284
Views
1
CrossRef citations to date
0
Altmetric
Articles

Acid susceptible polymeric stealthy nanoparticles for improved anticancer drug delivery

, , , , , , & show all
Pages 1187-1196 | Received 07 May 2019, Accepted 26 Sep 2019, Published online: 30 Oct 2019

References

  • Ayodele, A. T.; Valizadeh, A.; Adabi, M.; Esnaashari, S. S.; Madani, F.; Khosravani, M.; Adabi, M. Ultrasound Nanobubbles and Their Applications as Theranostic Agents in Cancer Therapy: A Review. Biointerface Res, Appl. Chem. 2017, 7, 2253–2262.
  • Damaghi, M.; Wojtkowiak, J. W.; Gillies, R. J. pH Sensing and Regulation in Cancer. Front. Physiol. 2013, 4, 370.
  • El-Sawy, H. S.; Al-Abd, A.; Ahmed, T.; El-Say, K. M.; Torchilin, V. P. Stimuli-Responsive Nano-Architectures Drug Delivery Systems to Solid Tumor Micromilieu: Past, Present and Future Perspectives. ACS Nano. 2018, 12, 10636. DOI: 10.1021/acsnano.8b06104.
  • Parks, S. K.; Pouyssegur, J. The Na+/HCO3− Co‐Transporter SLC4A4 Plays a Role in Growth and Migration of Colon and Breast Cancer Cells. J. Cell. Physiol. 2015, 230, 1954–1963. DOI: 10.1002/jcp.24930.
  • Shannon, A. M.; Bouchier-Hayes, D. J.; Condron, C. M.; Toomey, D. Tumour Hypoxia, Chemotherapeutic Resistance and Hypoxia-Related Therapies. Cancer Treat. Rev. 2003, 29, 297–307. DOI: 10.1016/S0305-7372(03)00003-3.
  • Miyazaki, M.; Yuba, E.; Hayashi, H.; Harada, A.; Kono, K. Hyaluronic Acid-Based pH-Sensitive Polymer-Modified Liposomes for Cell-Specific Intracellular Drug Delivery Systems. Bioconjugate Chem. 2018, 29, 44–55. DOI: 10.1021/acs.bioconjchem.7b00551.
  • Wei, H.; Zhuo, R.-X.; Zhang, X.-Z. Design and Development of Polymeric Micelles with Cleavable Links for Intracellular Drug Delivery. Prog. Polym. Sci. 2013, 38, 503–535. DOI: 10.1016/j.progpolymsci.2012.07.002.
  • Xu, P.; Van Kirk, E. A.; Zhan, Y.; Murdoch, W. J.; Radosz, M.; Shen, Y. Targeted Charge‐Reversal Nanoparticles for Nuclear Drug Delivery. Angew. Chem. Int. Ed. 2007, 46, 4999–5002. DOI: 10.1002/anie.200605254.
  • Kanamala, M.; Wilson, W. R.; Yang, M.; Palmer, B. D.; Wu, Z. Mechanisms and Biomaterials in pH-Responsive Tumour Targeted Drug Delivery: A Review. Biomaterials. 2016, 85, 152–167. DOI: 10.1016/j.biomaterials.2016.01.061.
  • Esnaashari, S. S.; Amani, A. Optimization of Noscapine-Loaded mPEG-PLGA Nanoparticles and Release Study: A Response Surface Methodology Approach. J. Pharm. Innov. 2018, 13, 237–246. DOI: 10.1007/s12247-018-9318-0.
  • Choi, H. S.; Liu, W.; Liu, F.; Nasr, K.; Misra, P.; Bawendi, M. G.; Frangioni, J. V. Design Considerations for Tumour-Targeted Nanoparticles. Nature Nanotech. 2010, 5, 42. DOI: 10.1038/nnano.2009.314.
  • Cui, J.; Björnmalm, M.; Ju, Y.; Caruso, F. Nanoengineering of Poly (Ethylene Glycol) Particles for Stealth and Targeting. Langmuir. 2018, 34, 10817–10827. DOI: 10.1021/acs.langmuir.8b02117.
  • Ahmed, A.; Yu, H.; Han, D.; Rao, J.; Ding, Y.; Hu, Y. Spatiotemporally Programmable Surface Engineered Nanoparticles for Effective Anticancer Drug Delivery. Macromol. Biosci. 2014, 14, 1652–1662. DOI: 10.1002/mabi.201400228.
  • Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Alkawareek, M. Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Farokhzad, O. C.; Mahmoudi, M. Cellular Uptake of Nanoparticles: journey inside the Cell. Chem. Soc. Rev. 2017, 46, 4218–4244. DOI: 10.1039/C6CS00636A.
  • Yu, H.; He, J.; Lu, Q.; Huo, D.; Yuan, S.; Zhou, Z.; Xu, P.; Hu, Y. Anti-Fas Antibody Conjugated Nanoparticles Enhancing the Antitumor Effect of Camptothecin by Activating the Fas–FasL Apoptotic Pathway. ACS Appl. Mater. Interfaces. 2016, 8, 29950–29959. DOI: 10.1021/acsami.6b09760.
  • Ahmed, A.; Liu, S.; Pan, Y.; Yuan, S.; He, J.; Hu, Y. Multicomponent Polymeric Nanoparticles Enhancing Intracellular Drug Release in Cancer Cells. ACS Appl. Mater. Interfaces. 2014, 6, 21316–21324. DOI: 10.1021/am5061933.
  • Gebben, B.; Van den Berg, H. W.; Bargeman, D.; Smolders, C. A. Intramolecular Crosslinking of Poly (Vinyl Alcohol). Polymer. 1985, 26, 1737–1740. DOI: 10.1016/0032-3861(85)90295-2.
  • Malekpour, M. R.; Naghibzadeh, M.; Najafabadi, M. R. H.; Esnaashari, S. S.; Adabi, M.; Mujokoro, B.; Khosravani, M.; Adabi, M. Effect of Various Parameters on Encapsulation Efficiency of mPEG-PLGA Nanoparticles: artificial Neural Network. Biointerface Res. Appl. Chem. 2018, 8, 3267–3272.
  • Anandhakumar, S.; Krishnamoorthy, G.; Ramkumar, K.; Raichur, A. Preparation of Collagen Peptide Functionalized Chitosan Nanoparticles by Ionic Gelation Method: An Effective Carrier System for Encapsulation and Release of Doxorubicin for Cancer Drug Delivery. Mater. Sci. Eng. C. 2017, 70, 378–385. DOI: 10.1016/j.msec.2016.09.003.
  • Zhao, G.; Long, L.; Zhang, L.; Peng, M.; Cui, T.; Wen, X.; Zhou, X.; Sun, L.; Che, L. Smart pH-Sensitive Nanoassemblies with Cleavable PEGylation for Tumor Targeted Drug Delivery. Sci. Rep. 2017, 7, 3383. DOI: 10.1038/s41598-017-03111-2.
  • Betancourt, T.; Byrne, J. D.; Sunaryo, N.; Crowder, S. W.; Kadapakkam, M.; Patel, S.; Casciato, S.; Brannon‐Peppas, L. PEGylation Strategies for Active Targeting of PLA/PLGA Nanoparticles. J. Biomed. Mater. Res. 2009, 91, 263–276.
  • Yoo, H. S.; Park, T. G. Folate-Receptor-Targeted Delivery of Doxorubicin Nano-Aggregates Stabilized by Doxorubicin–PEG–Folate Conjugate. J. Control. Release. 2004, 100, 247–256. DOI: 10.1016/j.jconrel.2004.08.017.
  • Kim, Y. H.; Park, J. H.; Lee, M.; Kim, Y.-H.; Park, T. G.; Kim, S. W. Polyethylenimine with Acid-Labile Linkages as a Biodegradable Gene Carrier. J. Control. Release. 2005, 103, 209–219. DOI: 10.1016/j.jconrel.2004.11.008.
  • Silva, C. O.; Rijo, P.; Molpeceres, J.; Figueiredo, I. V.; Ascensão, L.; Fernandes, A. S.; Roberto, A.; Reis, C. P. Polymeric Nanoparticles Modified with Fatty Acids Encapsulating Betamethasone for anti-Inflammatory Treatment. Int. J. Pharm. 2015, 493, 271–284. DOI: 10.1016/j.ijpharm.2015.07.044.
  • Wang, B.; Huynh, T.-P.; Wu, W.; Hayek, N.; Do, T. T.; Cancilla, J. C.; Torrecilla, J. S.; Nahid, M. M.; Colwell, J. M.; Gazit, O. M.; et al. A Highly Sensitive Diketopyrrolopyrrole‐Based Ambipolar Transistor for Selective Detection and Discrimination of Xylene Isomers. Adv. Mater. 2016, 28, 4012–4018. DOI: 10.1002/adma.201505641.
  • Xiao, D.; Jia, H. Z.; Zhang, J.; Liu, C. W.; Zhuo, R. X.; Zhang, X. Z. A Dual‐Responsive Mesoporous Silica Nanoparticle for Tumor‐Triggered Targeting Drug Delivery. Small 2014, 10, 591–598. DOI: 10.1002/smll.201301926.
  • Liu, L.; Zheng, M.; Librizzi, D.; Renette, T.; Merkel, O. M.; Kissel, T. Efficient and Tumor Targeted siRNA Delivery by Polyethylenimine-Graft-Polycaprolactone-Block-Poly (Ethylene Glycol)-Folate (PEI–PCL–PEG–Fol). Mol. Pharm. 2016, 13, 134–143. DOI: 10.1021/acs.molpharmaceut.5b00575.
  • Zhou, Z.; Shen, Y.; Tang, J.; Jin, E.; Ma, X.; Sun, Q.; Zhang, B.; Van Kirk, E. A.; Murdoch, W. J. Linear Polyethyleneimine-Based Charge-Reversal Nanoparticles for Nuclear-Targeted Drug Delivery. J. Mater. Chem. 2011, 21, 19114–19123. DOI: 10.1039/c1jm13576g.
  • Tsai, S.-W.; Liaw, J.-W.; Hsu, F.-Y.; Chen, Y.-Y.; Lyu, M.-J.; Yeh, M.-H. Surface-Modified Gold Nanoparticles with Folic Acid as Optical Probes for Cellular Imaging. Sensors 2008, 8, 6660–6673. DOI: 10.3390/s8106660.
  • Li, J.; Li, Z.; Zhou, T.; Zhang, J.; Xia, H.; Li, H.; He, J.; He, S.; Wang, L. Positively Charged Micelles Based on a Triblock Copolymer Demonstrate Enhanced Corneal Penetration. Int. J. Nanomedicine 2015, 10, 26451109–26456027.
  • Park, E. K.; Lee, S. B.; Lee, Y. M. Preparation and Characterization of Methoxy Poly (Ethylene Glycol)/Poly (ε-Caprolactone) Amphiphilic Block Copolymeric Nanospheres for Tumor-Specific Folate-Mediated Targeting of Anticancer Drugs. Biomaterials. 2005, 26, 1053–1061. DOI: 10.1016/j.biomaterials.2004.04.008.
  • Zhou, Y.; Dai, Z. New Strategies in the Design of Nanomedicines to Oppose Uptake by the Mononuclear Phagocyte System and Enhance Cancer Therapeutic Efficacy. Chem. Asian J. 2018, 13, 3333. DOI: 10.1002/asia.201800149.
  • Layer, R. W. The Chemistry of Imines. Chem. Rev. 1963, 63, 489–510. DOI: 10.1021/cr60225a003.
  • Chouzouri, G.; Xanthos, M. In Vitro Bioactivity and Degradation of Polycaprolactone Composites Containing Silicate Fillers. Acta Biomater. 2007, 3, 745–756. DOI: 10.1016/j.actbio.2007.01.005.
  • Hussain, H.; Jabeen, F.; Krohn, K.; Al-Harrasi, A.; Ahmad, M.; Mabood, F.; Shah, A.; Badshah, A.; Rehman, N. U.; Green, I. R.; et al. Antimicrobial Activity of Two Mellein Derivatives Isolated from an Endophytic Fungus. Med. Chem. Res. 2015, 24, 2111–2114. DOI: 10.1007/s00044-014-1250-3.
  • Allouni, Z. E.; Cimpan, M. R.; Høl, P. J.; Skodvin, T.; Gjerdet, N. R. Agglomeration and Sedimentation of TiO2 Nanoparticles in Cell Culture Medium. Colloids Surf. B Biointerfaces. 2009, 68, 83–87. DOI: 10.1016/j.colsurfb.2008.09.014.
  • Liu, Y.; Samsonova, O.; Sproat, B.; Merkel, O.; Kissel, T. Biophysical Characterization of Hyper-Branched Polyethylenimine-Graft-Polycaprolactone-Block-Mono-Methoxyl-Poly (Ethylene Glycol) Copolymers (hy-PEI-PCL-mPEG) for siRNA Delivery. J. Control. Release. 2011, 153, 262–268. DOI: 10.1016/j.jconrel.2011.04.017.
  • Manjili, H. K.; Malvandi, H.; Mousavi, M. S.; Attari, E.; Danafar, H. In Vitro and In Vivo Delivery of Artemisinin Loaded PCL–PEG–PCL Micelles and Its Pharmacokinetic Study. Artif. Cells Nanomed. Biotechnol. 2018, 46, 926–936. DOI: 10.1080/21691401.2017.1347880.
  • Suk, J. S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. DOI: 10.1016/j.addr.2015.09.012.
  • Hao, Y.; Zheng, C.; Wang, L.; Hu, Y.; Guo, H.; Song, Q.; Zhang, H.; Zhang, Z.; Zhang, Y. Covalent Self-Assembled Nanoparticles with pH-Dependent Enhanced Tumor Retention and Drug Release for Improving Tumor Therapeutic Efficiency. J. Mater. Chem. B. 2017, 5, 2133–2144. DOI: 10.1039/C6TB02833K.
  • Oude Blenke, E.; Sleszynska, M.; Evers, M.; Storm, G.; Martin, N.; Mastrobattista, E. Strategies for the Activation and Release of the Membranolytic Peptide Melittin from Liposomes Using Endosomal pH as a Trigger. Bioconjugate Chem. 2017, 28, 574–582. DOI: 10.1021/acs.bioconjchem.6b00677.
  • Sethuraman, V. A.; Lee, M. C.; Bae, Y. H. A Biodegradable pH-Sensitive Micelle System for Targeting Acidic Solid Tumors. Pharm. Res. 2008, 25, 657–666. DOI: 10.1007/s11095-007-9480-4.
  • Tacar, O.; Sriamornsak, P.; Dass, C. R. Doxorubicin: An Update on Anticancer Molecular Action, Toxicity and Novel Drug Delivery Systems. J. Pharm. Pharmacol. 2013, 65, 157–170. DOI: 10.1111/j.2042-7158.2012.01567.x.
  • Kim, S.; Shi, Y.; Kim, J. Y.; Park, K.; Cheng, J.-X. Overcoming the Barriers in Micellar Drug Delivery: loading Efficiency, In Vivo Stability, and Micelle–Cell Interaction. Expert Opin. Drug Deliv. 2010, 7, 49–62. DOI: 10.1517/17425240903380446.
  • Arote, R. B.; Kim, T. H.; Kim, Y. K.; Jere, D.; Jiang, H. L.; Park, I. Y.; Cho, M. H.; Nah, J. W.; Cho, C. S. Novel Poly (Ester Amine) Based on Polycaprolactone and Polyethylenimine as a Gene Carrier: Effect of Hydrophobicity on Transfection Efficiency and Cytotoxicity. Key Eng Mater. 2007, 342–343, 453–456. DOI: 10.4028/www.scientific.net/KEM.342-343.453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.