218
Views
11
CrossRef citations to date
0
Altmetric
Articles

Nanotechnology guided newer intervention for treatment of osteoporosis: efficient bone regeneration by up-regulation of proliferation, differentiation and mineralization of osteoblasts

Pages 1-13 | Received 17 Jul 2019, Accepted 18 Oct 2019, Published online: 25 Oct 2019

References

  • Rosen, C. J.; Bouxsein, M. L. Mechanisms of Disease: is Osteoporosis the Obesity of Bone? Nat. Rev. Rheumatol. 2006, 2, 35–43. DOI: 10.1038/ncprheum0070.
  • Liu, Y. Z.; Dvornyk, V.; Lu, Y.; Shen, H.; Lappe, J. M.; Recker, R. R.; Deng, H. W. A Novel Pathophysiological Mechanism for Osteoporosis Suggested by an in Vivo Gene Expression Study of Circulating Monocytes. J. Biol. Chem. 2005, 280, 29011–29016. DOI: 10.1074/jbc.M501164200.
  • Kaunitz, A. M.; Mcclung, M. R.; Feldman, R. G. Post-Menopausal Osteoporosis: Fracture Risk and Prevention. J. Farm. Pract. 2009, 58, 1–6.
  • Thu, H. E.; Hussain, Z.; Mohamed, I. N.; Shuid, A. N. Exploring Dynamic Biomedical Algorithm of Eurycoma Longifolia Jack and Its Bioactive Phytochemicals: A Review of Pharmacokinetic and Pharmacodynamic Implications and Future Prospects. Asian Pac. J. Trop. Med. 2018, 11, 89–97. DOI: 10.4103/1995-7645.225015.
  • An, K.-C. Selective Estrogen Receptor Modulators. Asian Spine J. 2016, 10, 787–791. DOI: 10.4184/asj.2016.10.4.787.
  • Hadji, P. The Evolution of Selective Estrogen Receptor Modulators in Osteoporosis Therapy. Climacteric. 2012, 15, 513–523. DOI: 10.3109/13697137.2012.688079.
  • Cranney, A.; Adachi, J. D. Benefit-Risk Assessment of Raloxifene in Postmenopausal Osteoporosis. Drug Saf. 2005, 28, 721–730. DOI: 10.2165/00002018-200528080-00006.
  • Clemett, D.; Spencer, C. M. Raloxifene: A Review of Its Use in Postmenopausal Osteoporosis. Drugs 2000, 60, 379–411. DOI: 10.2165/00003495-200060020-00013.
  • Morii, H.; Ohashi, Y.; Taketani, Y.; Fukunaga, M.; Nakamura, T.; Itabashi, A.; Sarkar, S.; Harper, K. Effect of Raloxifene on Bone Mineral Density and Biochemical Markers of Bone Turnover in Japanese Postmenopausal Women with Osteoporosis: results from a Randomized Placebo-Controlled Trial. Osteoporos Int. 2003, 14, 793–800. DOI: 10.1007/s00198-003-1424-1.
  • Thu, H. E.; Mohamed, I. N.; Hussain, Z.; Jayusman, P. A.; Shuid, A. N. Eurycoma Longifolia as a Potential Adoptogen of Male Sexual Health: A Systematic Review on Clinical Studies. Chin. J. Nat. Med. 2017, 15, 71–80. DOI: 10.1016/S1875-5364(17)30010-9.
  • Thu, H. E.; Mohamed, I. N.; Hussain, Z.; Shuid, A. N. Eurycoma Longifolia as a Potential Alternative to Testosterone for the Treatment of Osteoporosis: Exploring Time-Mannered Proliferative, Differentiative and Morphogenic Modulation in Osteoblasts. J. Ethnopharmacol. 2017, 195, 143–158. DOI: 10.1016/j.jep.2016.10.085.
  • Thu, H. E.; Mohamed, I. N.; Hussain, Z.; Mohamed, N.; Shuid, A. N. Eurycoma Longifolia, a Malaysian Medicinal Herb, Significantly Upregulate Proliferation and Differentiation in Pre-Osteoblasts (MC3T3-E1): an in Vitro Model. Int. J. Pharm. Pharm. Sci. 2016, 8, 199–204. DOI: 10.22159/ijpps.2016v8i11.14518.
  • Hussain, Z.; Thu, H. E.; Shuid, A. N.; Kesharwani, P.; Khan, S.; Hussain, F. Phytotherapeutic Potential of Natural Herbal Medicines for the Treatment of Mild-to-Severe Atopic Dermatitis: A Review of Human Clinical Studies. Biomed. Pharmacother. 2017, 93, 596–608. DOI: 10.1016/j.biopha.2017.06.087.
  • Hussain, F.; Rana, Z.; Shafique, H.; Malik, A.; Hussain, Z. Phytopharmacological Potential of Different Species of Morus Alba and Their Bioactive Phytochemicals: A Review. Asian Pac. J. Trop. Biomed. 2017, 7, 950–956. DOI: 10.1016/j.apjtb.2017.09.015.
  • Ahn, M. S.; Won, J. S.; Han, M. N. A Study on the Anti-Oxidative and Antimicrobial Activities of the Chopi Solvent Extract. Korean J. Food Culture 2004, 19, 170–176.
  • Effendy, N. M.; Mohamed, N.; Muhammad, N.; Mohamad, I. N.; Shuid, A. N. Eurycoma Longifolia: Medicinal Plant in the Prevention and Treatment of Male Osteoporosis Due to Androgen Deficiency. Evid. Based Complement. Altern. Med. 2012, 2012, Article ID 125761. DOI: 10.1155/2012/125761.
  • Hussain, Z.; Thu, H. E.; Ng, S. F.; Khan, S.; Katas, H. Nanoencapsulation, an Efficient and Promising Approach to Maximize Wound Healing Efficacy of Curcumin: A Review of New Trends and State-of-the-Art. Colloids Surf. B Biointerfaces 2017, 150, 223–241. DOI: 10.1016/j.colsurfb.2016.11.036.
  • Menon, V. P.; Sudheer, A. R. Antioxidant and Anti-Inflammatory Properties of Curcumin. Adv. Exp. Med. Biol. 2007, 595, 105–125. DOI: 10.1007/978-0-387-46401-5.
  • Hussain, Z.; Thu, H. E.; Amjad, M. W.; Hussain, F.; Ahmed, T. A.; Khan, S. Exploring Recent Developments to Improve Antioxidant, anti-Inflammatory and Antimicrobial Efficacy of Curcumin: A Review of New Trends and Future Perspectives. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 1316–1326. DOI: 10.1016/j.msec.2017.03.226.
  • Moran, J. M.; Roncero-Martin, R.; Rodriguez-Velasco, F. J.; Calderon-Garcia, J. F.; Rey-Sanchez, P.; Vera, V.; Canal-Macias, M. L.; Pedrera-Zamorano, J. D. Effects of Curcumin on the Proliferation and Mineralization of Human Osteoblast-like Cells: implications of Nitric Oxide. Ijms. 2012, 13, 16104–16118. DOI: 10.3390/ijms131216104.
  • Gao, X.; Guo, L.; Li, J.; Thu, H. E.; Hussain, Z. Nanomedicines Guided Nanoimaging Probes and Nanotherapeutics for Early Detection of Lung Cancer and Abolishing Pulmonary Metastasis: Critical Appraisal of Newer Developments and Challenges to Clinical Transition. J. Control Release 2018, 292, 29–57. DOI: 10.1016/j.jconrel.2018.10.024.
  • Chik, M. W.; Hussain, Z.; Zulkefeli, M.; Tripathy, M.; Kumar, S.; Majeed, A. B.; Byrappa, K. Polymer-Wrapped Single-Walled Carbon Nanotubes: A Transformation toward Better Applications in Healthcare. Drug Deliv. Transl. Res. 2019, 9, 578–594. DOI: 10.1007/s13346-018-0505-9.
  • Khan, S.; Imran, M.; Butt, T. T.; Ali Shah, S. W.; Sohail, M.; Malik, A.; Das, S.; Thu, H. E.; Adam, A.; Hussain, Z. Curcumin Based Nanomedicines as Efficient Nanoplatform for Treatment of Cancer: New Developments in Reversing Cancer Drug Resistance, Rapid Internalization, and Improved Anticancer Efficacy. Trends Food Sci. Technol. 2018, 80, 8–22. DOI: 10.1016/j.tifs.2018.07.026.
  • Hussain, Z.; Arooj, M.; Malik, A.; Hussain, F.; Safdar, H.; Khan, S.; Sohail, M.; Pandey, M.; Choudhury, H.; Ei Thu, H. Nanomedicines as Emerging Platform for Simultaneous Delivery of Cancer Therapeutics: new Developments in Overcoming Drug Resistance and Optimizing Anticancer Efficacy. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1015–1024. DOI: 10.1080/21691401.2018.1478420.
  • Fang, G.; Zhang, Q.; Pang, Y.; Thu, H. E.; Hussain, Z. Nanomedicines for Improved Targetability to Inflamed Synovium for Treatment of Rheumatoid Arthritis: Multi-Functionalization as an Emerging Strategy to Optimize Therapeutic Efficacy. J. Control Release 2019, 303, 181–208. DOI: 10.1016/j.jconrel.2019.04.027.
  • Hussain, Z.; Thu, H. E.; Sohail, M.; Khan, S. Hybridization and Functionalization with Biological Macromolecules Synergistically Improve Biomedical Efficacy of Silver Nanoparticles: Reconceptualization of in-Vitro, in-Vivo and Clinical Studies. J. Drug Deliv. Sci. Technol. 2019, 54, 101169–101169. DOI: 10.1016/j.jddst.2019.101169.
  • Dong, J.; Tao, L.; Abourehab, M. A. S.; Hussain, Z. Design and Development of Novel Hyaluronate-Modified Nanoparticles for Combo-Delivery of Curcumin and Alendronate: fabrication, Characterization, and Cellular and Molecular Evidences of Enhanced Bone Regeneration. Int. J. Biol. Macromol. 2018, 116, 1268–1281. DOI: 10.1016/j.ijbiomac.2018.05.116.
  • Safdar, M. H.; Hussain, Z.; Abourehab, M. A. S.; Hasan, H.; Afzal, S.; Thu, H. E. New Developments and Clinical Transition of Hyaluronic Acid-Based Nanotherapeutics for Treatment of Cancer: Reversing Multidrug Resistance, Tumour-Specific Targetability and Improved Anticancer Efficacy. Artif. Cells Nanomed. Biotechnol. 2017, 46, 1967–1980. DOI: 10.1080/21691401.2017.1397001.
  • Chen, L. H.; Xue, J. F.; Zheng, Z. Y.; Shuhaidi, M.; Thu, H. E.; Hussain, Z. Hyaluronic Acid, an Efficient Biomacromolecule for Treatment of Inflammatory Skin and Joint Diseases: A Review of Recent Developments and Critical Appraisal of Preclinical and Clinical Investigations. Int. J. Biol. Macromol. 2018, 116, 572–584. DOI: 10.1016/j.ijbiomac.2018.05.068.
  • Hussain, Z.; Thu, H. E.; Katas, H.; Bukhari, S. N. A. Hyaluronic Acid-Based Biomaterials: A Versatile and Smart Approach to Tissue Regeneration and Treating Traumatic, Surgical, and Chronic Wounds. Polym. Rev. 2017, 57, 594–630. DOI: 10.1080/15583724.2017.1315433.
  • Fiszer-Szafarz, B.; Rommain, M.; Brossard, C.; Smets, P. Hyaluronic Acid-Degrading Enzymes in Rat Alveolar Macrophages and in Alveolar Fluid: Stimulation of Enzyme Activity after Oral Treatment with the Immunomodulator RU 41740. Biol. Cell 1988, 63, 355–360. DOI: 10.1111/j.1768-322X.1988.tb00759.x.
  • Bukhari, S.; Roswandi, N. L. 2.; Waqas, M.; Habib, H.; Hussain, F.; Khan, S.; Sohail, M.; Ramli, N. A. 2.; Thu, H. E. 7.; Hussain, Z. Hyaluronic Acid, a Promising Skin Rejuvenating Biomedicine: A Review of Recent Updates and Pre-Clinical and Clinical Investigations on Cosmetic and Nutricosmetic Effects. Int. J. Biol. Macromol. 2018, 120, 1682–1695. DOI: 10.1016/j.ijbiomac.2018.09.188.
  • Pandey, M.; Choudhury, H.; Gunasegaran, T. A. P.; Nathan, S. S.; Md, S.; Gorain, B.; Tripathy, M.; Hussain, Z. Hyaluronic Acid-Modified Betamethasone Encapsulated Polymeric Nanoparticles: Fabrication, Characterisation, In Vitro Release Kinetics, and Dermal Targeting. Drug Deliv. Transl. Res. 2018, 9, 520–533. DOI: 10.1007/s13346-018-0480-1.
  • Zhuo, F.; Abourehab, M.; Hussain, Z. Hyaluronic Acid Decorated Tacrolimus-Loaded Nanoparticles: Efficient Approach to Maximize Dermal Targeting and anti-Dermatitis Efficacy. Carbohydr. Polym. 2018, 197, 478–489. DOI: 10.1016/j.carbpol.2018.06.023.
  • Hussain, Z.; Katas, H.; Mohd Amin, M. C. I.; Kumolosasi, E.; Buang, F.; Sahudin, S. Self-Assembled Polymeric Nanoparticles for Percutaneous Co-Delivery of Hydrocortisone/Hydroxytyrosol: An Ex Vivo and in Vivo Study Using an NC/Nga Mouse Model. Int. J. Pharm. 2013, 444, 109–119. DOI: 10.1016/j.ijpharm.2013.01.024.
  • Wang, W.; Olson, D.; Liang, G.; Franceschi, R. T.; Li, C.; Wang, B.; Wang, S. S.; Yang, S. Collagen XXIV (Col24α1) Promotes Osteoblastic Differentiation and Mineralization through TGF-β/Smads Signaling Pathway. Int. J. Biol. Sci. 2012, 8, 1310–1322. DOI: 10.7150/ijbs.5136.
  • Shiga, M.; Kapila, Y. L.; Zhang, Q.; Hayami, T.; Kapila, S. Ascorbic Acid Induces Collagenase-1 in Human Periodontal Ligament Cells but Not in MC3T3-E1 Osteoblast-like Cells: Potential Association between Collagenase Expression and Changes in Alkaline Phosphatase Phenotype. J. Bone Miner. Res. 2003, 18, 67–77. DOI: 10.1359/jbmr.2003.18.1.67.
  • Yamakawa, K.; Iwasaki, H.; Masuda, I.; Ohjimi, Y.; Honda, I.; Saeki, K.; Zhang, J.; Shono, E.; Naito, M.; Kikuchi, M. The Utility of Alizarin Red s Staining in Calcium Pyrophosphate Dehydrate Crystal Deposition Disease. J. Rheumatol. 2003, 30, 1032–1035.
  • Hoemann, C. D.; El-Gabalawy, H.; McKee, M. D. In Vitro Osteogenesis Assays: Influence of the Primary Cell Source on Alkaline Phosphatase Activity and Mineralization. Pathol. Biol. 2009, 57, 318–323. DOI: 10.1016/j.patbio.2008.06.004.
  • Raida, M.; Heymann, A. C.; Gunther, C.; Niederwieser, D. Role of Bone Morphogenetic Protein 2 in the Crosstalk between Endothelial Progenitor Cells and Mesenchymal Stem Cells. Int. J. Mol. Med. 2006, 18, 735–739.
  • Komori, T. Regulation of Bone Development and Extracellular Matrix Protein Genes by RUNX2. Cell Tissue Res. 2010, 339, 189–195. DOI: 10.1007/s00441-009-0832-8.
  • Sakamoto, W.; Isomura, H.; Fujie, K.; Deyama, Y.; Kato, A.; Nishihira, J.; Izumi, H. Homocysteine Attenuates the Expression of Osteocalcin but Enhances Osteopontin in MC3T3-E1preosteoblastic Cells. Biochim. Biophys. Acta 2005, 1740, 12–16. DOI: 10.1016/j.bbadis.2005.03.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.