: 10.1038/386474a0.
  • Kam, N. W. S.; Jessop, T. C.; Wender, P. A.; Dai, H. J. Nanotube Molecular Transporters: Internalization of Carbon Nanotube-Protein Conjugates into Mammalian Cells. J. Am. Chem. Soc. 2004, 126, 6850–6851. DOI: 10.1021/ja0486059.
  • Heller, D. A.; Baik, S.; Eurell, T. E.; Strano, M. S. Single-Walled Carbon Nanotube Spectroscopy in Live Cells: Towards Long-Term Labels and Optical Sensors. Adv. Mater. 2005, 17, 2793–2799. DOI: 10.1002/adma.200500477.
  • Chen, X.; Tam, U. C.; Czlapinski, J. L.; Lee, G. S.; Rabuka, D.; Zettl, A.; Bertozzi, C. R. Interfacing Carbon Nanotubes with Living Cells. J. Am. Chem. Soc. 2006, 128, 6292–6293. DOI: 10.1021/ja060276s.
  • Kam, N. W. S.; Liu, Z. A.; Dai, H. J. Carbon Nanotubes as Intracellular Transporters for Proteins and DNA: An Investigation of the Uptake Mechanism and Pathway. Angew. Chem. Int. Ed. 2006, 45, 577–581. DOI: 10.1002/anie.200503389.
  • Jin, H.; Heller, D. A.; Strano, M. S. Single-Particle Tracking of Endocytosis and Exocytosis of Single-Walled Carbon Nanotubes in NIH-3T3 Cells. Nano Lett. 2008, 8, 1577–1585. DOI: 10.1021/nl072969s.
  • Wu, P.; Chen, X.; Hu, N.; Tam, U. C.; Blixt, O.; Zettl, A.; Bertozzi, C. R. Biocompatible Carbon Nanotubes Generated by Functionalization with Glycodendrimers. Angew. Chem. Int. Ed. 2008, 47, 5022–5025. DOI: 10.1002/anie.200705363.
  • Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon Nanotubes in Biology and Medicine: In Vitro and in Vivo Detection, Imaging and Drug Delivery. Nano Res. 2009, 2, 85–120. DOI: 10.1007/s12274-009-9009-8.
  • Liu, Z.; Robinson, J. T.; Tabakman, S. M.; Yang, K.; Dai, H. Carbon Materials for Drug Delivery & Cancer Therapy. Materials Today 2011, 14, 316–323. DOI: 10.1016/S1369-7021(11)70161-4.
  • Warheit, D. B.; Laurence, B. R.; Reed, K. L.; Roach, D. H.; Reynolds, G. A. M.; Webb, T. R. Comparative Pulmonary Toxicity Assessment of Single-Wall Carbon Nanotubes in Rats. Toxicol. Sci. 2003, 77, 117–125. DOI: 10.1093/toxsci/kfg228.
  • Lam, C. W.; James, J. T.; McCluskey, R.; Hunter, R. L. Pulmonary Toxicity of Single-Wall Carbon Nanotubes in Mice 7 and 90 Days after Intractracheal Instillation. Toxicol. Sci 2003, 77, 126–134. DOI: 10.1093/toxsci/kfg243.
  • Muller, J.; Huaux, F.; Moreau, N.; Misson, P.; Heilier, J. F.; Delos, M.; Arras, M.; Fonseca, A.; Nagy, J. B.; Lison, D. Respiratory Toxicity of Multi-Wall Carbon Nanotubes. Toxicol. Appl. Pharmacol. 2005, 207, 221–231. DOI: 10.1016/j.taap.2005.01.008.
  • Mutlu, G. M.; Budinger, G. R. S.; Green, A. A.; Urich, D.; Soberanes, S.; Chiarella, S. E.; Alheid, G. F.; McCrimmon, D. R.; Szleifer, I.; Hersam, M. C. Biocompatible Nanoscale Dispersion of Single-Walled Carbon Nanotubes Minimizes in Vivo Pulmonary Toxicity. Nano Lett. 2010, 10, 1664–1670. DOI: 10.1021/nl9042483.
  • Poland, C. A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W. A. H.; Seaton, A.; Stone, V.; Brown, S.; MacNee, W.; Donaldson, K. Carbon Nanotubes Introduced into the Abdominal Cavity of Mice Show Asbestos-like Pathogenicity in a Pilot Study. Nature Nanotech. 2008, 3, 423–428. DOI: 10.1038/nnano.2008.111.
  • Kolosnjaj-Tabi, J. J.; Hartman, K. B.; Boudjemaa, S.; Ananta, J. S.; Morgant, G.; Szwarc, H.; Wilson, L. J.; Moussa, F. In Vivo Behavior of Large Doses of Ultrashort and Full-Length Single-Walled Carbon Nanotubes after Oral and Intraperitoneal Administration to Swiss Mice. ACS Nano 2010, 4, 1481–1492. DOI: 10.1021/nn901573w.
  • Yang, S. T.; Wang, X.; Jia, G.; Gu, Y. Q.; Wang, T. C.; Nie, H. Y.; Ge, C. C.; Wang, H. F.; Li, Y. F. Long-Term Accumulation and Low Toxicity of Single-Walled Carbon Nanotubes in Intravenously Exposed Mice. Toxicol. Lett. 2008, 181, 182–189. DOI: 10.1016/j.toxlet.2008.07.020.
  • Liu, Z.; Davis, C.; Cai, W. B.; He, L.; Chen, X. Y.; Dai, H. J. Circulation and Long-Term Fate of Functionalized, Biocompatible Single-Walled Carbon Nanotubes in Mice Probed by Raman Spectroscopy. Proc. Natl. Acad. Sci. USA. 2008, 105, 1410–1415. DOI: 10.1073/pnas.0707654105.
  • Schipper, M. L.; Nakayama-Ratchford, N.; Davis, C. R.; Kam, N. W. S.; Chu, P.; Liu, Z.; Sun, X. M.; Dai, H. J.; Gambhir, S. S. A Pilot Toxicology Study of Single-Walled Carbon Nanotubes in a Small Sample of Mice. Nature Nanotech. 2008, 3, 216–221. DOI: 10.1038/nnano.2008.68.
  • Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q. Z.; Chen, X. Y.; Dai, H. J. Drug Delivery with Carbon Nanotubes for in Vivo Cancer Treatment. Cancer Res. 2008, 68, 6652–6660. DOI: 10.1158/0008-5472.CAN-08-1468.
  • Heister, E.; Lamprecht, C.; Neves, V.; Tilmaciu, C.; Datas, L.; Flahaut, E.; Soula, B.; Hinterdorfer, P.; Coley, H. M.; Silva, S. R. P.; et al. Higher Dispersion Efficacy of Functionalized Carbon Nanotubes in Chemical and Biological Environments. ACS Nano 2010, 4, 2615–2626. DOI: 10.1021/nn100069k.
  • Saito, N.; Haniu, H.; Usui, Y.; Aoki, K.; Hara, K.; Takanashi, S.; Shimizu, M.; Narita, N.; Okamoto, M.; Kobayashi, S.; et al. Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials. Chem. Rev. 2014, 114, 6040–6079. DOI: 10.1021/cr400341h.
  • Chen, C. Y.; Xing, G. M.; Wang, J. X.; Zhao, Y. L.; Li, B.; Tang, J.; Jia, G.; Wang, T. C.; Sun, J.; Xing, L.; et al. Multihydroxylated [Gd@C82(OH)22]n Nanoparticles: Antineoplastic Activity of High Efficiency and Low Toxicity. Nano Lett. 2005, 5, 2050–2057., DOI: 10.1021/nl051624b.
  • Zakharian, T. Y.; Seryshev, A.; Sitharaman, B.; Gilbert, B. E.; Knight, V.; Wilson, L. J. A Fullerene − Paclitaxel Chemotherapeutic: Synthesis, Characterization, and Study of Biological Activity in Tissue Culture. J. Am. Chem. Soc. 2005, 127, 12508–12509. DOI: 10.1021/ja0546525.
  • Liang, X. J.; Meng, H.; Wang, Y. Z.; He, H. Y.; Meng, J.; Lu, J.; Wang, P. C.; Zhao, Y. L.; Gao, X. Y.; Sun, B. Y.; et al. Metallofullerene Nanoparticles Circumvent Tumor Resistance to Cisplatin by Reactivating Endocytosis. Proc. Natl. Acad. Sci. USA. 2010, 107, 7449–7454., DOI: 10.1073/pnas.0909707107.
  • Montellano, A.; Da Ros, T.; Bianco, A.; Prato, M. Fullerene C60 as a Multifunctional System for Drug and Gene Delivery. Nanoscale 2011, 3, 4035–4041. DOI: 10.1039/c1nr10783f.
  • Oberdorster, E. Manufactured Nanomaterials (Fullerenes, C60) Induce Oxidative Stress in the Brain of Juvenile Largemouth Bass, Environ. Health Perspect. 2004, 112, 1058–1062. DOI: 10.1289/ehp.7021.
  • Goenka, S.; Sant, V.; Sant, S. Graphene-Based Nanomaterials for Drug Delivery and Tissue Engineering. J. Control. Rel. 2014, 173, 75–88. DOI: 10.1016/j.jconrel.2013.10.017.
  • Muazim, K.; Hussain, Z. Graphene Oxide–A Platform towards Theranostics. Mater. Sci. Eng. C. 2017, 76, 1274–1288. DOI: 10.1016/j.msec.2017.02.121.
  • Zhang, Q.; Wu, Z.; Li, N.; Pu, Y.; Wang, B.; Zhang, T.; Tao, J. Advanced Review of Graphene-Based Nanomaterials in Drug Delivery Systems: Synthesis, Modification, Toxicity and Application. Mater. Sci. Eng. C. 2017, 77, 1363–1375. DOI: 10.1016/j.msec.2017.03.196.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. DOI: 10.1126/science.1102896.
  • Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-Dimensional Atomic Crystals. Proc. Natl. Acad. Sci. USA. 2005, 102, 10451–10453. DOI: 10.1073/pnas.0502848102.
  • Latil, S.; Henrard, L. Charge Carriers in Few-Layer Graphene Films. Phys. Rev. Lett. 2006, 97, 036803. DOI: 10.1103/PhysRevLett.97.036803.
  • Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. DOI: 10.1021/nl0731872.
  • Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene: The New Two-Dimensional Nanomaterial. Angew. Chem. Int. Ed. 2009, 48, 7752–7777. DOI: 10.1002/anie.200901678.
  • Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. S. Graphene-Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chem. Mater. 2010, 22, 1392–1401. DOI: 10.1021/cm902876u.
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nature Mater. 2007, 6, 183–191. DOI: 10.1038/nmat1849.
  • Geim, A. K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. DOI: 10.1126/science.1158877.
  • Kuila, T.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H. Recent Advances in the Efficient Reduction of Graphene Oxide and Its Application as Energy Storage Electrode Materials. Nanoscale 2013, 5, 52–71. DOI: 10.1039/C2NR32703A.
  • Tozzini, V.; Pellegrini, V. Prospects for Hydrogen Storage in Graphene. Phys. Chem. Chem. Phys. 2013, 15, 80–89. DOI: 10.1039/C2CP42538F.
  • Pumera, M. Graphene in Biosensing. Materials Today 2011, 14, 308–315. DOI: 10.1016/S1369-7021(11)70160-2.
  • Aslan, S.; Anik, U. Microbial Glucose Biosensors Based on Glassy Carbon Paste Electrodes Modified with Gluconobacter Oxydans and Graphene Oxide or Graphene-Platinum Hybrid Nanoparticles. Microchim. Acta 2016, 183, 73–81. DOI: 10.1007/s00604-015-1590-9.
  • Kim, M.; Jang, J.; Cha, C. Carbon Nanomaterials as Versatile Platforms for Theranostic Applications. Drug Discov. Today 2017, 22, 1430–1437. DOI: 10.1016/j.drudis.2017.05.004.
  • Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877. DOI: 10.1021/ja803688x.
  • Zhao, J.; Wang, Z. Y.; White, J. C.; Xing, B. S. Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation. Environ. Sci. Technol. 2014, 48, 9995–10009. DOI: 10.1021/es5022679.
  • Vallabani, N. V. S.; Mittal, S.; Shukla, R. K.; Pandey, A. K.; Dhakate, S. R.; Pasricha, R.; Dhawan, A. Toxicity of Graphene in Normal Human Lung Cells (BEAS-2B). J. Biomed. Nanotechnol. 2011, 7, 106–107. DOI: 10.1166/jbn.2011.1224.
  • Liu, S. B.; Hu, M.; Zeng, T. H.; Wu, R.; Jiang, R. R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. Lateral Dimension-Dependent Antibacterial Activity of Graphene Oxide Sheets. Langmuir 2012, 28, 12364–12372. DOI: 10.1021/la3023908.
  • Chang, Y. L.; Yang, S. T.; Liu, J. H.; Dong, E.; Wang, Y. W.; Cao, A. N.; Liu, Y. F.; Wang, H. F. In Vitro Toxicity Evaluation of Graphene Oxide on A549 Cells. Toxicol. Lett. 2011, 200, 201–210. DOI: 10.1016/j.toxlet.2010.11.016.
  • Akhavan, O.; Ghaderi, E.; Akhavan, A. Size-Dependent Genotoxicity of Graphene Nanoplatelets in Human Stem Cells. Biomaterials 2012, 33, 8017–8025. DOI: 10.1016/j.biomaterials.2012.07.040.
  • Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano Res. 2008, 1, 203–212. DOI: 10.1007/s12274-008-8021-8.
  • Jaworski, S.; Sawosz, E.; Grodzik, M.; Winnicka, A.; Prasek, M.; Wierzbicki, M.; Chwalibog, A. In Vitro Evaluation of the Effects of Graphene Platelets on Glioblastoma Multiforme Cells. Int. J. Nanomed. 2013, 8, 413–420. DOI: 10.2147/ijn.s39456.
  • Skotland, T.; Iversen, T.-G.; Sandvig, K. Development of Nanoparticles for Clinical Use. Nanomedicine 2014, 9, 1295–1299. DOI: 10.2217/nnm.14.81.
  • Petros, R. A.; DeSimone, J. M. Strategies in the Design of Nanoparticles for Therapeutic Applications. Nat. Rev. Drug Discov. 2010, 9, 615–627. DOI: 10.1038/nrd2591.
  • Parveen, S.; Misra, R.; Sahoo, S. K. Nanoparticles: A Boon to Drug Delivery, Therapeutics, Diagnostics and Imaging. Nanomedicine 2012, 8, 147–166. DOI: 10.1016/j.nano.2011.05.016.
  • Editorial: Join the Dialogue. Nat. Nanotechnol 2012, 7, 545–545.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.