233
Views
10
CrossRef citations to date
0
Altmetric
Articles

Enhanced transdermal permeation of rasagiline mesylate nanoparticles: design, optimization, and effect of binary combinations of solvent systems across biological membrane

ORCID Icon, , &
Pages 158-173 | Received 05 Jun 2019, Accepted 16 Dec 2019, Published online: 03 Jan 2020

References

  • Lisak, R. P.; Truong, D. D.; Carroll, W. M.; Bhidayasiri, R. International Neurology. 2nd ed.; John Wiley & Sons: New York, US, 2016, p. 188.
  • Fearnley, J. M.; Lees, A. J. Ageing and Parkinson's Disease: substantia Nigra Regional Selectivity. Brain. 1991, 114, 2283–2301. DOI: 10.1093/brain/114.5.2283.
  • Mustafa, G.; Ahmad, N.; Baboota, S.; Ali, j.; Ahuja, A. UHPLC/ESI-Q-TOF-MS Method for the Measurement of Dopamine in Rodent Striatal Tissue: A Comparative Effect of Intranasal Administration of Ropinirole Solution over Nano Emulsions. Drug Test. Analysis. 2013, 5, 702–709. DOI: 10.1002/dta.1426.
  • Goetz, C. G. The History of Parkinson’s Disease: Early Clinical Descriptions and Neurological Therapies. Cold Spring Harb. Perspect. Med. 2011, 1, a008862–a008862. DOI: 10.1101/cshperspect.a008862.
  • Taylor, J. P.; Hardy, J.; Fischbeck, K. H. Toxic Proteins in Neurodegenerative Disease. Science. 2002, 296, 1991–1995. DOI: 10.1126/science.1067122.
  • Schapira, A. H. V. Present and Future Drug Treatment for Parkinson’s Disease. J. Neurol. Neurosurg. Psychiatry. 2005, 76, 1472–1478. DOI: 10.1136/jnnp.2004.035980.
  • Olanow, C. W.; Jankovic, J. Neuroprotective Therapy in Parkinson’s Disease and Motor Complications: A Search for a Pathogenesis-Targeted, Disease-Modifying Strategy. Mov. Disord. 2005, 20, S3–S10. DOI: 10.1002/mds.20457.
  • Group, P. S. Effect of Deprenyl on the Progression of Disability in Early Parkinson’s Disease. N. Engl J. Med. 1989, 321, 1364–1371.
  • Group, P. S. A Controlled Trial of Rasagiline in Early Parkinson Disease: The TEMPO Study. Arch. Neurol. 2002, 59, 1937–1943.
  • Youdim, M. B.; Bakhle, Y. S. Monoamine Oxidase: isoforms and Inhibitors in Parkinson's Disease and Depressive Illness. Br. J. Pharmacol. 2009, 147, S287–S96. DOI: 10.1038/sj.bjp.0706464.
  • Rascol, O.; Goetz, C.; Koller, W.; Poewe, W.; Sampaio, C. Treatment Interventions for Parkinson's Disease: An Evidence Based Assessment. Lancet. 2002, 359, 1589–1598. DOI: 10.1016/S0140-6736(02)08520-3.
  • Finberg, J. P.; Lamensdorf, I.; Weinstock, M.; Schwartz, M.; Youdim, M. B. Pharmacology of Rasagiline (N-Propargyl-1R-Aminoindan). Adv. Neurol. 1999, 80, 495–499.
  • Youdim, M. B.; Gross, A.; Finberg, J. P. Rasagiline [N-Propargyl-1R(+)-Aminoindan], a Selective and Potent Inhibitor of Mitochondrial Monoamine Oxidase B. Br. J. Pharmacol. 2001, 132, 500–506. DOI: 10.1038/sj.bjp.0703826.
  • Chen, J. J.; Swope, D. M.; Dashtipour, K. Comprehensive Review of Rasagiline, a Second-Generation Monoamine Oxidase Inhibitor, for the Treatment of Parkinson’s Disease. Clin. Ther. 2007, 29, 1825–1849. DOI: 10.1016/j.clinthera.2007.09.021.
  • Lecht, S.; Haroutiunian, S.; Hoffman, A.; Lazarovici, P. Rasagiline - a novel MAO B inhibitor in Parkinson's disease therapy. Ther. Clin. Risk. Manag. 2007, 3, 467–474.
  • FernáNdez, M.; Negro, S.; Slowing, K.; Fernández-Carballido, A.; Barcia, E. An Effective Novel Delivery Strategy of RAS for Parkinson’s Disease. Int. J. Pharm. 2011, 419, 271–280. DOI: 10.1016/j.ijpharm.2011.07.029.
  • Jiang, Y.; Zhang, X.; Mu, H.; Hua, H.; Duan, D.; Yan, X.; Wang, Y.; Meng, Q.; Lu, X.; Wang, A.; et al. Preparation and Evaluation of Injectable Rasagiline Mesylate Dual-Controlled Drug Delivery System for the Treatment of Parkinson's Disease. Drug Deliv. 2018, 25, 143–152. DOI: 10.1080/10717544.2017.1419514.
  • Singh, R.; Lillard, J. W. Jr. Nanoparticle-Based Targeted Drug Delivery. Exp. Mol. Pathol. 2009, 86, 215–223. DOI: 10.1016/j.yexmp.2008.12.004.
  • Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; Rodriguez-Torres, M. P.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S.; et al. Nano Based Drug Delivery Systems: recent Developments and Future Prospects. J. Nanobiotechnol. 2018, 16, 71. DOI: 10.1186/s12951-018-0392-8.
  • Bali, N. R.; Salve, P. S. Selegiline Nanoparticle Embedded Transdermal Film: An Alternative Approach for Brain Targeting in Parkinson’s Disease. J. Drug Deliv. Sci. Technol. 2019, 54, 101299. DOI: 10.1016/j.jddst.2019.101299.
  • Bhaskaran, S.; Suresh, S. Biodegradable Microspheres of Ketorolac Tromethamine for Parenteral Administration. J. Microencapsul. 2004, 21, 743–750. DOI: 10.1080/02652040400000496.
  • Kasturi, S. P.; Qin, H.; Thomson, K. S.; El-Bereir, S.; Cha, S.; Neelapu, S.; Kwak, L. W.; Roy, L. Prophylactic anti-Tumor Effects in a B Cell Lymphoma Model with DNA Vaccines Delivered on Polyethylenimine (PEI) Functionalized PLGA Microparticles. J. Control. Release. 2006, 113, 261–270. DOI: 10.1016/j.jconrel.2006.04.006.
  • Naha, P. C.; Kanchan, V.; Panda, A. K. Evaluation of Parenteral Depot Insulin Formulation Using PLGA and PLA Microparticles. J. Biomater. Appl. 2009, 24, 309–325. DOI: 10.1177/0885328208096238.
  • Athanasiou, K. A.; Niederauer, G. G.; Agrawal, C. M. Sterilization, Toxicity, Biocompatibility and Clinical Applications of Polylactic Acid/Polyglycolic Acid Copolymers. Biomaterials. 1996, 17, 93–102. DOI: 10.1016/0142-9612(96)85754-1.
  • Lanao, R. P. F.; Leeuwenburgh, S. C. G.; Wolke, J. G. C.; Jansen, J. A. Bone Response to Fast-Degrading, Injectable Calcium Phosphate Cements Containing PLGA Microparticles. Biomaterials. 2011, 32, 8839–8847. DOI: 10.1016/j.biomaterials.2011.08.005.
  • Lanao, R. P. F.; Leeuwenburgh, S. C. G.; Wolke, J. G. C.; Jansen, J. A. In Vitro Degradation Rate of Apatitic Calcium Phosphate Cement with Incorporated PLGA Microspheres. Acta. Biomaterialia. 2011, 7, 3459–3468. DOI: 10.1016/j.actbio.2011.05.036.
  • Li, H.; Chang, J. pH-Compensation Effect of Bioactive Inorganic Fillers on the Degradation of PLGA. Compos. Sci. Technol. 2005, 65, 2226–2232. DOI: 10.1016/j.compscitech.2005.04.051.
  • Rip, J.; Schenk, G. J.; de Boer, A. G. Differential Receptor-Mediated Drug Targeting to the Diseased Brain. Expert. Opin. Drug. Deliv. 2009, 3, 227–237. DOI: 10.1517/17425240902806383.
  • Yadav, K. S.; Sawant, K. Modified Nanoprecipitation Method for Preparation of Cytarabine-Loaded PLGA Nanoparticles. AAPS PharmSciTech. 2010, 3, 1456–1465. DOI: 10.1208/s12249-010-9519-4.
  • Govender, T.; Stolnik, S.; Garnett, M. C.; Illum, L.; Davis, S. S. PLGA Nanoparticles Prepared by Nanoprecipitation: drug Loading and Release Studies of a Water Soluble Drug. J. Control. Release. 1999, 57, 171–185. DOI: 10.1016/S0168-3659(98)00116-3.
  • Ma, G.; Song, C. X. PCL/Poloxamer 188 Blend Microsphere for Paclitaxel Delivery: influence of Poloxamer 188 on Morphology and Drug Release. J. Appl. Polym. Sci. 2007, 104, 1895–1899. DOI: 10.1002/app.25866.
  • Patel, T.; Zhou, J.; Piepmeier, J. M.; Saltzman, W. M. Polymeric Nanoparticles for Drug Delivery to the Central Nervous System. Adv. Drug. Deliv. Rev. 2012, 7, 701–705. DOI: 10.1016/j.addr.2011.12.006.
  • Naik, A.; Kalia, Y. N.; Guy, R. H. Transdermal Drug Delivery: overcoming the Skin’s Barrier Function. Pharm. Sci. Technolo. Today. 2000, 9, 318–326. DOI: 10.1016/S1461-5347(00)00295-9.
  • Elias, P. M. Skin Barrier Function. Curr. Allergy Asthma Rep. 2008, 8, 299–305. DOI: 10.1007/s11882-008-0048-0.
  • Panchagnula, R.; Salve, P. S.; Thomas, N. S.; Jain, A. K.; Ramarao, P. Transdermal Delivery of Naloxone: effect of Water, Propylene Glycol, Ethanol and Their Binary Combinations on Permeation through Rat Skin. Int. J. Pharm. 2001, 219, 95–105. DOI: 10.1016/S0378-5173(01)00634-2.
  • Lopes, L. B.; Garcia, M. T.; Bentley, M. V. Chemical Penetration Enhancers. Ther. Deliv. 2015, 6, 1053–1061. DOI: 10.4155/tde.15.61.
  • Telange, D. R.; Nirgulkar, S. B.; Umekar, M. J.; Patil, A. T.; Pethe, A. M.; Bali, N. R. Enhanced Transdermal Permeation and anti-Inflammatory Potential of Phospholipids Complex-Loaded Matrix Film of Umbelliferone: Formulation Development, Physico-Chemical and Functional Characterization. Eur. J. Pharm. Sci. 2019, 131, 23–38. DOI: 10.1016/j.ejps.2019.02.006.
  • Baysal, I.; Yabanoglu-Ciftci, S.; Tunc-Sarisozen, Y.; Ulubayram, K.; Ucar, G. Interaction of Selegiline-Loaded PLGA-b-PEG Nanoparticles with Beta-Amyloid Fibrils. J. Neural Transm. 2013, 120, 903–910. DOI: 10.1007/s00702-013-0992-2.
  • Roberts, M. S.; Walker, M. Water: The Most Natural Penetration Enhancer. In Pharmaceutical Skin Penetration Enhancement; Walters, K., Hadgraft J. Eds.; Marcel Dekker: New York, 1993; pp. 1–30.
  • Loth, H. Vehicular Influence on Transdermal Drug Penetration. Int. J. Pharm. 1991, 68, 1–10. DOI: 10.1016/0378-5173(91)90120-D.
  • Williams, A.C.; Barry, B.W. Skin Absorption Enhancers. Crit. Rev. Ther. Drug Carrier Syst. 1992, 9, 305–353.
  • Ghosh, T.K.; Banga, A.K. Methods of Enhancement of Transdermal Drug Delivery: part IIB, Chemical Permeation Enhancers. Pharm. Technol. 1993, 17, 68–76.
  • Ghosh, T.K.; Banga, A.K. Methods of Enhancement of Transdermal Drug Delivery: part IIA, Chemical Permeation Enhancers. Pharm. Technol. 1993, 17, 62–80.
  • Yum, S. Permeation Enhancement with Ethanol: mechanism of Action through Skin. In Drug Permeation Enhancement: Theory and Applications; D.S. Hsieh Ed.; Marcel Dekker: New York, 1994; pp. 143–170.
  • Parra, A.; Clares, B.; Rosselló, A.; Garduño-Ramírez, M. L.; Abrego, G.; García, M. L.; Calpena, A. C. Ex Vivo Permeation of Carprofen from Nanoparticles: A Comprehensive Study through Human, Porcine and Bovine Skin as anti-Inflammatory Agent. Int. J. Pharm. 2016, 501, 10–17. DOI: 10.1016/j.ijpharm.2016.01.056.
  • Thomas, N. S.; Panchagnula, R. Transdermal Delivery of Zidovudine: effect of Vehicles on Permeation across Rat Skin and Their Mechanism of Action. Eur J Pharm Sci. 2003, 18, 71–79. DOI: 10.1016/S0928-0987(02)00242-7.
  • Hardman, J.; Limbard, L.E. Goodman and Goodman and Gilman`s Pharmacological Basis of Therapeutics; McGraw-Hills, New York, 1996; p. 1763.
  • Chen, X.; Zhao, Q.; Jiang, J.; Liu, J.; Hu, P. Pharmacokinetics of Rasagiline in Healthy Adult Chinese Volunteers with Various Genotypes: A Single-Center, Open-Label, Multiple-Dose Study. Clin. Drug Investig. 2016, 36, 369–376. DOI: 10.1007/s40261-016-0380-4.
  • Dalvi, S. V.; Dave, R. N. Controlling Particle Size of a Poorly Water-Soluble Drug Using Ultrasound and Stabilizers in Antisolvent Precipitation. Ind. Eng. Chem. Res. 2009, 48, 7581–7593. DOI: 10.1021/ie900248f.
  • Ostertag, F.; Weiss, J.; McClements, D. J. Low-Energy Formation of Edible Nanoemulsions: factors Influencing Droplet Size Produced by Emulsion Phase Inversion. J. Colloid. Interface. Sci. 2012, 388, 95–102. DOI: 10.1016/j.jcis.2012.07.089.
  • ZETA-METER. Zeta-Meter System 4.0, Manual ZM4.0 with direct video, version 1.4, Rev 2a, Zeta-Meter, Inc, Staunton VA, USA; 2013.
  • Karemore, M. N.; Avari, J. G. Zeta Potential as a Novel Diagnostic Tool for Preeclampsia. Pregnancy Hypertens. 2018, 13, 187–197. DOI: 10.1016/j.preghy.2018.06.014.
  • Ansary, R.H.; Awang, M.B.; Rahman, M.M. Biodegradable Poly(D,L-Lactide-co-Glycolide Acid)- Based Micro/Nanoparticles for Sustained Released of Protein drugs- A Review. Trop. J. Pharm. Res. 2014, 13, 1179–1190. DOI: 10.4314/tjpr.v13i7.24.
  • Küchler, S.; Radowski, M.R.; Blaschke, T.; Dathe, M.; Plendl, J.; Haag, R.; Schäfer-Korting, M.; Kramer, K.D. Nanoparticles for Skin Penetration Enhancement – a Comparison of a Dendritic Core-Multishell-Nanotransporter and Solid Lipid Nanoparticles. Eur. J. Pharm. Biopharm. 2009, 71, 243–250. DOI: 10.1016/j.ejpb.2008.08.019.
  • Embil, K.; Nacht, S. The Microsponge Delivery System (MDS): a Topical Delivery System with Reduced Irritancy Incorporating Multiple Triggering Mechanisms for the Release of Actives. J. Microencapsul. 1996, 13, 575–588. DOI: 10.3109/02652049609026042.
  • Bommannan, D.; Potts, R.O.; Guy, R.H. Examination of the Effect of Ethanol on Human Stratum Corneum In Vivo Using Infrared Spectroscopy. J. Control. Release. 1991, 16, 299–304. DOI: 10.1016/0168-3659(91)90006-Y.
  • Ostrenga, J.; Steinmetz, C.; Poulsen, B. Significance of Vehicle Composition I: Relationship between Topical Vehicle Composition, Skin Penetrability, and Clinical Efficacy. J. Pharm. Sci. 1971, 60, 1175–1179. DOI: 10.1002/jps.2600600812.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.