277
Views
8
CrossRef citations to date
0
Altmetric
Articles

VEGF-incorporated PVDF/collagen nanofibrous scaffold for bladder wall regeneration and angiogenesis

, , , , &
Pages 521-529 | Received 28 Sep 2019, Accepted 11 Feb 2020, Published online: 19 Mar 2020

References

  • Winge, K.; Fowler, C. J. Bladder Dysfunction in Parkinsonism: Mechanisms, Prevalence, Symptoms, and Management. Mov. Disord. 2006, 21, 737–745. DOI: 10.1002/mds.20867.
  • Fernandes, E. T.; Reinberg, Y.; Vernier, R.; Gonzalez, R. Neurogenic Bladder Dysfunction in Children: Review of Pathophysiology and Current Management. J. Pediatrics. 1994, 124, 1–7. DOI: 10.1016/S0022-3476(94)70245-4.
  • Golbidi, S.; Laher, I. Bladder Dysfunction in Diabetes Mellitus. Front. Pharmacol. 2010, 1, 136. DOI: 10.3389/fphar.2010.00136.
  • Wein, A. J.; Chapple, C. R. 2011. Overactive Bladder in Clinical Practice. London: Springer Science & Business Media.
  • Corcos, J.; Ginsberg, D. D.; Karsenty, G. 2015. Textbook of the Neurogenic Bladder. Boca Raton: CRC Press.
  • Khademhosseini, A.; Langer, R. A Decade of Progress in Tissue Engineering. Nat. Protoc. 2016, 11, 1775–1781. DOI: 10.1038/nprot.2016.123.
  • Paschos, N. K.; Brown, W. E.; Eswaramoorthy, R.; Hu, J. C.; Athanasiou, K. A. Advances in Tissue Engineering through Stem Cell-Based co-Culture. J. Tissue Eng. Regen. Med. 2015, 9, 488–503. DOI: 10.1002/term.1870.
  • Ma, T.; Grayson, W. L.; Fröhlich, M.; Vunjak‐Novakovic, G. Hypoxia and Stem Cell-Based Engineering of Mesenchymal Tissues. Biotechnol. Progress 2009, 25, 32–42. DOI: 10.1002/btpr.128.
  • Ikada, Y. Challenges in Tissue Engineering. J. R Soc. Interface 2006, 3, 589–601. DOI: 10.1098/rsif.2006.0124.
  • Novosel, E. C.; Kleinhans, C.; Kluger, P. J. Vascularization is the Key Challenge in Tissue Engineering. Adv. Drug Deliv. Rev. 2011, 63, 300–311. DOI: 10.1016/j.addr.2011.03.004.
  • Herbert, S. P.; Stainier, D. Y. R. Molecular Control of Endothelial Cell Behaviour during Blood Vessel Morphogenesis. Nat. Rev. Mol. Cell Biol. 2011, 12, 551–564. DOI: 10.1038/nrm3176.
  • Ucuzian, A. A.; Gassman, A. A.; East, A. T.; Greisler, H. P. Molecular Mediators of Angiogenesis. J. Burn Care Res. 2010, 31, 158–175. doi:10.1097/BCR.0b013e3181c7ed82.
  • Siemerink, M. J.; Augustin, A. J.; Schlingemann, R. O. 2010. Mechanisms of Ocular Angiogenesis and Its Molecular Mediators. Basel: Karger Publishers.
  • Castro, P. R.; Barbosa, A. S.; Pereira, J. M.; Ranfley, H.; Felipetto, M.; Gonçalves, C. A. X.; Paiva, I. R.; Berg, B. B.; Barcelos, L. S. Cellular and Molecular Heterogeneity Associated with Vessel Formation Processes. BioMed Res. Int. 2018, 2018, 1–32. DOI: 10.1155/2018/6740408.
  • Wacker, A.; Gerhardt, H. Endothelial Development Taking Shape. Curr. Opin. Cell Biol. 2011, 23, 676–685. DOI: 10.1016/j.ceb.2011.10.002.
  • Kular, J. K.; Basu, S.; Sharma, R. I. The Extracellular Matrix: Structure, Composition, Age-Related Differences, Tools for Analysis and Applications for Tissue Engineering. J. Tissue Eng. 2014, 5, 204173141455711. DOI: 10.1177/2041731414557112.
  • Parenteau-Bareil, R.; Gauvin, R.; Berthod, F. Collagen-Based Biomaterials for Tissue Engineering Applications. Materials 2010, 3, 1863–1887. DOI: 10.3390/ma3031863.
  • Cen, L.; Liu, W. E. I.; Cui, L. E. I.; Zhang, W.; Cao, Y. Collagen Tissue Engineering: Development of Novel Biomaterials and Applications. Pediatr. Res. 2008, 63, 492–496. DOI: 10.1203/PDR.0b013e31816c5bc3.
  • Ribeiro, C.; Correia, D. M.; Ribeiro, S.; Sencadas, V.; Botelho, G.; Lanceros‐Méndez, S. Piezoelectric Poly(Vinylidene Fluoride) Microstructure and Poling State in Active Tissue Engineering. Eng. Life Sci. 2015, 15, 351–356. DOI: 10.1002/elsc.201400144.
  • Agyemang, F. O.; Sheikh, F. A.; Appiah-Ntiamoah, R.; Chandradass, J.; Kim, H. Synthesis and Characterization of Poly(Vinylidene Fluoride)–Calcium Phosphate Composite for Potential Tissue Engineering Applications. Ceram. Int. 2015, 41, 7066–7072. DOI: 10.1016/j.ceramint.2015.02.014.
  • Ghiaee, A.; Pournaqi, F.; Vakilian, S.; Mohammadi-Sangcheshmeh, A.; Ardeshirylajimi, A. Adapted Dexamethasone Delivery Polyethylene Oxide and Poly(ɛ-Caprolactone) Construct Promote Mesenchymal Stem Cells Chondrogenesis. Artif. Cells. Nanomed. Biotechnol. 2017, 45, 1640–1648. DOI: 10.1080/21691401.2016.1276921.
  • Atala, A. Tissue Engineering of Human Bladder. Br. Med. Bull. 2011, 97, 81–104. DOI: 10.1093/bmb/ldr003.
  • Baumert, H.; Simon, P.; Hekmati, M.; Fromont, G.; Levy, M.; Balaton, A.; Molinié, V.; Malavaud, B. Development of a Seeded Scaffold in the Great Omentum: Feasibility of an in Vivo Bioreactor for Bladder Tissue Engineering. Eur. Urol. 2007, 52, 884–892. DOI: 10.1016/j.eururo.2006.11.044.
  • Horst, M.; Eberli, D.; Gobet, R. M.; Salemi, S. Tissue Engineering in Pediatric Bladder Reconstruction—the Road to Success. Front. Pediatr. 2019, 7, 91. DOI: 10.3389/fped.2019.00091.
  • Zisch, A. H.; Lutolf, M. P.; Ehrbar, M.; Raeber, G. P.; Rizzi, S. C.; Davies, N.; Schmökel, H.; Bezuidenhout, D.; Djonov, V.; Zilla, P.; Hubbell, J. A. Cell-Demanded Release of VEGF from Synthetic, Biointeractive Cell-Ingrowth Matrices for Vascularized Tissue Growth. FASEB J. 2003, 17, 2260–2262. DOI: 10.1096/fj.02-1041fje.
  • Nourse, M. B.; Halpin, D. E.; Scatena, M.; Mortisen, D. J.; Tulloch, N. L.; Hauch, K. D.; Torok-Storb, B.; Ratner, B. D.; Pabon, L.; Murry, C. E. VEGF Induces Differentiation of Functional Endothelium from Human Embryonic Stem Cells. ATVB. 2010, 30, 80–89. DOI: 10.1161/ATVBAHA.109.194233.
  • Fahimipour, F.; Rasoulianboroujeni, M.; Dashtimoghadam, E.; Khoshroo, K.; Tahriri, M.; Bastami, F.; Lobner, D.; Tayebi, L. 3D Printed TCP-Based Scaffold Incorporating VEGF-Loaded PLGA Microspheres for Craniofacial Tissue Engineering. Dent. Mater. 2017, 33, 1205–1216. DOI: 10.1016/j.dental.2017.06.016.
  • Dou, D. D.; Zhou, G.; Liu, H. W.; Zhang, J.; Liu, M. L.; Xiao, X. F.; Fei, J. J.; Guan, X. L.; Fan, Y. B. Sequential Releasing of VEGF and BMP-2 in Hydroxyapatite Collagen Scaffolds for Bone Tissue Engineering: Design and Characterization. Int. J. Biol. Macromol. 2019, 123, 622–628. DOI: 10.1016/j.ijbiomac.2018.11.099.
  • Rouwkema, J.; Khademhosseini, A. Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks. Trends Biotechnol. 2016, 34, 733–745. DOI: 10.1016/j.tibtech.2016.03.002.
  • Kai, D.; Prabhakaran, M. P.; Jin, G.; Tian, L.; Ramakrishna, S. Potential of VEGF-Encapsulated Electrospun Nanofibers for In Vitro Cardiomyogenic Differentiation of Human Mesenchymal Stem Cells. J. Tissue Eng. Regen. Med. 2017, 11, 1002–1010. DOI: 10.1002/term.1999.
  • DeLancey, J.; Gosling, J.; Creed, K.; Dixon, J.; Delmas, V.; Landon, D.; Norton, P. Gross anatomy and cell biology of the lower urinary tract. In Incontinence; Abrams, P., Cardozo, L., Khoury, S., Wein, A. , Eds.; Plymouth, UK: Health Publication, 2002; chapter 1, pp 19–82.
  • Murasawa, S.; Asahara, T. Endothelial Progenitor Cells for Vasculogenesis. Physiology 2005, 20, 36–42. DOI: 10.1152/physiol.00033.2004.
  • Dimmeler, S.; Zeiher, A. M. Endothelial Cell Apoptosis in Angiogenesis and Vessel Regression. Circul. Res. 2000, 87, 434–439. DOI: 10.1161/01.RES.87.6.434.
  • Jiang, X.; Xiong, Q.; Xu, G.; Lin, H.; Fang, X.; Cui, D.; Xu, M.; Chen, F.; Geng, H. VEGF-Loaded Nanoparticle-Modified BAMAs Enhance Angiogenesis and Inhibit Graft Shrinkage in Tissue-Engineered Bladder. Ann. Biomed. Eng. 2015, 43, 2577–2586. DOI: 10.1007/s10439-015-1284-9.
  • Seyednejad, H.; Ji, W.; Yang, F.; van Nostrum, C. F.; Vermonden, T.; van den Beucken, J. J. J. P.; Dhert, W. J. A.; Hennink, W. E.; Jansen, J. A. Coaxially Electrospun Scaffolds Based on Hydroxyl-Functionalized Poly(ε-Caprolactone) and Loaded with VEGF for Tissue Engineering Applications. Biomacromolecules 2012, 13, 3650–3660. DOI: 10.1021/bm301101r.
  • Imoukhuede, P. I.; Dokun, A. O.; Annex, B. H.; Popel, A. S. Endothelial Cell-by-Cell Profiling Reveals the Temporal Dynamics of VEGFR1 and VEGFR2 Membrane Localization after Murine Hindlimb Ischemia. Am. J. Physiol. Heart Circul. Physiol. 2013, 304, H1085–H1093. DOI: 10.1152/ajpheart.00514.2012.
  • DeLisser, H. M.; Yan, H. C.; Newman, P. J.; Muller, W. A.; Buck, C. A.; Albelda, S. M. Platelet/Endothelial Cell Adhesion Molecule-1 (CD31)-Mediated Cellular Aggregation Involves Cell Surface Glycosaminoglycans. J. Biol. Chem. 1993, 268, 16037–16046.
  • Jiang, X.; Lin, H.; Jiang, D.; Xu, G.; Fang, X.; He, L.; Xu, M.; Tang, B.; Wang, Z.; Cui, D.; et al. Co-Delivery of VEGF and bFGF via a PLGA Nanoparticle-Modified BAM for Effective Contracture Inhibition of Regenerated Bladder Tissue in Rabbits. Sci. Rep. 2016, 6, 20784., DOI: 10.1038/srep20784.
  • Lakshmanan, R.; Kumaraswamy, P.; Krishnan, U. M.; Sethuraman, S. Engineering a Growth Factor Embedded Nanofiber Matrix Niche to Promote Vascularization for Functional Cardiac Regeneration. Biomaterials 2016, 97, 176–195. DOI: 10.1016/j.biomaterials.2016.02.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.