194
Views
10
CrossRef citations to date
0
Altmetric
Articles

Nanohydroxyapatite/graphene oxide nanocomposites modified with synthetic polymers: promising materials for bone tissue engineering applications

ORCID Icon &
Pages 585-591 | Received 26 Oct 2019, Accepted 08 Mar 2020, Published online: 20 Mar 2020

References

  • Harun, W.; Asri, R.; Alias, J.; Zulkifli, F.; Kadirgama, K.; Ghani, S.; Shariffuddin, J. A Comprehensive Review of Hydroxyapatite-Based Coatings Adhesion on Metallic Biomaterials. Ceram. Int. 2018, 44, 1250–1268. DOI: 10.1016/j.ceramint.2017.10.162.
  • Gandhimathi, C.; Venugopal, J.; Ramakrishna, S.; Srinivasan, D. Electrospun-Electrosprayed Hydroxyapatite Nanostructured Composites for Bone Tissue Regeneration. J. Appl. Polym. Sci. 2018, 135, 46756. DOI: 10.1002/app.46756.
  • Mondal, S.; Hoang, G.; Manivasagan, P.; Moorthy, M. S.; Nguyen, T. P.; Vy Phan, T. T.; Kim, H. H.; Kim, M. H.; Nam, S. Y.; Oh, J.; et al. Nano-Hydroxyapatite Bioactive Glass Composite Scaffold with Enhanced Mechanical and Biological Performance for Tissue Engineering Application. Ceram. Int. 2018, 44, 15735–15746. DOI: 10.1016/j.ceramint.2018.05.248.
  • Shi, P.; Liu, M.; Fan, F.; Yu, C.; Lu, W.; Du, M. Characterization of Natural Hydroxyapatite Originated from Fish Bone and Its Biocompatibility with Osteoblasts. Mater. Sci. Eng. C 2018, 90, 706–712. DOI: 10.1016/j.msec.2018.04.026.
  • Akindoyo, J.; Beg, M.; Ghazali, S.; Heim, H.; Feldmann, M. Impact Modified PLA-Hydroxyapatite Composites–Thermo-Mechanical Properties. Compos. Part A. Appl. S 2018, 107, 326–333. DOI: 10.1016/j.compositesa.2018.01.017.
  • Ramesh, N.; Moratti, S.; Dias, G. Hydroxyapatite–Polymer Biocomposites for Bone Regeneration: A Review of Current Trends. J. Biomed. Mater. Res. B 2018, 106, 2046–2057. DOI: 10.1002/jbm.b.33950.
  • Shemshad, S.; Kamali, S.; Khavandi, A.; Azari, S. International Journal of Polymeric Materials and of Natural Chitosan-Hydroxyapatite-Diopside Nanocomposite Scaffold for Bone Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 516–526. DOI: 10.1080/00914037.2018.1466138.
  • Minardi, S.; Taraballi, F.; Cabrera, F. J.; Van Eps, J.; Wang, X.; Gazze, S. A.; Fernandez-Mourev, J. S.; Tampieri, A.; Francis, L.; Weiner, B. K.; et al. Biomimetic Hydroxyapatite/Collagen Composite Drives Bone Niche Recapitulation in a Rabbit Orthotopic Model. Mater. Today Bio. 2019, 2, 100005. DOI: 10.1016/j.mtbio.2019.100005.
  • You, F.; Chen, X.; Cooper, D.; Chang, T.; Eames, B. Homogeneous Hydroxyapatite/Alginate Composite Hydrogel Promotes Calcified Cartilage Matrix Deposition with Potential for Three-Dimensional Bioprinting. Biofabrication 2018, 11, 015015. DOI: 10.1088/1758-5090/aaf44a.
  • Subramaniam, S.; Fang, Y.; Sivasubramanian, S.; Lin, F.; Lin, C. Biomaterials Hydroxyapatite-Calcium Sulfate-Hyaluronic Acid Composite Encapsulated with Collagenase as Bone Substitute for Alveolar Bone Regeneration. Biomaterials 2016, 74, 99–108. DOI: 10.1016/j.biomaterials.2015.09.044.
  • He, X.; Liu, Y.; Yuan, X.; Lu, L. Enhanced Healing of Rat Calvarial Defects with MSCs Loaded on BMP-2 Releasing Chitosan/Alginate/Hydroxyapatite Scaffolds. PLOS One 2014, 9, e104061. DOI: 10.1371/journal.pone.0104061.
  • Yılmaz, E.; Çakıroğlu, B.; Gökçe, A.; Findik, F.; Gulsoy, H. O.; Gulsoy, N.; Mutlu, Ö.; Özacar, M. Novel Hydroxyapatite/Graphene Oxide/Collagen Bioactive Composite Coating on Ti16Nb Alloys by Electrodeposition. Mater. Sci. Eng. C 2019, 101, 292–305. DOI: 10.1016/j.msec.2019.03.078.
  • Zhou, K.; Yu, P.; Shi, X.; Ling, T.; Zeng, W.; Chen, A.; et al. Hierarchically Porous Hydroxyapatite Hybrid Scaffold Incorporated with Reduced Graphene Oxide for Rapid Bone Ingrowth and Repair. ACS Nano 2019, 18, 9595–9606. DOI: 10.1021/acsnano.9b04723.
  • Valencia Zapata, M. E.; Mina Hernandez, J. H.; Grande Tovar, C. D.; Valencia Llano, C. H.; Diaz Escobar, J. A.; Vázquez-Lasa, B.; San Román, J.; Rojo, L. Novel Bioactive and Antibacterial Acrylic Bone Cement Nanocomposites Modified with Graphene Oxide and Chitosan. Ijms. 2019, 20, 2938. DOI: 10.3390/ijms20122938.
  • Trevisol, T. C.; Langbehn, R. K.; Battiston, S.; Immich, A. P. S. Nonwoven Membranes for Tissue Engineering: An Overview of Cartilage, Epithelium, and Bone Regeneration. J. Biomater. Sci. Polym. Ed. 2019, 30, 1026–1049. DOI: 10.1080/09205063.2019.1620592.
  • Shah, R.; Saha, N.; Kuceková, Z.; Humpolicek, P.; Saha, P. Properties of Biomineralized (CaCO3) PVP-CMC Hydrogel with Reference to Its Cytotoxicity. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 619–628. DOI: 10.1080/00914037.2016.1157793.
  • Lin, K.; Wu, C.; Chang, J. Advances in Synthesis of Calcium Phosphate Crystals with Controlled Size and Shape. Acta Biomater. 2014, 10, 4071–4102. DOI: 10.1016/j.actbio.2014.06.017.
  • Gonsalves, J.; Ferro, J.; Barreto, E.; Nunes, R.; Valerio, M. Influence of Concentration of Hydroxyapatite Surface Modifier Agent on Bioactive Composite Characteristics. Ceram. Int. 2016, 42, 17023–17031. DOI: 10.1016/j.ceramint.2016.07.210.
  • Shi, C.; Gao, J.; Wang, M.; Fu, J.; Wang, D.; Zhu, Y. Ultra-Trace Silver-Doped Hydroxyapatite with Non-Cytotoxicity and Effective Antibacterial Activity. Mater. Sci. Eng. C 2015, 55, 497–505. DOI: 10.1016/j.msec.2015.05.078.
  • Kaynak Bayrak, G.; Demirtaş, T.; Gümüşderelioğlu, M. Microwave-Induced Biomimetic Approach for Hydroxyapatite Coatings of Chitosan Scaffolds. Carbohydr. Polym. 2017, 157, 803–813. DOI: 10.1016/j.carbpol.2016.10.016.
  • Li, J.; Zhu, D.; Yin, J.; Liu, Y.; Yao, F.; Yao, K. Formation of Nano-Hydroxyapatite Crystal In Situ in Chitosan–Pectin Polyelectrolyte Complex Network. Mater. Sci. Eng. C 2010, 30, 795–803. DOI: 10.1016/j.msec.2010.03.011.
  • Mao, Z.; Yang, X.; Zhu, S.; Cui, Z.; Li, Z. Effect of Na+ and NaOH Concentrations on the Surface Morphology and Dissolution Behavior of Hydroxyapatite. Ceram. Int. 2015, 41, 3461–3468. DOI: 10.1016/j.ceramint.2014.10.162.
  • Hu, J.; Ran, J.; Chen, S.; Shen, X.; Tong, H. Biomineralization-Inspired Synthesis of Chitosan/Hydroxyapatite Biocomposites Based on a Novel Bilayer Rate-Controlling Model. Colloids Surf B Biointerfaces 2015, 136, 457–464. DOI: 10.1016/j.colsurfb.2015.09.027.
  • Ciobanu, G.; Maria Bargan, A.; Luca, C. New Cerium(IV)-Substituted Hydroxyapatite Nanoparticles: Preparation and Characterization. Ceram. Int. 2015, 41, 12192–12201. DOI: 10.1016/j.ceramint.2015.06.040.
  • Núñez, J.; Benito, A.; González, R.; Aragón, J.; Arenal, R.; Maser, W. Integration and Bioactivity of Hydroxyapatite Grown on Carbon Nanotubes and Graphene Oxide. Carbon 2014, 79, 590–604. DOI: 10.1016/j.carbon.2014.08.020.
  • Ruphuy, G.; Weide, T.; Lopes, J.; Dias, M.; Barreiro, M. Preparation of Nano-Hydroxyapatite/Chitosan Aqueous Dispersions: From Lab Scale to Continuous Production Using an Innovative Static Mixer. Carbohydr. Polym. 2018, 202, 20–28. DOI: 10.1016/j.carbpol.2018.08.123.
  • Buriti, J.; Barreto, M.; Santos, K.; Fook, M. Thermal Morphological Spectroscopic and Biological Study of Chitosan Hydroxyapatite and Wollastonite Biocomposites. J. Therm. Anal. Calorim. 2018, 134, 1521–1530. DOI: 10.1007/s10973-018-7498-y.
  • Koç, A.; Elçin, A.; Elçin, Y. Ectopic Osteogenic Tissue Formation by MC3T3-E1 Cell-Laden Chitosan/Hydroxyapatite Composite Scaffold. Artif. Cells. Nanomed. Biotechnol. 2016, 44, 1440–1447. DOI: 10.3109/21691401.2015.1036998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.