729
Views
1
CrossRef citations to date
0
Altmetric
Articles

Role of microsphere as drug carrier for osteogenic differentiation

, , , & ORCID Icon
Pages 318-327 | Received 26 Oct 2019, Accepted 07 Jan 2020, Published online: 17 Jan 2020

References

  • Boskey, A. L.; Roy, R. Cell Culture Systems for Studies of Bone and Tooth Mineralization. Chem. Rev. 2008, 108, 4716–4733.
  • Young, M. F. Bone Matrix Proteins: Their Function, Regulation, and Relationship to Osteoporosis. Osteoporos. Int. 2003, 14, 35–42.
  • Boskey, A. L. Bone Composition: relationship to Bone Fragility and Antiosteoporotic Drug Effects. Bonekey Rep. 2013, 2, 447.
  • Cai, Y.; Chen, Y.; Hong, X.; Liu, Z.; Yuan, W. Porous Microsphere and Its Applications. Int. J. Nanomed. 2013, 8, 1111–1120.
  • Hossain, K. M. Z.; Patel, U.; Ahmed, I. Development of Microspheres for Biomedical Applications: A Review. Prog. Biomater. 2015, 4, 1–19.
  • Tallawi, M. J. Proteinoid/Hydroxyapatite Hybrid Microsphere Composites. J. Biomed. Mater. Res. 2011, 96B, 261–266.
  • Jiang, T.; Petersen, R. R.; Call, G.; Ofek, G.; Gao, J.; Yao, J. Q. Development of Chondroitin Sulfate Encapsulated PLGA Microsphere Delivery Systems with Controllable Multiple Burst Releases for Treating Osteoarthritis. J. Biomed. Mater. Res. 2011, 97B, 355–363.
  • Chen, F.; Huang, G. Application of Glycosylation in Targeted Drug Delivery. Eur. J. Med. Chem. 2019, 182, 111612.
  • Huang, G.; Huang, H. Hyaluronic Acid-Based Biopharmaceutical Delivery and Tumor-Targeted Drug Delivery System. J. Control. Release 2018, 278, 122–126.
  • Zhang, X.; Huang, G.; Huang, H. The Glyconanoparticle as Carrier for Drug Delivery. Drug Deliv. 2018, 25, 1840–1845.
  • Huang, G.; Liu, Y.; Chen, L. Chitosan and Its Derivatives as Vehicles for Drug Delivery. Drug Deliv. 2017, 24, 108–113.
  • Zhang, X.; Huang, G. Synthetic Lipoprotein as Nano-Material Vehicle in the Targeted Drug Delivery. Drug Deliv. 2017, 24, 16–21.
  • Huang, G.; Huang, H. Application of Dextran as Nanoscale Drug Carriers. Nanomedicine 2018, 13, 3149–3158.
  • Kim, H.-W.; Yoon, B.-H.; Kim, H.-E. Microsphere of Apatite-Gelatin Nanocomposite as Bone Regenerative Filler. J. Mater. Sci. Mater. Med. 2005, 16, 1105–1109.
  • Wang, H.; Leeuwenburgh, S. C. G.; Li, Y.; Jansen, J. A. The Use of Micro- and Nanospheres as Functional Components for Bone Tissue Regeneration. Tissue Eng. Part B Rev. 2012, 18, 24–39.
  • Yin Hsu, F.; Chueh, S.-C.; Jiin Wang, Y. Microspheres of Hydroxyapatite/Reconstituted Collagen as Supports for Osteoblast Cell Growth. Biomaterials 1999, 20, 1931–1936.
  • Niu, X.; Feng, Q.; Wang, M.; Guo, X.; Zheng, Q. J. Porous nano-HA/Collagen/PLLA Scaffold Containing Chitosan Microspheres for Controlled Delivery of Synthetic Peptide Derived from BMP-2. J. Control. Release 2009, 134, 111–117.
  • Şengel, C. T.; Hascicek, C.; Gönül, N. J. Development and In-Vitro Evaluation of Modified Release Tablets Including Ethylcellulose Microspheres Loaded with Diltiazem Hydrochloride. J. Microencaps. 2006, 23, 135–152.
  • Varshosaz, J. The promise of chitosan microspheres in drug delivery systems. Expert Opin Drug Deliv. 2007, 4, 263–273.
  • Changerath, R.; Nair, P. D.; Mathew, S.; Nair, C. R. J. Biomed. Mater. Res. B. 2009, 89, 65–76.
  • Dormer, N. H.; Qiu, Y.; Lydick, A. M.; Allen, N. D.; Mohan, N.; Berkland, C. J.; Detamore, M. S. Osteogenic Differentiation of Human Bone Marrow Stromal Cells in Hydroxyapatite-Loaded Microsphere-Based Scaffolds. Tissue Eng. Part A 2012, 18, 757–767.
  • Chen, J.; Luo, Y.; Hong, L.; Ling, Y.; Pang, J.; Fang, Y.; Wei, K.; Gao, X. J. Synthesis, Characterization and Osteoconductivity Properties of Bone Fillers Based on Alendronate-Loaded Poly(ε-Caprolactone)/Hydroxyapatite Microspheres. J. Mater. Sci. Mater. Med. 2011, 22, 547–555.
  • Mouriño, V.; Cattalini, J. P.; Roether, J. A.; Dubey, P.; Roy, I.; Boccaccini, A. R. Composite Polymer-Bioceramic Scaffolds with Drug Delivery Capability for Bone Tissue Engineering. Expert Opin. Drug Deliv. 2013, 10, 1353–1365.
  • Bao, T. Q.; Franco, R. A.; Lee, B. T. J. Biomed. Mater. Res. B 2011, 98, 272–279.
  • Perez, R. A.; Del Valle, S.; Altankov, G.; Ginebra, M. P. J. Biomed. Mater. Res. B 2011, 97, 156–166.
  • Wischke, C.; Schwendeman, S. P. Principles of Encapsulating Hydrophobic Drugs in PLA/PLGA Microparticles. Int. J. Pharm. 2008, 364, 298–327.
  • Raman, C.; Berkland, C.; Kim, K. K.; Pack, D. W. Modeling Small-Molecule Release from PLG Microspheres: Effects of Polymer Degradation and Nonuniform Drug Distribution. J. Control. Release 2005, 103, 149–158.
  • Berchane, N.; Carson, K.; Rice-Ficht, A.; Andrews, M. J. Effect of Mean Diameter and Polydispersity of PLG Microspheres on Drug Release: Experiment and Theory. Int. J. Pharm. 2007, 337, 118–126.
  • Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A. J.; Antal, I. Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Sci. Pharm. 2019, 87, 20.
  • Unagolla, J. M.; Jayasuriya, A. C. Drug Transport Mechanisms and In Vitro Release Kinetics of Vancomycin Encapsulated Chitosan-Alginate Polyelectrolyte Microparticles as a Controlled Drug Delivery System. Eur. J. Pharm. Sci. 2018, 114, 199–209.
  • Zhang, L.; Zhang, J.; Ling, Y.; Chen, C.; Liang, A.; Peng, Y.; Chang, H.; Su, P.; Huang, D. Sustained Release of Melatonin from Poly (Lactic-co-Glycolic Acid) (PLGA) Microspheres to Induce Osteogenesis of Human Mesenchymal Stem Cells In Vitro. J. Pineal Res. 2013, 54, 24–32.
  • Zhang, F.; Li, Q.; Lin, Z.; Ma, L.; Xu, S.; Feng, Q.; Dong, H.; Zhang, Y.; Cao, X. Engineered Fe(OH)3 Nanoparticle-Coated and rhBMP-2-Releasing PLGA Microsphere Scaffolds for Promoting Bone Regeneration by Facilitating Cell Homing and Osteogenic Differentiation. J. Mater. Chem. B 2018, 6, 2831–2842.
  • Naito, Y.; Terukina, T.; Galli, S.; Kozai, Y.; Vandeweghe, S.; Tagami, T.; Ozeki, T.; Ichikawa, T.; Coelho, P. G.; Jimbo, R. The Effect of Simvastatin-Loaded Polymeric Microspheres in a Critical Size Bone Defect in the Rabbit Calvaria. Int. J. Pharm. 2014, 461, 157–162.
  • Mohan, S.; Raghavendran, H. B.; Karunanithi, P.; Murali, M. R.; Naveen, S. V.; Talebian, S.; Mehrali, M.; Mehrali, M.; Natarajan, E.; Chan, C. K.; et al. Incorporation of Human-Platelet-Derived Growth Factor-BB Encapsulated Poly(Lactic- co -Glycolic Acid) Microspheres into 3D CORAGRAF Enhances Osteogenic Differentiation of Mesenchymal Stromal Cells. ACS Appl. Mater. Interf. 2017, 9, 9291–9303.
  • Reves, B. T.; Bumgardner, J. D.; Haggard, W. O. Fabrication of Crosslinked Carboxymethylchitosan Microspheres and Their Incorporation Into Composite Scaffolds for Enhanced Bone Regeneration. J. Biomed. Mater. Res. Part B 2013, 101, 630–639.
  • Bidarra, S. J.; Barrias, C. C.; Barbosa, M. A.; Soares, R.; Granja, P. L. Immobilization of Human Mesenchymal Stem Cells within RGD-Grafted Alginate Microspheres and Assessment of Their Angiogenic Potential. Biomacromolecules 2010, 11, 1956–1964.
  • Miao, T.; Rao, K. S.; Spees, J. L.; Oldinski, R. A. Osteogenic Differentiation of Human Mesenchymal Stem Cells through Alginate-Graft-Poly(Ethylene Glycol) Microsphere-Mediated Intracellular Growth Factor Delivery. J. Control. Release 2014, 192, 57–66.
  • Sobreiro-Almeida, R.; Tamaño-Machiavello, M. N.; Carvalho, E. O.; Cordón, L.; Doria, S.; Senent, L.; Correia, D. M.; Ribeiro, C.; Lanceros-Méndez, S.; Sabater I Serra, R.; et al. Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates. Int. J. Mol. Sci. 2017, 18.
  • Bagheri-Khoulenjani, S.; Mirzadeh, H.; Etrati-Khosroshahi, M.; Ali Shokrgozar, M. Particle Size Modeling and Morphology Study of Chitosan/Gelatin/Nanohydroxyapatite Nanocomposite Microspheres for Bone Tissue Engineering. J. Biomed. Mater. Res. A 2013, 101, 1758–1767.
  • Inanç, B.; Elçin, A. E.; Koç, A.; Baloş, K.; Parlar, A.; Elçin, Y. M. Encapsulation and Osteoinduction of Human Periodontal Ligament Fibroblasts in Chitosan-Hydroxyapatite Microspheres. J. Biomed. Mater. Res. A 2007, 82, 917–926.
  • Cheng, D.; Cao, X.; Gao, H.; Hou, J.; Li, W.; Hao, L.; Wang, Y. Engineering Poly(Lactic-co-Glycolic Acid)/Hydroxyapatite Microspheres with Diverse Macropores Patterns and the Cellular Responses. RSC Adv. 2015, 5, 17466–17473.
  • Xiong, L.; Zeng, J.; Yao, A.; Tu, Q.; Li, J.; Yan, L.; Tang, Z. BMP2-Loaded Hollow Hydroxyapatite Microspheres Exhibit Enhanced Osteoinduction and Osteogenicity in Large Bone Defects. Int. J. Nanomed. 2015, 10, 517–526.
  • Sun, W.; Zhou, Y.; Zhang, X.; Xia, W.; Xu, Y.; Lin, K. Injectable Nano-Structured Silicon-Containing Hydroxyapatite Microspheres with Enhanced Osteogenic Differentiation and Angiogenic Factor Expression. Ceram. Int. 2018, 44, 20457–20464.
  • Qi, C.; Zhou, D.; Zhu, Y. J.; Sun, T. W.; Chen, F.; Zhang, C. Q. Sonochemical Synthesis of Fructose 1,6-Bisphosphate Dicalcium Porous Microspheres and Their Application in Promotion of Osteogenic Differentiation. Mater. Sci. Eng. C 2017, 77, 846–856.
  • Liu, J.-F.; Wei, L.; Duolikun, D.; Hou, X.-D.; Chen, F.; Liu, J.-J.; Zheng, L.-P. Preparation of Porous Calcium Phosphate Microspheres with Phosphate-Containing Molecules at Room Temperature for Drug Delivery and Osteogenic Differentiation. RSC Adv. 2018, 8, 25480–25488.
  • Barrias, C. C.; Ribeiro, C. C.; Lamghari, M.; Sá Miranda, C.; Barbosa, M. A. Proliferation, Activity, and Osteogenic Differentiation of Bone Marrow Stromal Cells Cultured on Calcium Titanium Phosphate Microspheres. J. Biomed. Mater. Res. A 2005, 72, 57–66.
  • Lin, K.; Zhai, D.; Zhang, N.; Kawazoe, N.; Chen, G.; Chang, J. Fabrication and Characterization of Bioactive Calcium Silicate Microspheres for Drug Delivery. J. Ceram. Int. 2014, 40, 3287–3293.
  • Ho, M.-L.; Chang, J.-K.; Eswaramoorthy, R.; Wu, S.-C.Poly(Lactic-Glycolic) Acid Cross Linked Alendronate (PLGA-ALN) Short Term Controlled Release System for Stem Cell Differentiation and Drug Delivery. U.S. Patent 2012/0045831 A1, 2012.
  • Ho, M.-L.; Chang, J.-K.; Eswaramoorthy, R.; Wu, S.-C. Method for Bone Formation by Administering Poly(Lactic-Co-Glycolic Acid) Cross-linked Alendronate.U.S. Patent 9, 889, 225 B2, 2018.
  • Park, J. S.; Yang, H. N.; Jeon, S. Y.; Woo, D. G.; Na, K.; Park, K. H. Osteogenic Differentiation of Human Mesenchymal Stem Cells Using RGD-Modified BMP-2 Coated Microspheres. Biomaterials 2010, 31, 6239–6248.
  • Ingavle, G. C.; Gionet-Gonzales, M.; Vorwald, C. E.; Bohannon, L. K.; Clark, K.; Galuppo, L. D.; Leach, J. K. Injectable Mineralized Microsphere-Loaded Composite Hydrogels for Bone Repair in a Sheep Bone Defect Model. Biomaterials 2019, 197, 119–128.
  • Kim, S. E.; Yun, Y. P.; Shim, K. S.; Park, K.; Choi, S. W.; Suh, D. H. Effect of Lactoferrin-Impregnated Porous Poly(Lactide-Co-Glycolide) (PLGA) Microspheres on Osteogenic Differentiation of Rabbit Adipose-Derived Stem Cells (rADSCs). Coll. Surf. B: Biointerf. 2014, 122, 457–464.
  • Jung, M. S.; Jang, H. B.; Lee, S. E.; Park, J. H.; Hwang, Y. S. In Vitro Micro-Mineralized Tissue Formation by the Combinatory Condition of Adipose-Derived Stem Cells, Macroporous PLGA Microspheres and a Bioreactor. Macromol. Res. 2014, 22, 47–57.
  • Jeon, B. J.; Jeong, S. Y.; Koo, A. N.; Kim, B. C.; Hwang, Y. S.; Lee, S. C. Fabrication of Porous PLGA Microspheres with BMP-2 Releasing Polyphosphate-Functionalized Nano-Hydroxyapatite for Enhanced Bone Regeneration. Macromol. Res. 2012, 20, 715–724.
  • Shokrolahi, F.; Khodabakhshi, K.; Shokrollahi, P.; Badiani, R.; Moghadam, Z. M. Atorvastatin Loaded PLGA Microspheres: Preparation, HAp Coating, Drug Release and Effect on Osteogenic Differentiation of ADMSCs. Int. J. Pharm. 2019, 565, 95–107.
  • Zhang, B. J.; Han, Z. W.; Duan, K.; Mu, Y. D.; Weng, J. Multilayered Pore-Closed PLGA Microsphere Delivering OGP and BMP-2 in Sequential Release Patterns for the Facilitation of BMSCs Osteogenic Differentiation. J. Biomed. Mater. Res. 2018, 106, 95–105.
  • Kim, J. M.; Han, T. S.; Kim, M. H.; Oh, D. S.; Kang, S. S.; Kim, G.; Kwon, T. Y.; Kim, K. H.; Lee, K. B.; Son, J. S.; et al. Osteogenic Evaluation of Calcium Phosphate Scaffold with Drug-Loaded Poly (Lactic-co-Glycolic Acid) Microspheres in Beagle Dogs. Tissue Eng. Regen. Med. 2012, 9, 175–183.
  • Son, J. S.; Appleford, M.; Ong, J. L.; Wenke, J. C.; Kim, J. M.; Choi, S. H.; Oh, D. S. Porous Hydroxyapatite Scaffold with Three-Dimensional Localized Drug Delivery System Using Biodegradable Microspheres. J. Control. Release 2011, 153, 133–140.
  • Chen, R.; Shen, J. The Synthesis of Hydroxyapatite Crystals with Various Morphologies via the Solvothermal Method Using Double Surfactants. Mater. Lett. 2020, 259, 126881.
  • Kempen, D. H. R.; Kruyt, M. C.; Lu, L.; Wilson, C. E.; Florschutz, A. V.; Creemers, L. B.; Yaszemski, M. J.; Dhert, W. J. A. Effect of Autologous Bone Marrow Stromal Cell Seeding and Bone Morphogenetic Protein-2 Delivery on Ectopic Bone Formation in a Microsphere/Poly(Propylene Fumarate) Composite. Tissue Eng. A 2009, 15, 587–594.
  • Das, A.; Barker, D. A.; Wang, T.; Lau, C. M.; Lin, Y.; Botchwey, E. A. Delivery of Bioactive Lipids from Composite Microgel-Microsphere Injectable Scaffolds Enhances Stem Cell Recruitment and Skeletal Repair. PLoS One 2014, 9, e101276.
  • Xu, X.; Qiu, S.; Zhang, Y.; Yin, J.; Min, S. PELA Microspheres with Encapsulated Arginine–Chitosan/pBMP-2 Nanoparticles Induce pBMP-2 Controlled-Release, Transfected Osteoblastic Progenitor Cells, and Promoted Osteogenic Differentiation. Artif. Cells Nanomed. Biotechnol. 2017, 45, 330–339.
  • Man, Y.; Wang, P.; Guo, Y.; Xiang, L.; Yang, Y.; Qu, Y.; Gong, P.; Deng, L. Angiogenic and Osteogenic Potential of Platelet-Rich Plasma and Adipose-Derived Stem Cell Laden Alginate Microspheres. Biomaterials 2012, 33, 8802–8811.
  • Lizama, B.; Lopez-Castanares, R.; Vilchis, V.; Vázquez, F.; Castaño, V. Morphological Characterization of Composite Latex Particles by Positron Annihilation Lifetime Spectroscopy. Mat. Res. Innovat. 2001, 5, 63–66.
  • Winiarz, J. G.; Zhang, L.; Lal, M.; Friend, C. S.; Prasad, P. Observation of the Photorefractive Effect in a Hybrid Organic − Inorganic Nanocomposite. J. Am. Chem. Soc. 1999, 121, 5287–5295.
  • Peng, Z.; Li, Z.; Shen, Y.; Zhang, F.; Peng, X. Fabrication of Gelatin/Chitosan Microspheres with Different Morphologies and Study on Biological Properties. Polymer Plastics Technol. Eng. 2012, 51, 739–743.
  • Shi, M.; Yang, Y.-Y.; Chaw, C.-S.; Goh, S.-H.; Moochhala, S. M.; Ng, S.; Heller, J. Double Walled POE/PLGA Microspheres: Encapsulation of Water-Soluble and Water-Insoluble Proteins and Their Release Properties. J. Control. Release 2003, 89, 167–177.
  • Dormer, N. H.; Gupta, V.; Scurto, A. M.; Berkland, C. J.; Detamore, M. S. Effect of Different Sintering Methods on Bioactivity and Release of Proteins from PLGA Microspheres. Mater. Sci. Eng. C 2013, 33, 4343–4351.
  • Tai, I. C.; Fu, Y. C.; Wang, C. K.; Chang, J. K.; Ho, M. L. Local Delivery of Controlled-Release Simvastatin/PLGA/HAp Microspheres Enhances Bone Repair. Int. J. Nanomed. 2013, 8, 3895–3905.
  • Du, K.; Shi, X.; Gan, Z. Rapid Biomimetic Mineralization of Hydroxyapatite- g -PDLLA Hybrid Microspheres. Langmuir 2013, 29, 15293–15301.
  • Kirker-Head, C. A. Potential Applications and Delivery Strategies for Bone Morphogenetic Proteins. Adv. Drug Deliv. Rev. 2000, 43, 65–92.
  • Fu, H.; Rahaman, M. N.; Day, D. E.; Brown, R. F. Hollow Hydroxyapatite Microspheres as a Device for Controlled Delivery of Proteins. J. Mater. Sci. Mater. Med. 2011, 22, 579–591.
  • Shiels, S. M.; Solomon, K. D.; Pilia, M.; Appleford, M. R.; Ong, J. L. BMP-2 Tethered Hydroxyapatite for Bone Tissue Regeneration: Coating Chemistry and Osteoblast Attachment. J. Biomed. Mater. Res. A 2012, 100, 3117–3123.
  • Babensee, J. E.; McIntire, L. V.; Mikos, A. G. Growth Factor Delivery for Tissue Engineering. Pharm. Res. 2000, 17, 497–504.
  • Hong, M.-H.; Son, J.-S.; Kim, K.-M.; Han, M.; Oh, D. S.; Lee, Y.-K. Drug-Loaded Porous Spherical Hydroxyapatite Granules for Bone Regeneration. J. Mater. Sci. Mater. Med. 2011, 22, 349–355.
  • Woodard, J. R.; Hilldore, A. J.; Lan, S. K.; Park, C.; Morgan, A. W.; Eurell, J. A. C.; Clark, S. G.; Wheeler, M. B.; Jamison, R. D.; Johnson, A. J. The Mechanical Properties and Osteoconductivity of Hydroxyapatite Bone Scaffolds with Multi-Scale Porosity. Biomaterials 2007, 28, 45–54.
  • Van Blitterswijk, C.; Hesseling, S.; Grote, J.; Koerten, H.; De Groot, K. J. The Biocompatibility of Hydroxyapatite Ceramic: A Study of Retrieved Human Middle Ear Implants. J. Biomed. Mater. Res. 1990, 24, 433–453.
  • Suchanek, W.; Yoshimura, M. Processing and Properties of Hydroxyapatite-Based Biomaterials for Use as Hard Tissue Replacement Implants. J. Mater. Res. 1998, 13, 94–117.
  • Gaharwar, A. K.; Dammu, S. A.; Canter, J. M.; Wu, C.-J.; Schmidt, G. Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly(Ethylene Glycol) and Hydroxyapatite Nanoparticles. Biomacromolecules 2011, 12, 1641–1650.
  • Huang, W.-S.; Chu, I. M. Injectable Polypeptide Hydrogel/Inorganic Nanoparticle Composites for Bone Tissue Engineering. PLoS One 2019, 14, e0210285.
  • Zhou, Z. F.; Sun, T. W.; Chen, F.; Zuo, D. Q.; Wang, H. S.; Hua, Y. Q.; Cai, Z. D.; Tan, J. Calcium Phosphate-Phosphorylated Adenosine Hybrid Microspheres for anti-Osteosarcoma Drug Delivery and Osteogenic Differentiation. Biomaterials 2017, 121, 1–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.