392
Views
19
CrossRef citations to date
0
Altmetric
Articles

Hesperidin promotes peripheral nerve regeneration based on tissue engineering strategy using alginate/chitosan hydrogel: in vitro and in vivo study

, , , &
Pages 299-308 | Received 04 Oct 2019, Accepted 03 Jan 2020, Published online: 20 Jan 2020

References

  • Jones, S.; Eisenberg, H.; Jia, X. Advances and Future Applications of Augmented Peripheral Nerve Regeneration. Int. J. Mol. Sci. 2016, 17, 1494. DOI: 10.3390/ijms17091494.
  • Kehne, J. H.; Klein, B. D.; Raeissi, S.; Sharma, S. The National Institute of Neurological Disorders and Stroke (NINDS) Epilepsy Therapy Screening Program (ETSP). Neurochem. Res. 2017, 42, 1894–1903. DOI: 10.1007/s11064-017-2275-z.
  • Xie, J.; MacEwan, M. R.; Liu, W.; Jesuraj, N.; Li, X.; Hunter, D.; Xia, Y. Nerve Guidance Conduits Based on Double-Layered Scaffolds of Electrospun Nanofibers for Repairing the Peripheral Nervous System. ACS Appl. Mater. Interf. 2014, 6, 9472–9480. DOI: 10.1021/am5018557.
  • Sachanandani, N. F.; Pothula, A.; Tung, T. H. Nerve Gaps. Plastic Reconstr. Surg. 2014, 133, 313–319. DOI: 10.1097/01.prs.0000436856.55398.0f.
  • Isaacs, J.; Browne, T. Overcoming Short Gaps in Peripheral Nerve Repair: Conduits and Human Acellular Nerve Allograft. Hand 2014, 9, 131–137. DOI: 10.1007/s11552-014-9601-6.
  • Muheremu, A.; Ao, Q. Past, Present, and Future of Nerve Conduits in the Treatment of Peripheral Nerve Injury. BioMed. Res. Int. 2015, 2015, 1–6. DOI: 10.1155/2015/237507.
  • Robinson, L. R. Traumatic Injury to Peripheral Nerves. Muscle Nerve 2000, 23, 863–873. DOI: 10.1002/(SICI)1097-4598(200006)23:6<863::AID-MUS4>3.0.CO;2-0.
  • Gu, X.; Ding, F.; Williams, D. F. Neural Tissue Engineering Options for Peripheral Nerve Regeneration. Biomaterials 2014, 35, 6143–6156. DOI: 10.1016/j.biomaterials.2014.04.064.
  • Bagher, Z.; Azami, M.; Ebrahimi-Barough, S.; Mirzadeh, H.; Solouk, A.; Soleimani, M.; Ai, J.; Nourani, M. R.; Joghataei, M. T. Differentiation of Wharton’s Jelly-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells on Three-Dimensional Collagen-Grafted Nanofibers. Mol. Neurobiol. 2016, 53, 2397–2408. DOI: 10.1007/s12035-015-9199-x.
  • Bagher, Z.; Ebrahimi‐Barough, S.; Azami, M.; Safa, M.; Joghataei, M. T. Cellular Activity of Wharton’s Jelly-Derived Mesenchymal Stem Cells on Electrospun Fibrous and Solvent-Cast Film Scaffolds. J. Biomed. Mater. Res. 2016, 104, 218–226. DOI: 10.1002/jbm.a.35555.
  • Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Adv. Mater. 2006, 18, 1345–1360. DOI: 10.1002/adma.200501612.
  • Boateng, J. S.; Matthews, K. H.; Stevens, H. N.; Eccleston, G. M. Wound Healing Dressings and Drug Delivery Systems: A Review. J. Pharm. Sci. 2008, 97, 2892–2923. DOI: 10.1002/jps.21210.
  • Bahram, M.; Mohseni, N.; Moghtader, M. An Introduction to Hydrogels and Some Recent Applications. In Emerging Concepts in Analysis and Applications of Hydrogels; Majee, S. B., Ed.; InTech: London, UK, 2016.
  • Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D. S. Polymeric Scaffolds in Tissue Engineering Application: A Review. Int. J. Polym. Sci. 2011, 2011, 1–19. DOI: 10.1155/2011/290602.
  • Cheung, R.; Ng, T.; Wong, J.; Chan, W. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Marine Drugs 2015, 13, 5156–5186. DOI: 10.3390/md13085156.
  • Salehi, M.; Bagher, Z.; Kamrava, S. K.; Ehterami, A.; Alizadeh, R.; Farhadi, M.; Falah, M.; Komeili, A. Alginate/Chitosan Hydrogel Containing Olfactory Ectomesenchymal Stem Cells for Sciatic Nerve Tissue Engineering. J. Cell. Physiol. 2019, 234, 15357–15368. DOI: 10.1002/jcp.28183.
  • Deng, B.; Shen, L.; Wu, Y.; Shen, Y.; Ding, X.; Lu, S.; Jia, J.; Qian, J.; Ge, J. Delivery of Alginate-Chitosan Hydrogel Promotes Endogenous Repair and Preserves Cardiac Function in Rats with Myocardial Infarction. J. Biomed. Mater. Res. 2015, 103, 907–918. DOI: 10.1002/jbm.a.35232.
  • Zhu, Z.; Zhou, X.; He, B.; Dai, T.; Zheng, C.; Yang, C.; Zhu, S.; Zhu, J.; Zhu, Q.; Liu, X. Ginkgo Biloba Extract (EGb 761) Promotes Peripheral Nerve Regeneration and Neovascularization after Acellular Nerve Allografts in a Rat Model. Cell. Mol. Neurobiol. 2015, 35, 273–282. DOI: 10.1007/s10571-014-0122-1.
  • Ai, A.; Behforouz, A.; Ehterami, A.; Sadeghvaziri, N.; Jalali, S.; Farzamfar, S.; Yousefbeigi, A.; Ai, A.; Goodarzi, A.; Salehi, M. Sciatic Nerve Regeneration with Collagen Type I Hydrogel Containing Chitosan Nanoparticle Loaded by Insulin. Int. J. Polymeric Mater. Polymeric Biomater. 2019, 68, 1133–1141. DOI: 10.1080/00914037.2018.1534114.
  • Garg, A.; Garg, S.; Zaneveld, L.; Singla, A. Chemistry and Pharmacology of the Citrus Bioflavonoid Hesperidin. Phytother. Res. 2001, 15, 655–669. DOI: 10.1002/ptr.1074.
  • Menze, E. T.; Tadros, M. G.; Abdel-Tawab, A. M.; Khalifa, A. E. Potential Neuroprotective Effects of Hesperidin on 3-Nitropropionic Acid-Induced Neurotoxicity in Rats. Neurotoxicology 2012, 33, 1265–1275. DOI: 10.1016/j.neuro.2012.07.007.
  • Fernández, M.; Gobartt, A. L.; Balañá, M.; the COOPERA Study Group. Behavioural Symptoms in Patients with Alzheimer’s Disease and Their Association with Cognitive Impairment. BMC Neurol. 2010, 10, 87. DOI: 10.1186/1471-2377-10-87.
  • Nones, J.; e Spohr, T. C. L. d S.; Gomes, F. C. A. Hesperidin, a Flavone Glycoside, as Mediator of Neuronal Survival. Neurochem. Res. 2011, 36, 1776–1784. DOI: 10.1007/s11064-011-0493-3.
  • Nones, J.; Stipursky, J.; Costa, S. L.; Gomes, F. C. A. Flavonoids and Astrocytes Crosstalking: Implications for Brain Development and Pathology. Neurochem. Res. 2010, 35, 955–966. DOI: 10.1007/s11064-010-0144-0.
  • Kumar, P.; Kumar, A. Protective Effect of Hesperidin and Naringin against 3-Nitropropionic Acid Induced Huntington’s like Symptoms in Rats: Possible Role of Nitric Oxide. Behav. Brain Res. 2010, 206, 38–46. DOI: 10.1016/j.bbr.2009.08.028.
  • Maher, P. Proteasome Inhibitors Prevent Oxidative Stress-Induced Nerve Cell Death by a Novel Mechanism. Biochem. Pharmacol. 2008, 75, 1994–2006. DOI: 10.1016/j.bcp.2008.02.008.
  • Ehrnhoefer, D. E.; Bieschke, J.; Boeddrich, A.; Herbst, M.; Masino, L.; Lurz, R.; Engemann, S.; Pastore, A.; Wanker, E. E. EGCG Redirects Amyloidogenic Polypeptides into Unstructured, Off-Pathway Oligomers. Nat. Struct. Mol. Biol. 2008, 15, 558–566. DOI: 10.1038/nsmb.1437.
  • Baysal, K.; Aroguz, A. Z.; Adiguzel, Z.; Baysal, B. M. Chitosan/Alginate Crosslinked Hydrogels: Preparation, Characterization and Application for Cell Growth Purposes. Int. J. Biol. Macromol. 2013, 59, 342–348. DOI: 10.1016/j.ijbiomac.2013.04.073.
  • Ehterami, A.; Salehi, M.; Farzamfar, S.; Samadian, H.; Vaeez, A.; Ghorbani, S.; Ai, J.; Sahrapeyma, H. Chitosan/Alginate Hydrogels Containing Alpha-Tocopherol for Wound Healing in Rat Model. J. Drug Deliv. Sci. Technol. 2019, 51, 204–213. DOI: 10.1016/j.jddst.2019.02.032.
  • Srilatha, D.; Nasare, M.; Nagasandhya, B.; Prasad, V.; Diwan, P. Development and Validation of UV Spectrophotometric Method for Simultaneous Estimation of Hesperidin and Diosmin in the Pharmaceutical Dosage Form. ISRN Spectrosc. 2013, 2013, 1–4. DOI: 10.1155/2013/534830.
  • Ehterami, A.; Salehi, M.; Farzamfar, S.; Vaez, A.; Samadian, H.; Sahrapeyma, H.; Mirzaii, M.; Ghorbani, S.; Goodarzi, A. In Vitro and In Vivo Study of PCL/COLL Wound Dressing Loaded With Insulin-Chitosan Nanoparticles on Cutaneous Wound Healing in Rats Model. Int. J. Biol. Macromol. 2018, 117, 601–609. DOI: 10.1016/j.ijbiomac.2018.05.184.
  • Huang, L.; Xiao, Y-h.; Xing, X-d.; Li, F.; Ma, S.; Qi, L-l.; Chen, J-h. Antibacterial Activity and Cytotoxicity of Two Novel Cross-Linking Antibacterial Monomers on Oral Pathogens. Arch. Oral Biol. 2011, 56, 367–373. DOI: 10.1016/j.archoralbio.2010.10.011.
  • Wang, W.; Tao, R.; Tong, Z.; Ding, Y.; Kuang, R.; Zhai, S.; Liu, J.; Ni, L. Effect of a Novel Antimicrobial Peptide Chrysophsin-1 on Oral Pathogens and Streptococcus Mutans Biofilms. Peptides 2012, 33, 212–219. DOI: 10.1016/j.peptides.2012.01.006.
  • Semyari, H.; Salehi, M.; Taleghani, F.; Ehterami, A.; Bastami, F.; Jalayer, T.; Semyari, H.; Hamed Nabavi, M.; Semyari, H. Fabrication and Characterization of Collagen–Hydroxyapatite-Based Composite Scaffolds Containing Doxycycline via Freeze-Casting Method for Bone Tissue Engineering. J. Biomater. Appl. 2018, 33, 501–513. DOI: 10.1177/0885328218805229.
  • Bagher, Z.; Atoufi, Z.; Alizadeh, R.; Farhadi, M.; Zarrintaj, P.; Moroni, L.; Setayeshmehr, M.; Komeili, A.; Kamrava, S. K. Conductive Hydrogel Based on Chitosan-Aniline Pentamer/Gelatin/Agarose Significantly Promoted Motor Neuron-Like Cells Differentiation of Human Olfactory Ecto-Mesenchymal Stem Cells. Mater. Sci. Eng. C. 2019, 101, 243–253. DOI: 10.1016/j.msec.2019.03.068.
  • Bagher, Z.; Kamrava, S. K.; Alizadeh, R.; Farhadi, M.; Absalan, M.; Falah, M.; Faghihi, F.; Zare-Sadeghi, A.; Komeili, A. Differentiation of Neural Crest Stem Cells from Nasal Mucosa into Motor Neuron-like Cells. J. Chem. Neuroanat. 2018, 92, 35–40. DOI: 10.1016/j.jchemneu.2018.05.003.
  • Farzamfar, S.; Naseri-Nosar, M.; Vaez, A.; Esmaeilpour, F.; Ehterami, A.; Sahrapeyma, H.; Samadian, H.; Hamidieh, A.-A.; Ghorbani, S.; Goodarzi, A.; et al. Neural Tissue Regeneration by a Gabapentin-Loaded Cellulose Acetate/Gelatin Wet-Electrospun Scaffold. Cellulose 2018, 25, 1229–1238. DOI: 10.1007/s10570-017-1632-z.
  • Farzamfar, S.; Ehterami, A.; Salehi, M.; Vaeez, A.; Atashi, A.; Sahrapeyma, H. Unrestricted Somatic Stem Cells Loaded in Nanofibrous Conduit as Potential Candidate for Sciatic Nerve Regeneration. J. Mol. Neurosci. 2019, 67, 48–61. DOI: 10.1007/s12031-018-1209-9.
  • Gu, Y.; Zhu, J.; Xue, C.; Li, Z.; Ding, F.; Yang, Y.; Gu, X. Chitosan/Silk Fibroin-Based, Schwann Cell-Derived Extracellular Matrix-Modified Scaffolds for Bridging Rat Sciatic Nerve Gaps. Biomaterials 2014, 35, 2253–2263. DOI: 10.1016/j.biomaterials.2013.11.087.
  • Feng, G.; Nguyen, T. D.; Yi, X.; Lyu, Y.; Lan, Z.; Xia, J.; Wu, T.; Jiang, X. Evaluation of Long-Term Inflammatory Responses after Implantation of a Novel Fully Bioabsorbable Scaffold Composed of Poly-L-lactic Acid and Amorphous Calcium Phosphate Nanoparticles. J. Nanomater. 2018, 2018, 1–9.
  • Corciova, A.; Ciobanu, C.; Poiata, A.; Mircea, C.; Nicolescu, A.; Drobota, M.; Varganici, C.-D.; Pinteala, T.; Marangoci, N. Antibacterial and Antioxidant Properties of Hesperidin:β-Cyclodextrin Complexes Obtained by Different Techniques. J. Incl. Phenom. Macrocycl. Chem. 2015, 81, 71–84. DOI: 10.1007/s10847-014-0434-2.
  • Gutiérrez, T. J.; Álvarez, K. Advances in Physicochemical Properties of Biopolymers (Part 2); Bentham Science Publisher: Sharjah, UAE; 2017.
  • Hennink, W. E.; van Nostrum, C. F. Novel Crosslinking Methods to Design Hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 223–236. DOI: 10.1016/j.addr.2012.09.009.
  • Wang, Y.; Wigington, D.; Strugnell, S.; Knutson, J. Growth Inhibition of Cancer Cells by an Active Metabolite of a Novel Vitamin D Prodrug. Anticancer Res. 2005, 25, 4333–4339.
  • Wang, G.; Wang, X.; Huang, L. Feasibility of Chitosan-Alginate (Chi-Alg) Hydrogel Used as Scaffold for Neural Tissue Engineering: A Pilot Study In Vitro. Biotechnol. Biotechnol. Equip. 2017, 31, 766–773.
  • Chen, H.; Xing, X.; Tan, H.; Jia, Y.; Zhou, T.; Chen, Y.; Ling, Z.; Hu, X. Covalently Antibacterial Alginate-Chitosan Hydrogel Dressing Integrated Gelatin Microspheres Containing Tetracycline Hydrochloride for Wound Healing. Mater. Sci. Eng. C. 2017, 70, 287–295. DOI: 10.1016/j.msec.2016.08.086.
  • Khoshfetrat, A. B.; Khanmohammadi, M.; Sakai, S.; Taya, M. Enzymatically-Gellable Galactosylated Chitosan: Hydrogel Characteristics and Hepatic Cell Behavior. Int. J. Biol. Macromol. 2016, 92, 892–899. DOI: 10.1016/j.ijbiomac.2016.08.003.
  • Ali, A.; Ahmed, S. A Review on Chitosan and Its Nanocomposites in Drug Delivery. Int. J. Biol. Macromol. 2018, 109, 273–286. DOI: 10.1016/j.ijbiomac.2017.12.078.
  • Hoare, T. R.; Kohane, D. S. Hydrogels in Drug Delivery: Progress and Challenges. Polymer 2008, 49, 1993–2007. DOI: 10.1016/j.polymer.2008.01.027.
  • Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A.; Selvanathan, V.; Sonsudin, F.; Abouloula, C. pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers 2017, 9, 137. DOI: 10.3390/polym9040137.
  • Ratner, B. D. Synthetic Hydrogels for Biomedical Application. Adv. Drug Deliv. Rev. 1976, 31, 1–36.
  • Tamilselvam, K.; Braidy, N.; Manivasagam, T.; Essa, M. M.; Prasad, N. R.; Karthikeyan, S.; Thenmozhi, A. J.; Selvaraju, S.; Guillemin, G. J. Neuroprotective Effects of Hesperidin, a Plant Flavanone, on Rotenone-Induced Oxidative Stress and Apoptosis in a Cellular Model for Parkinson’s Disease. Oxid. Med. Cell. Longev. 2013, 2013, 1–11. DOI: 10.1155/2013/102741.
  • Bain, J.; Mackinnon, S.; Hunter, D. Functional Evaluation of Complete Sciatic, Peroneal, and Posterior Tibial Nerve Lesions in the Rat. Plastic Reconstruct. Surg. 1989, 83, 129–138. DOI: 10.1097/00006534-198901000-00024.
  • Salehi, M.; Ehtrami, A.; Bastami, F.; Farzamfar, S.; Hosseinpour, S.; Vahedi, H.; Vaez, A.; Rahvar, M.; Goodarzi, A. Polyurethane/Gelatin Nanofiber Neural Guidance Conduit in Combination with Resveratrol and Schwann Cells for Sciatic Nerve Regeneration in the Rat Model. Fibers Polym. 2019, 20, 490–500. DOI: 10.1007/s12221-019-8939-3.
  • Salehi, M.; Naseri-Nosar, M.; Ebrahimi-Barough, S.; Nourani, M.; Vaez, A.; Farzamfar, S.; Ai, J. Regeneration of Sciatic Nerve Crush Injury by a Hydroxyapatite Nanoparticle-Containing Collagen Type I Hydrogel. J. Physiol. Sci. 2018, 68, 579–587. DOI: 10.1007/s12576-017-0564-6.
  • Gaur, V.; Aggarwal, A.; Kumar, A. Possible Nitric Oxide Mechanism in the Protective Effect of Hesperidin against Ischemic Reperfusion Cerebral Injury in Rats.NISCAIR Online Periodicals Repository 2011, 49, 609–618.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.