638
Views
41
CrossRef citations to date
0
Altmetric
Articles

Dendrimers in targeted drug delivery applications: a review of diseases and cancer

Pages 287-297 | Received 11 Sep 2019, Accepted 07 Jan 2020, Published online: 21 Jan 2020

References

  • Mandal, A. K. Hydroxyapatite Nanoparticles as Delivery System in Combating Various Diseases. Int. J. Curr. Adv. Res. 2018, 7, 15869–15877.
  • Kalomiraki, M.; Thermos, K.; Chaniotakis, N. A. Dendrimers as Tunable Vectors of Drug Delivery Systems and Biomedical and Ocular Applications. Int. J. Nanomed. 2016, 11, 1–12.
  • Morikawa, A. Comparison of Properties among Dendritic and Hyperbranched Poly (Ether Ether Ketone)s and Linear Poly (Ether Ketone)s. Molecules. 2016, 21, 219. DOI: 10.3390/molecules21020219.
  • Singh, J.; Jain, K.; Mehra, N. K.; Jain, N. K. Dendrimers in Anticancer Drug Delivery: Mechanism of Interaction of Drug and Dendrimers. Artific. Cells Nanomed. Biotechnol. 2016, 44, 1626–1634. DOI: 10.3109/21691401.2015.1129625.
  • Lombardo, D. Modeling Dendrimers Charge Interaction in Solution: Relevance in Biosystems. Biochem. Res. Int. 2014, 837651, 1–10.
  • Kannan, R. M.; Nance, E.; Kannan, S.; Tomalia, D. A. Emerging Concepts in Dendrimer-Based Nanomedicine: From Design Principles to Clinical Applications. J. Intern. Med. 2014, 276, 579–617. DOI: 10.1111/joim.12280.
  • Tripathy, S.; Das, M. K. Dendrimers and Their Applications as Novel Drug Delivery Carriers. J. Appl. Pharmaceutic. Sci. 2013, 3, 142–149.
  • Abbasi, E.; Aval, S. F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H. T.; Joo, S. W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, Applications, and Properties. Nanoscale Res. Lett. 2014, 9, 247. DOI: 10.1186/1556-276X-9-247.
  • Thatikonda, S.; Yellanki, S. K.; D., S. C.; Arjun, D.; Balaji, A. Dendrimers-A New Class of Polymers. Int. J. Pharmaceutic. Sci. Res. 2013, 4, 2174–2183.
  • Satsangi, A.; Roy, S. S.; Satsangi, R. K.; Tolcher, A. W.; Vadlamudi, R. K.; Goins, B.; Ong, J. L. Synthesis of a Novel, Sequentially Active-Targeted Drug Delivery Nanoplatform for Breast Cancer Therapy. Biomater. 2015, 59, 88–101. DOI: 10.1016/j.biomaterials.2015.03.039.
  • Thakur, S.; Kesharwani, P.; Tekade, R. K.; Jain, N. K. Impact of PEGylation on Biopharmaceutical Properties of Dendrimers. Polym. 2015, 59, 67–92. DOI: 10.1016/j.polymer.2014.12.051.
  • Chaudhari, H. S.; Popat, R. R.; Adhao, V. S.; Shrikhande, V. N. Dendrimers: Novel Carriers for Drug Delivery. J. Appl. Pharmaceutic. Res. 2016, 4, 1–19.
  • Somani, S.; Blatchford, D. R.; Millington, O.; Stevenson, M. L.; Dufes, C. Transferrin-Bearing Polypropylenimine Dendrimer for Targeted Gene Delivery to the Brain. J. Control. Rel. 2014, 188, 78–86. DOI: 10.1016/j.jconrel.2014.06.006.
  • Somani, S.; Robb, G.; Pickard, B. S.; Dufes, C. Enhanced Gene Expression in the Brain following Intravenous Administration of Lactoferrin-Bearing Poly Propylenimine Dendriplex. J. Control. Rel. 2015, 217, 235–242. DOI: 10.1016/j.jconrel.2015.09.003.
  • Mendes, L. P.; Pan, J.; Torchilin, V. P. Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy. Molecules. 2017, 22, 1401. DOI: 10.3390/molecules22091401.
  • Yang, J.; Zhang, Q.; Chang, H.; Cheng, Y. Surface-Engineered Dendrimers in Gene Delivery. Chem. Rev. 2015, 115, 5274–5300. DOI: 10.1021/cr500542t.
  • AlRobaian, M.; Chiam, K. Y.; Blatchford, D. R.; Dufes, C. Therapeutic Efficacy of Intravenously Administered Transferring-Conjugated Dendriplexes on Prostate Carcinomas. Nanomed. (Lond.) 2014, 9, 421–434. DOI: 10.2217/nnm.13.25.
  • Lim, L. Y.; Koh, P. Y.; Somani, S.; Al Robaian, M.; Karim, R.; Yean, Y. L.; Mitchell, J.; Tate, R. J.; Edrada-Ebel, R.; Blatchford, D. R.; et al. Tumor Regression following Intravenous Administration of Lactoferrin- and Lactoferricin-Bearing Dendriplexes. Nanomed. 2015, 11, 1445–1454. DOI: 10.1016/j.nano.2015.04.006.
  • Altwaijry, N.; Somani, S.; Parkinson, J. A.; Tate, R. J.; Keating, P.; Warzecha, M.; Mackenzie, G. R.; Leung, H. Y.; Dufes, C. Regression of Prostate Tumors after Intravenous Administration of Lactoferrin-Bearing Polypropylenimine Dendriplexes Encoding TNF-α, TRAIL and Interleukin-12. Drug Deliv. 2018, 25, 679–689. DOI: 10.1080/10717544.2018.1440666.
  • Somani, S.; Laskar, P.; Altwaijry, N.; Kewcharoenvong, P.; Irving, C.; Robb, G.; Pickard, B. S.; Dufes, C. PEGylation of Polypropylenimine Dendrimers: Effects on Cytotoxicity, DNA Condensation, Gene Delivery and Expression in Cancer Cells. Sci. Rep. 2018, 8, 9410. DOI: 10.1038/s41598-018-27400-6.
  • Xu, L.; Zhang, H.; Wu, Y. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics. ACS Chem. Neurosci. 2014, 5, 2–13. DOI: 10.1021/cn400182z.
  • Zhang, M.; Zhu, J.; Zheng, Y.; Guo, R.; Wang, S.; Mignani, S.; Caminade, A. M.; Majoral, J. P.; Shi, X. Doxorubicin-Conjugated PAMAM Dendrimers for pH-Responsive Drug Release and Folic Acid-Targeted Cancer Therapy. Pharmaceut. 2018, 10, 162. DOI: 10.3390/pharmaceutics10030162.
  • Koo, H.; Huh, M. S.; Sun, I. C.; Yuk, S. H.; Choi, K.; Kim, K.; Kwon, I. C. In Vivo Targeted Delivery of Nanoparticles for theranosis. Acc. Chem. Res. 2011, 44, 1018–1028. DOI: 10.1021/ar2000138.
  • Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in Drug Delivery and Targeting: Drug-Dendrimer Interactions and Toxicity Issues. J. Pharm. Bioall. Sci. 2014, 6, 139–150.
  • Choudhary, S.; Gupta, L.; Rani, S.; Dave, K. K.; Gupta, U. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules. Front. Pharmacol. 2017, 8, 261. DOI: 10.3389/fphar.2017.00261.
  • Jean-d’Amour, T. T.; Grindley, B. Polyester Dendrimers: Smart Carriers for Drug Delivery. Polym. 2014, 6, 179–213.
  • Twibarine, J. K.; Grindley, T. B. Efficient and Controllably Selective Preparation of Esters Using Uranium-Based Coupling Agents. Org. Lett. 2011, 13, 2988–2991.
  • Mohammadi, M. R.; Nojoomi, A.; Mozafari, M.; Dubnika, A.; Inayathullah, M.; Rajadas, J. Nanomaterials Engineering for Drug Delivery: A Hybridization Approach. J. Mater. Chem. B. 2017, 5, 3995–4018. DOI: 10.1039/C6TB03247H.
  • Parajapati, S. K.; Maurya, S. D.; Das, M. K.; Tilak, V. K.; Verma, K. K.; Dhakar, R. C. Dendrimers in Drug Delivery, Diagnosis and Therapy: Basics and Potential Applications. J. Drug Deliv. Therapeut. 2016, 6, 67–92.
  • Yang, H.; Lopina, S. T. Extended Release of a Novel Antidepressant, Venlafaxine, Based on Anionic Polyamidoamine Dendrimers and Poly (Ethylene Glycol)-Containing Semi-Interpenetrating Networks. J. Biomed. Mater. Res. A. 2005, 72, 107–114.
  • Najlah, M.; Freeman, S.; Attwood, D.; D'Emanuele, A. In Vitro Evaluation of Dendrimer Prodrugs for Oral Drug Delivery. Int. J. Pharm. 2007, 336, 183–190. DOI: 10.1016/j.ijpharm.2006.11.047.
  • D’Emanuele, A.; Jevprasesphant, R.; Penny, J.; Attwood, D. The Use of a Dendrimer-Propranolol Prodrug to Bypass Efflux Transporters and Enhance Oral Bioavailability. J. Control. Rel 2004, 95, 447–453. DOI: 10.1016/j.jconrel.2003.12.006.
  • Parajapati, S. K.; Maurya, S. D.; Das, M. K.; Tilak, V. K.; Verma, K. K.; Dhakar, R. C. Potential Application of Dendrimers in Drug Delivery: A Concise Review and Update. J. Drug Deliv. Therapeut. 2016, 6, 71–88.
  • Kaminskas, L. M.; McLeod, V. M.; Kelly, B. D.; Sberna, G.; Boyd, B. J.; Williamson, M.; Owen, D. J.; Porter, C. J. A Comparison of Changes to Doxorubicin Pharmacokinetics, Antitumor Activity, and Toxicity Mediated by PEGylated Dendrimer and PEGylated Liposome Drug Delivery Systems. Nanomed. 2012, 8, 103–111. DOI: 10.1016/j.nano.2011.05.013.
  • Pasut, G.; Scaramuzza, S.; Schiavon, O.; Mendichi, R.; Veronese, F. M. PEG-Epirubicin Conjugates with High Drug Loading. J. Bioact. Compat. Polym. 2005, 20, 213–230. DOI: 10.1177/0883911505053377.
  • Soto-Castro, D.; Cruz-Morales, J. A.; Ramirez, A. M. T.; Guadarrama, P. Solubilization and Anticancer-Activity Enhancement of Methotrexate by Novel Dendrimeric Nanomedicines Synthesized in One-Step Reaction. Bioorg. Chem. 2012, 41-42, 13–21. DOI: 10.1016/j.bioorg.2012.01.002.
  • Zhou, Z.; D’Emanuele, A.; Attwood, D. Solubility Enhancement of Paclitaxel Using a Linear Dendritic Block Copolymer. Int. J. Pharm. 2013, 452, 173–179. DOI: 10.1016/j.ijpharm.2013.04.075.
  • Karel, U.; Katerina, H.; Vladimir, S.; Aristides, B.; Jiri, T.; Radek, Z. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control and Clinical Studies. Chem. Rev. 2016, 116, 5338–5431.
  • Garcia-Gallego, S.; Franci, G.; Folanga, A.; Gomez, R.; Folliero, V.; Galdiero, S.; de la Mata, F. J.; Galdiero, M. Function Oriented Molecular Design: Dendrimers as Novel Antimicrobials. Molecules. 2017, 22, 1581. DOI: 10.3390/molecules22101581.
  • Gautam, S. P.; Gupta, A. K.; Sharma, A.; Gautam, T. M. Synthesis and Analytical Characterization of Ester and Amine Terminated PAMAM Dendrimers. Glob. J. Med. Res Pharma. Drug Discov. Toxicol. Med. 2013, 13, 1.
  • Hu, W.; Cheng, L.; Cheng, L.; Zheng, M.; Lei, Q.; Hu, Z.; Xu, M.; Qiu, L.; Chen, D. Redox and pH-Responsive Poly (Amidoamine) Dendrimer-Poly (Ethylene Glycol) Conjugates with Disulfide Linkages for Efficient Intracellular Drug Release. Colloids Surf. B. Biointerf. 2014, 123, 254–263. DOI: 10.1016/j.colsurfb.2014.09.024.
  • Agrawal, A.; Kulkarni, S. Dendrimers: A New Generation Carrier. Int. J. Res. Dev. Pharm. Life Sci. 2015, 4, 1700–1712.
  • Mekuria, S. L.; Debele, T. A.; Tsai, H. C. PAMAM Dendrimer Based Targeted Nanocarrier for Bioimaging and Therapeutic Agents. RSC Adv. 2016, 6, 63761–63772. DOI: 10.1039/C6RA12895E.
  • Das, B.; Patra, S. Antimicrobials: Meeting the Challenges of Antibiotic Resistance through Nanotechnology. In Nanostructures for Antimicrobial Therapy, Ficai A, Grumezescu A. M., Eds. Bucharest, Romania: Elsevier Book Publications, 2017; pp 1–22.
  • Goudarzi, M.; Navidinia, M. Overview Perspective of Bacterial Strategies of Resistance to Biocides and Antibiotics. Arch. Clin. Infect. Dis. 2019, 14, e65744.
  • Gumustus, M.; Sengel-Turk, C. T.; Gumustas, A.; Ozkan, S. A.; Uslu, B. Effecr of Polymer-Based Nanoparticles on the Assay of Antimicrobial Drug Delivery Systems. In Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics, Grumezescu A. M., Ed. Bucharest, Romania: Elsevier Book Publications, 2017; cp 5, pp 67–103.
  • Fox, L. J.; Richardson, R. M.; Briscoe, W. H. PAMAM Dendrimer-Cell Membrane Interactions. Adv. Colloid. Interf. Sci. 2018, 257, 1–18. DOI: 10.1016/j.cis.2018.06.005.
  • Svenson, S.; Tomalia, D. A. Dendrimers in Biomedical Applications-Reflections on the Field. Adv. Drug Deliv. Rev. 2012, 64, 102–115. DOI: 10.1016/j.addr.2012.09.030.
  • Kaur, D.; Jain, K.; Mehra, N. K.; Kesharwani, P.; Jain, N. K. A Review on Comparative Study of PPI and PAMAM Dendrimers. J. Nanopart. Res. 2016, 18, 146. DOI: 10.1007/s11051-016-3423-0.
  • Moura, L. T. F.; Malfanti, A.; Peres, C.; Matos, A. I.; Guegain, E.; Sainz, V.; Zloh, M.; Vicent, M. J.; Florindo, H. F. Functionalized Branched Polymers: Promising Immunomodulatory Tools for the Treatment of Cancer and Immune Disorders. Mater. Horiz. 2019, 6, 1956–1973. DOI: 10.1039/C9MH00628A.
  • Shukla, S. K.; Govender, P. P.; Tiwari, A. Polymeric Micellar Structures for Biosensor Technology. Adv. Biomembr. Lipid Self Assem. 2016, 24, 143–161. DOI: 10.1016/bs.abl.2016.04.005.
  • Dzmitruk, V.; Apartsin, E.; Ihnatsyeu-Kachan, A.; Abashkin, V.; Shcharbin, D.; Bryszewska, M. Dendrimers Show Promise for siRNA and microRNA Therapeutics. Pharmaceutics. 2018, 10, 126. DOI: 10.3390/pharmaceutics10030126.
  • Wu, L. P.; Ficker, M.; Christensen, J. B.; Trohopoulos, P. N.; Moghimi, S. M. Dendrimers in Medicine: Therapeutic Concepts and Pharmaceutical Challenges. Bioconjugate Chem. 2015, 26, 1198–1211. DOI: 10.1021/acs.bioconjchem.5b00031.
  • Mhleoatika, Z.; Aderibigbe, B. A. Application of Dendrimers for the Treatment of Infectious Diseases. Molecules. 2018, 23, 2205. DOI: 10.3390/molecules23092205.
  • de Menezes, J. P. B.; Guedes, C. E. S.; Petersen, A. L. d O. A.; Fraga, D. B. M.; Veras, P. S. T. Advances in Development of New Treatment for Leishmaniasis. Biomed Res Int. 2015, 2015, 815023.
  • Croft, S. L.; Olliaro, P. Leishmaniasis Chemotherapy-Challenges and Opportunities. Clin. Microbiol. Infect. 2011, 17, 1478–1483. DOI: 10.1111/j.1469-0691.2011.03630.x.
  • Jain, K.; Verma, A. K.; Mishra, P. R.; Jain, N. K. Characterization and Evaluation of Amphotericin B Loaded Conjugated Poly (Propylene Imine) Dendrimers. Nanomed. 2015, 11, 705–713. DOI: 10.1016/j.nano.2014.11.008.
  • Daftarian, P. M.; Stone, G. W.; Kovalski, L.; Kumar, M.; Vosoughi, A.; Urbieta, M.; Blackwelder, P.; Dikici, E.; Serafini, P.; Duffort, S.; et al. A Targeted and Adjuvanted Nanocarrier Lowers the Effective Dose of Liposomal Amphotericin B and Enhances Adaptive Immunity in Murine Cutaneous Leishmaniasis. J. Infect. Dis. 2013, 208, 1914–1922. DOI: 10.1093/infdis/jit378.
  • Jain, K.; Verma, K. A.; Mishra, P. R.; Jain, N. K. Surface-Engineered Dendrimeric Nanoconjugates for Macrophage Targeted Delivery of Amphotericin B: Formulation Development and in Vitro and in Vivo Evaluation. J. Infect. Dis. 2013, 208, 1914–1922.
  • Noriega-Luna, B.; Godinez, L. A.; Rodriguez, F. J.; Rodriguez, A.; de Larrea, G. Z. L.; Sosa-Ferreyra, C. F.; Mercado-Curiel, R. F.; Manriquez, J.; Bustos, E. Applications of Dendrimers in Drug Delivery Agents, Diagnosis, Therapy, and Detection. J. Nanomater. 2014, 507273.
  • de Araujo, R. V.; Santos, S. D. S.; Ferreira, E. I.; Giarolla, J. New Advances in General Biomedical Applications of PAMAM Dendrimers. Molecules. 2018, 23, 2849. DOI: 10.3390/molecules23112849.
  • Jain, K.; Gupta, U.; Jain, N. K. Dendronized Nanoconjugates of Lysine and Folate for Treatment of Cancer. Eur. J. Pharm. Biopharm. 2014, 87, 500–509. DOI: 10.1016/j.ejpb.2014.03.015.
  • Kaur, A.; Jain, K.; Mehra, N. K.; Jain, N. Development and Characterization of Surface Engineered PPI Dendrimers for Targeted Drug Delivery. Artif. Cells Nanomed. Biotechnol. 2017, 45, 414–425. DOI: 10.3109/21691401.2016.1160912.
  • Majoros, I. J.; Williams, C. R.; Becker, A.; Baker, J. R. J. Methotrexate Delivery via Folate Targeted Dendrimer-Based Nanotherapeutic Platform. Wires. Nanomed. Nanobiotechnol. 2009, 1, 502–510. DOI: 10.1002/wnan.37.
  • Sing, P.; Gupta, U.; Asthana, A.; Jain, N. K. Folate and folate-PEG-PAMAM Dendrimers: Synthesis, Characterization, and Targeted Anticancer Drug Delivery Potential in Tumor Bearing Mice. Bioconjugate Chem. 2008, 19, 2239–2252. DOI: 10.1021/bc800125u.
  • Castro, R. I.; Forero-Doria, O.; Guzman, L. Perspectives of Dendrimer-Based Nanoparticles in Cancer Therapy. An. Acad. Bras. Ciênc. 2018, 90, 2331–2346. DOI: 10.1590/0001-3765201820170387.
  • Senapati, S.; Mahanta, A. K.; Kumar, S.; Maiti, P. Controlled Drug Delivery Vehicles for Cancer Treatment and Their Performance. Signal Transd. Target. Ther. 2018, 3, 7. DOI: 10.1038/s41392-017-0004-3.
  • Malik, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J. W.; Meijer, E. W.; Paulus, W.; Duncan, R. Dendrimers: Relationship between Structure and Biocompatibility in Vitro, and Preliminary Studies on the Biodistribution of 125I-Labelled Polyamidoamine Dendrimers in Vivo. J. Control. Rel. 2000, 68, 299–302. DOI: 10.1016/S0168-3659(00)00283-2.
  • Wilbur, D. S.; Pathare, P. M.; Hamlin, D. K.; Buhler, K. R.; Vessella, R. L. Biotin Reagents for Antibody Pretargeting: Synthesis, Radioiodination, and Evaluation of Biotinylated Starburst Dendrimers. Bioconjugate Chem. 1998, 9, 813–825. DOI: 10.1021/bc980055e.
  • Yang, H.; Morris, J. J.; Lopina, S. T. Polyethylene Glycol-Polyamidoamine Dendritic Micelle as Solubility Enhancer and the Effect of the Length of Polyethylene Glycol Arms on the Solubility of Pyrene in Water. J. Colloid. Interf. Sci. 2004, 273, 148–154. DOI: 10.1016/j.jcis.2003.12.023.
  • Kojima, C.; Kono, K.; Maruyama, K.; Takagishi, T. Synthesis of Polyamidoamine Dendrimers Having Poly (Ethylene Glycol) Grafts and Their Ability to Encapsulate Anticancer Drugs. Bioconjugate Chem. 2000, 11, 910–917. DOI: 10.1021/bc0000583.
  • DeJesus, O. L. P.; Ihre, H. R.; Gagne, L.; Frechet, J. M. J.; Szoka, F. C. Polyester Dendritic Systems for Drug Delivery Applications, in Vitro and in Vivo Evaluation. Bioconjugate Chem. 2002, 13, 453–461.
  • Mc Nerny, D. Q.; Leroueil, P. R.; Baker, J. R. Understanding Specific and Non Specific Toxicities: A Requirement for the Development of Dendrimer-Based Pharmaceuticals. Wires. Nanomed. Nanobiotechnol. 2010, 2, 249–259. DOI: 10.1002/wnan.79.
  • Chauhan, A. S.; Jain, N. K.; Diwan, P. V.; Khopade, A. J. Solubility Enhancement of Indomethacin with Poly (Amidoamine) Dendrimers and Targeting to Inflammatory Regions of Arthritic Rats. J. Drug Target. 2004, 12, 575–583. DOI: 10.1080/10611860400010655.
  • Asthana, A.; Chauhan, A. S.; Diwan, P. V.; Jain, N. K. Poly (Amidoamine) (PAMAM) Dendritic Nanostructures for Controlled Site-Specific Delivery of Acidic anti-Inflammatory Active Ingredient. AAPS Pharm. Sci. Tech. 2005, 6, E536–542. DOI: 10.1208/pt060367.
  • Bhadra, D.; Yadav, A. K.; Bhadra, S.; Jain, N. K. Glycodendrimeric Nanoparticulate Carriers of Primaquine Phosphate for Liver Targeting. Int. J. Pharm. 2005, 295, 221–233. DOI: 10.1016/j.ijpharm.2005.01.026.
  • Shukla, R.; Thomas, T. P.; Peters, J.; Kotlyar, A.; Myc, A.; Baker, J. R. Tumor Angiogenic Vasculature Targeting with PAMAM dendrimer-RGD Conjugates. Chem. Commun. 2005, 46, 5739–5741.
  • Majoros, I. J.; Myc, A.; Thomas, T.; Mehta, C. B.; Baker, J. R. PAMAM Dendrimer-Based Multifunctional Conjugate for Cancer Therapy: Synthesis, Characterization, and Functionality. Biomacromol. 2006, 7, 572–579. DOI: 10.1021/bm0506142.
  • Thomas, T. P.; Majoros, I. J.; Kotlyar, A.; Kukowska, L. J. F.; Bielinska, A.; Myc, A.; Baker, J. R. J. Targeting and Inhibition of Cell Growth by an Engineered Dendritic Nanodevice. J. Med. Chem. 2005, 48, 3729–3735. DOI: 10.1021/jm040187v.
  • Majoros, I. J.; Thomas, T. P.; Mehta, C. B.; Baker, J. R. Poly (Amidoamine) Dendrimer-Based Multi-Functional Engineered Nanomedicine for Cancer Therapy. J. Med. Chem. 2005, 48, 5892–5899. DOI: 10.1021/jm0401863.
  • Barth, R. F.; Wu, G.; Yang, W.; Binns, P. J.; Riley, K. J.; Patel, H.; Coderre, J. A.; Tjarks, W.; Bandyopadhyaya, A. K.; Thirumamagal, B. T. S.; et al. Neutron Capture Therapy of Epidermal Growth Factor (plus) Gliomas Using Boronated Cetuximab (IMC-C225) as a Delivery Agent. Appl. Radiat. Isot. 2004, 61, 899–903. DOI: 10.1016/j.apradiso.2004.05.004.
  • Barth, R. F.; Adams, D. M.; Soloway, A. H.; Alam, F.; Darby, M. V. Boronated Star Burst Dendrimer Monoclonal-Antibody Immunoconjugates – Evaluation as a Potential Delivery System for Neutron-Capture Therapy. Bioconjugate Chem. 1994, 5, 58–66. DOI: 10.1021/bc00025a008.
  • Yang, W. L.; Barth, R. F.; Adams, D. M.; Ciesielski, M. J.; Fenstermaker, R. A.; Shukla, S.; Tjarks, W.; Caligiuri, M. A. Convection-enhanced delivery of boronated epidermal growth factor for molecular targeting of EGF receptor-positive gliomas. Cancer Res. 2002, 62, 6552–6558.
  • Yang, W. L.; Barth, R. F.; Adams, D. M.; Soloway, A. H. Intratumoral Delivery of Boronated Epidermal Growth Factor for Neutron Capture Therapy of Brain Tumors. Bioconjugate Chem. 1997, 57, 4333–4339.
  • Yang, W.; Barth, R. F.; Wu, G.; Bandyopadhyaya, A. K.; Thirumamagal, B. T. S.; Tjarks, W.; Binns, P. J.; Riley, K.; Patel, H.; Coderre, J. A.; et al. Boronated Epidermal Growth Factor as a Delivery Agent for Neutron Capture Therapy of EGF Receptor Positive Gliomas. Appl. Radiat. Isot. 2004, 61, 981–985. DOI: 10.1016/j.apradiso.2004.05.071.
  • Duncan, R.; Izzo, L. Dendrimer Biocompatibility and Toxicity. Adv. Drug Deliv. Rev. 2005, 57, 2215–2237. DOI: 10.1016/j.addr.2005.09.019.
  • Kukowska-Latallo, J. F.; Raczka, E.; Quintana, A.; Chen, C.; Rymaszewski, M.; Baker, J. R. Intravascular and Endobronchial DNA Delivery to Murine Lung Tissue Using a Novel, Nonviral Vector. Hum. Gene Ther. 2000, 11, 1385–1395. DOI: 10.1089/10430340050057468.
  • Kihara, F.; Arima, H.; Tsutsumi, T.; Hirayama, F.; Uekama, K. In Vitro and in Vivo Gene Transfer by an Optimized Alpha-Cyclodextrin Conjugate with Polyamidoamine Dendrimer. Bioconjugate Chem. 2003, 14, 342–350. DOI: 10.1021/bc025613a.
  • Wada, K.; Arima, H.; Tsutsumi, T.; Chihara, Y.; Hattori, K.; Hirayama, F.; Uekama, K. Improvement of Gene Delivery Mediated by Mannosylated Dendrimer/[Alpha] – Cyclodextrin Conjugates. J. Control Rel. 2005, 104, 397–413. DOI: 10.1016/j.jconrel.2005.02.016.
  • Mamede, M.; Saga, T.; Ishimori, T.; Higashi, T.; Sato, N.; Kobayashi, H.; Brechbiel, M. W.; Konishi, J. Hepatocyte Targeting of 111In-Labeled oligo-DNA with Avidin or Avidin-Dendrimer Complex. J. Control Rel. 2004, 95, 133–141. DOI: 10.1016/j.jconrel.2003.11.015.
  • Dufes, C.; Keith, W. N.; Bilsland, A.; Proutski, I.; Uchegbu, I. F.; Schatzlein, A. G. Synthetic Anticancer Gene Medicine Exploits Intrinsic Antitumor Activity of Cationic Vector to Cure Established Tumors. Cancer Res. 2005, 65, 8079–8084. DOI: 10.1158/0008-5472.CAN-04-4402.
  • Schatzlein, A. G.; Zinselmeyer, B. H.; Elouzi, A.; Dufes, C.; Chim, Y. T. A.; Roberts, C. J.; Davies, M. C.; Munro, A.; Gray, A. I.; Uchegbu, I. F. Preferential Liver Gene Expression with Polypropylenimine Dendrimers. J. Control. Rel. 2005, 101, 247–258. DOI: 10.1016/j.jconrel.2004.08.024.
  • Tack, F.; Bakker, A.; Maes, S.; Dekeyser, N.; Bruining, M.; Elissen-Roman, C.; Janicot, M.; Brewster, M.; Janssen, H. M.; De Waal, B. F. M.; et al. Modified Poly (Propylene Imine) Dendrimers as Effective Transfection Agents for Catalytic DNA Enzymes (DNAzymes). J. Drug Target. 2006, 14, 69–86. DOI: 10.1080/10611860600635665.
  • Nair, L. S.; Laurencin, C. T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. DOI: 10.1016/j.progpolymsci.2007.05.017.
  • Mehvar, R. Dextrans for Targeted and Sustained Delivery of Therapeutic and Imaging Agents. J Control. Rel. 2000, 69, 1–25. DOI: 10.1016/S0168-3659(00)00302-3.
  • Knorr, V.; Ogris, M.; Wagner, E. An Acid Sensitive Ketal-Based Polyethylene Glycol-Oligoethylenimine Copolymer Mediates Improved Transfection Efficiency at Reduced Toxicity. Pharm. Res. 2008, 25, 2937–2945. DOI: 10.1007/s11095-008-9700-6.
  • Luo, K.; Yang, J.; KopečKová, P.; KopečEk, Jich.; Biodegradable Multiblock Poly [N-(2-Hydroxypropyl) Methacrylamide] via Reversible Addition-Fragmentation Chain Transfer Polymerization and Click Chemistry. Macromolecules. 2011, 44, 2481–2488. DOI: 10.1021/ma102574e.
  • Pan, H.; Yang, J.; KopečKová, P.; KopečEk, J.; Backbone Degradable Multiblock N-(2-Hydroxypropyl) Methacrylamide Copolymer Conjugates via Reversible Addition-Fragmentation Chain Transfer Polymerization and Thiol-Ene Coupling Reaction. Biomacromolecules. 2011, 12, 247–252. DOI: 10.1021/bm101254e.
  • Yang, J.; Luo, K.; Pan, H.; Kopeckova, P.; Kopecek, J. Synthesis of Biodegradable Multi-Block Copolymers by Click Coupling of RAFT-Generated Heterotelechelic Poly HPMA Conjugates. React. Funct. Polym. 2011, 71, 294–302. DOI: 10.1016/j.reactfunctpolym.2010.10.005.
  • Barz, M.; Wolf, F. K.; Canal, F.; Koynov, K.; Vicent, M. J.; Frey, H.; Zentel, R. Synthesis, Characterization and Preliminary Biological Evaluation of P(HPMA)-b-P(LLA) Copolymers: A New Type of Functional Biocompatible Block Copolymer. Macromol. Rapid Commun. 2010, 3, 1492–1500.
  • Matsumura, Y.; Maeda, H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 1986, 46, 6387–6392.
  • Seymour, L. W.; Duncan, R.; Strohalm, J.; Kopecek, J. Effect of Molecular Weight (MW) of N-(2-Hydroxypropyl) Methacrylamide Copolymers on Body Distribution and Rate of Excretion after Subcutaneous, Intraperitoneal, and Intravenous Administration to Rats. J. Biomed. Mater. Res. 1987, 21, 1341–1358. DOI: 10.1002/jbm.820211106.
  • Chauhan, A. S.; Diwan, P. V.; Jain, N. K.; Tomalia, D. A. Unexpected in Vivo anti-Inflammatory Activity Observed for Simple, Surface Functionalized Poly (Amidoamine) Dendrimers. Biomacromolecules. 2009, 10, 1195–1202. DOI: 10.1021/bm9000298.
  • Martinet, L.; Fleury, C.S.; Gadelorge, M.; Dietrich, G.; Bourin, P.; Fournie, J. J.; Poupot, R. A Regulatory Cross-Talk between Vγ9Vδ2 T Lymphocytes and Mesenchymal Stem Cells. Eur. J. Immunol. 2009, 39, 752–762. DOI: 10.1002/eji.200838812.
  • Martinet, L.; Jean, C.; Dietrich, G.; Fournie, J. J.; Poupot, R. PGE2 Inhibits Natural Killer and γδ T Cell Cytotoxicity Triggered NKR and TCR through a cAMP-Mediated PKA Type I-Dependent Signaling. Biochem. Pharmacol. 2010, 80, 838–845. DOI: 10.1016/j.bcp.2010.05.002.
  • Vannucci L.; Fiserová A.; Sadalapure K.; Lindhorst T.; Kuldová M.; Rossmann P.; Horváth O.; Kren V.; Krist P.; Bezouska K.; et al. Effects of n-Acetyl-Glucosamine-Coated Glycodendrimers as Biological Modulators in the b16f10 Melanoma Model in Vivo. Int. J. Oncol. 2003, 23, 285–296.
  • Shaunak S.; Thomas S.; Gianasi E.; Godwin A.; Jones E.; Teo I.; Mireskandari K.; Luthert P.; Duncan R.; Patterson S.; et al. Polyvalent Dendrimer Glucosamine Conjugates Prevent Scar Tissue Formation. Nat. Biotechnol. 2004, 22, 977–984. DOI: 10.1038/nbt995.
  • Poupot M.; Griffe L.; Marchand P.; Maraval A.; Rolland O.; Martinet L.; L’Faqihi-Olive F.; Turrin C.; Caminade A.; Fournié J.; et al. Design of Phosphorylated Dendritic Architectures to Promote Human Monocyte Activation. Faseb J. 2006, 20, 2339–2351. DOI: 10.1096/fj.06-5742com.
  • Espinosa, E.; Belmant, C.; Sicard, H.; Poupot, R.; Bonneville, M.; Fournié, J. J. Y2k + 1 State-of-the-Art on Non-Peptide Phosphoantigens, a Novel Category of Immunostimulatory Molecules. Microbes Infect. 2001, 3, 645–654. DOI: 10.1016/S1286-4579(01)01420-4.
  • Martinet, L.; Poupot, R.; Fournie, J. J. Pitfalls on the Roadmap to γδ T Cell-Based Cancer Immunotherapies. Immunol. Lett. 2009, 124, 1–8. DOI: 10.1016/j.imlet.2009.03.011.
  • Griffe L.; Poupot M.; Marchand P.; Maraval A.; Turrin C.; Rolland O.; Métivier P.; Bacquet G.; Fournié J.; Caminade A.; et al. Multiplication of Human Natural Killer Cells by Nanosized Phosphate-Capped Dendrimers. Angew. Chem. Int. Ed. 2007, 46, 2523–2526. DOI: 10.1002/anie.200604651.
  • Portevin, D.; Poupot, M.; Rolland, O.; Turrin, C. O.; Fournie, J. J.; Majoral, J. P.; Caminade, A. M.; Poupot, R. Regulatory Activity of Azabisphosphonate-Capped Dendrimers on Human CD+ T Cell Proliferation Enhances Ex-Vivo Expansion of NK Cells from PBMCs for Immunotherapy. J. Transl. Med. 2009, 7, 82. DOI: 10.1186/1479-5876-7-82.
  • Fruchon, S.; Poupot, M.; Martinet, L.; Turrin, C. O.; Majoral, J. P.; Fournie, J. J.; Caminade, A. M.; Poupot, R. Anti-Inflammatory and Immunosuppressive Activation of Human Monocytes by a Bio-Active Dendrimer. J. Leukoc. Biol. 2009, 85, 553–562. DOI: 10.1189/jlb.0608371.
  • Rele, S. M.; Cui, W.; Wang, L.; Hou, S.; Barr-Zarse, G.; Tatton, D.; Gnanou, Y.; Esko, J. D.; Chaikof, E. L. Dendrimer-like PEO Glycopolymers Exhibit Anti-inflammatory Properties. J. Am. Chem. Soc. 2005, 127, 10132–10133. DOI: 10.1021/ja0511974.
  • Ulbrich, H.; Eriksson, E.; Lindbom, L. Leukocyte and Endothelial Cell Adhesion Molecules as Targets for Therapeutic Interventions in Inflammatory Disease. Trends Pharmacol. Sci. 2003, 24, 640–647. DOI: 10.1016/j.tips.2003.10.004.
  • Khalid H.; Mukherjee S.; O'Neill L.; Byrne H. Structural Dependence of in Vitro Cytotoxicity, Oxidative Stress and Uptake Mechanisms of Poly (Propylene Imine) Dendritic Nanoparticles. J. Appl. Toxicol. 2016, 36, 464–473.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.