1,043
Views
36
CrossRef citations to date
0
Altmetric
Articles

Chitosan/collagen composite films as wound dressings encapsulating allantoin and lidocaine hydrochloride

, , &
Pages 623-635 | Received 27 Nov 2019, Accepted 08 Mar 2020, Published online: 26 Mar 2020

References

  • Boetang, J. S.; Matthews, K. H.; Stevens, H. N. E.; Eccleston, G. M. Wound Healing Dressings and Drug Delivery Systems: A Review. J. Pharm. Sci. 2008, 97, 2892–2923. DOI: 10.1002/jps.21210.
  • Han, G.; Ceilley, R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv. Ther. 2017, 34, 599–610. DOI: 10.1007/s12325-017-0478-y.
  • Järbrink, K.; Ni, G.; Sönnergren, H.; Schmidtchen, A.; Pang, C.; Bajpai, R.; Car, J. The Humanistic and Economic Burden of Chronic Wounds: A Protocol for a Systematic Review. Syst. Rev. 2017, 6, 15–15. DOI: 10.1186/s13643-016-0400-8.
  • Vowden, K.; Vowden, P. Wound Dressings: Principles and Practice. Surgery 2017, 35, 489–494. DOI: 10.1016/j.mpsur.2017.06.005.
  • Sionkowska, A.; Lewandowska, K.; Płanecka, A. Miscibility and Physical Properties of Chitosan and Silk Fibroin Mixtures. J. Mol. Liq. 2014, 198, 354–357. DOI: 10.1016/j.molliq.2014.07.033.
  • Aramwit, P. Introduction to Biomaterials for Wound Healing. Elsevier Ltd, UK, 2016; Vol. 2, pp 3–38.
  • Ige, O. O.; Umoru, L. E.; Aribo, S. Natural Products: A Minefield of Biomaterials. ISRN Mater. Sci. 2012, 2012, 1–20. DOI: 10.5402/2012/983062.
  • Lopes, T. D.; Riegel-Vidotti, I. C.; Grein, A.; Tischer, C. A.; Faria-Tischer, P. C. D. S. Bacterial Cellulose and Hyaluronic Acid Hybrid Membranes: Production and Characterization. Int. J. Biol. Macromol. 2014, 67, 401–408. DOI: 10.1016/j.ijbiomac.2014.03.047.
  • Akturk, O.; Tezcaner, A.; Bilgili, H.; Deveci, M. S.; Gecit, M. R.; Keskin, D. Evaluation of Sericin/Collagen Membranes as Prospective Wound Dressing Biomaterial. J. Biosci. Bioeng. 2011, 112, 279–288. DOI: 10.1016/j.jbiosc.2011.05.014.
  • López Angulo, D. E.; do Amaral Sobral, P. J. Characterization of Gelatin/Chitosan Scaffold Blended with Aloe Vera and Snail Mucus for Biomedical Purpose. Int. J. Biol. Macromol. 2016, 92, 645–653. DOI: 10.1016/j.ijbiomac.2016.07.029.
  • Paul, W.; Sharma, C. Chitosan and Alginate Wound Dressings: A Short Review. Trends Biomater. Artif. Organs 2004, 18, 18–23.
  • Brown, M. A.; Daya, M. R.; Worley, J. A. Experience with Chitosan Dressings in a Civilian EMS System. J. Emerg. Med. 2009, 37, 1–7. DOI: 10.1016/j.jemermed.2007.05.043.
  • Jayakumar, R.; Prabaharan, M.; Kumar, P. T. S.; Nair, S. V.; Tamura, H. Biomaterials Based on Chitin and Chitosan in Wound Dressing Applications. Biotechnol. Adv. 2011, 29, 322–337. DOI: 10.1016/j.biotechadv.2011.01.005.
  • Frantz, C.; Stewart, K. M.; Weaver, V. M. The Extracellular Matrix at a Glance. J. Cell Sci. 2010, 123, 4195–4200. DOI: 10.1242/jcs.023820.
  • Fleck, C. A.; Simman, R. Modern Collagen Wound Dressings: Function and Purpose. J. Am. Coll. Certif. Wound Spec. 2010, 2, 50–54. DOI: 10.1016/j.jcws.2010.12.003.
  • Wahyudi, H.; Reynolds, A. A.; Li, Y.; Owen, S. C.; Yu, S. M. Targeting Collagen for Diagnostic Imaging and Therapeutic Delivery. J. Controlled Release 2016, 240, 323–331. DOI: 10.1016/j.jconrel.2016.01.007.
  • Fan, X.; Chen, K.; He, X.; Li, N.; Huang, J.; Tang, K.; Li, Y.; Wang, F. Nano-TiO2/Collagen-Chitosan Porous Scaffold for Wound Repairing. Int. J. Biol. Macromol. 2016, 91, 15–22. DOI: 10.1016/j.ijbiomac.2016.05.094.
  • Chattopadhyay, S.; Raines, R. T. Collagen-Based Biomaterials for Wound Healing. Biopolymers. 2008, 141, 520–529.
  • Rubina, M. S.; Kamitov, E. E.; Zubavichus, Y. V.; Peters, G. S.; Naumkin, A. V.; Suzer, S.; Vasil’kov, A. Y. Collagen-Chitosan Scaffold Modified with Au and Ag Nanoparticles: Synthesis and Structure. Appl. Surf. Sci. 2016, 366, 365–371. DOI: 10.1016/j.apsusc.2016.01.107.
  • Jithendra, P.; Rajam, A. M.; Kalaivani, T.; Mandal, A. B.; Rose, C. Preparation and Characterization of Aloe vera Blended Collagen-Chitosan Composite Scaffold for Tissue Engineering Applications. ACS Appl. Mater. Interfaces 2013, 5, 7291–7298. DOI: 10.1021/am401637c.
  • Udhayakumar, S.; Shankar, K. G.; Sowndarya, S.; Venkatesh, S.; Muralidharan, C.; Rose, C. L-Arginine Intercedes Bio-Crosslinking of a Collagen-Chitosan 3D-Hybrid Scaffold for Tissue Engineering and Regeneration: In Silico, In Vitro, and In Vivo Studies. RSC Adv. 2017, 7, 25070–25088. DOI: 10.1039/C7RA02842C.
  • Ma, L.; Gao, C.; Mao, Z.; Zhou, J.; Shen, J.; Hu, X.; Han, C. Collagen/Chitosan Porous Scaffolds with Improved Biostability for Skin Tissue Engineering. Biomaterials 2003, 24, 4833–4841. DOI: 10.1016/S0142-9612(03)00374-0.
  • Shanmugasundaram, N.; Ravichandran, P.; Neelakanta Reddy, P.; Ramamurty, N.; Pal, S.; Panduranga Rao, K. Collagen-Chitosan Polymeric Scaffolds for the in Vitro Culture of Human Epidermoid Carcinoma Cells. Biomaterials 2001, 22, 1943–1951. DOI: 10.1016/S0142-9612(00)00220-9.
  • Sarkar, S. D.; Farrugia, B. L.; Dargaville, T. R.; Dhara, S. Chitosan-Collagen Scaffolds with Nano/Microfibrous Architecture for Skin Tissue Engineering. J. Biomed. Mater. Res. 2013, 101, 3482–3492. DOI: 10.1002/jbm.a.34660.
  • Araújo, L. U.; Grabe-Guimarães, A.; Mosqueira, V. C. F.; Carneiro, C. M.; Silva-Barcellos, N. M. Profile of Wound Healing Process Induced by Allantoin. Acta Cir. Bras. 2010, 25, 460–461. DOI: 10.1590/S0102-86502010000500014.
  • Muangman, P. Efficacy of the Combination of Herbal Extracts and a Silicone Derivative in the Treatment of Hypertrophic Scar Formation after Burn Injury. Afr. J. Pharm. Pharmacol. 2011, 5, 442–446. DOI: 10.5897/AJPP10.282.
  • Shaik, S.; Bhise, K. Formulation and Evaluation of Medicated Lipstick of Allantoin. Asian J. Pharm. 2008, 2, 95–98. DOI: 10.4103/0973-8398.42494.
  • Gordh, T. Lidocaine: The Origin of a Modern Local Anesthetic. Anesthesiology 2010, 113, 1433–1437. DOI: 10.1097/ALN.0b013e3181fcef48.
  • Maver, T.; Gradišnik, L.; Kurečič, M.; Hribernik, S.; Smrke, D. M.; Maver, U.; Kleinschek, K. S. Layering of Different Materials to Achieve Optimal Conditions for Treatment of Painful Wounds. Int. J. Pharm. 2017, 529, 576–588. DOI: 10.1016/j.ijpharm.2017.07.043.
  • Vinklárková, L.; Masteiková, R.; Foltýnová, G.; Muselík, J.; Pavloková, S.; Bernatonienė, J.; Vetchý, D. Film Wound Dressing with Local Anesthetic Based on Insoluble Carboxymethycellulose Matrix. J. Appl. Biomed. 2017, 15, 313–320. DOI: 10.1016/j.jab.2017.08.002.
  • Ravindran, S.; Song, Y.; George, A. Development of Three-Dimensional Biomimetic Scaffold to Study Epithelial – Mesenchymal Interactions. Tissue Eng. Part A. 2010, 16, 327–342.
  • Caliari, S. R.; Ramirez, M. A.; Harley, B. A. C. Biomaterials the Development of Collagen-GAG Scaffold-Membrane Composites for Tendon Tissue Engineering. Biomaterials 2011, 32, 8990–8998. DOI: 10.1016/j.biomaterials.2011.08.035.
  • Yuan, T.; Zhang, L.; Li, K.; Fan, H.; Fan, Y.; Liang, J.; Zhang, X. Collagen Hydrogel as an Immunomodulatory Scaffold in Cartilage Tissue Engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 337–344. DOI: 10.1002/jbm.b.33011.
  • Ti, D.; Hao, H.; Xia, L.; Tong, C.; Liu, J.; Dong, L.; Xu, S.; Zhao, Y.; Liu, H.; Fu, X.; Han, W. Controlled Release of Thymosin Beta 4 Using a Collagen–chitosan Sponge Scaffold Augments Cutaneous Wound Healing and Increases Angiogenesis in Diabetic Rats with Hindlimb Ischemia. Tissue Eng. Part A.2015, 21, 541–549. DOI: 10.1089/ten.tea.2013.0750.
  • Llanos, J. H. R.; de Oliveira Vercik, L. C.; Vercik, A. Physical Properties of Chitosan Films Obtained after Neutralization of Polycation by Slow Drip Method. JBNB. 2015, 06, 276–291. doi:10.4236/jbnb.2015.64026.
  • Sargeant, T. D.; Desai, A. P.; Banerjee, S.; Agawu, A.; Stopek, J. B. An In Situ Forming collagen-PEG Hydrogel for Tissue Regeneration. Acta Biomater. 2012, 8, 124–132. DOI: 10.1016/j.actbio.2011.07.028.
  • Zhou, X.; Cai, Q.; Yan, N.; Deng, X.; Yang, X. In Vitro Hydrolytic and Enzymatic Degradation of Nestlike-Patterned Electrospun Poly(D,L-Lactide-co-Glycolide) Scaffolds. J. Biomed. Mater. Res. 2010, 95, 755–765. DOI: 10.1002/jbm.a.32896.
  • Vimala, K.; Yallapu, M. M.; Varaprasad, K.; Reddy, N. N.; Ravindra, S.; Naidu, N. S.; Raju, K. M. Fabrication of Curcumin Encapsulated Chitosan-PVA Silver Nanocomposite Films for Improved Antimicrobial Activity. JBNB. 2011, 02, 55–64. DOI: 10.4236/jbnb.2011.21008.
  • Alavarse, A. C.; de Oliveira Silva, F. W.; Colque, J. T.; da Silva, V. M.; Prieto, T.; Venancio, E. C.; Bonvent, J. J. Tetracycline Hydrochloride-Loaded Electrospun Nanofibers Mats Based on PVA and Chitosan for Wound Dressing. Mater. Sci. Eng, C 2017, 77, 271–281. DOI: 10.1016/j.msec.2017.03.199.
  • Felice, F.; Zambito, Y.; Belardinelli, E.; Fabiano, A.; Santoni, T.; Di Stefano, R. Effect of Different Chitosan Derivatives on in Vitro Scratch Wound Assay: A Comparative Study. Int. J. Biol. Macromol. 2015, 76, 236–241. DOI: 10.1016/j.ijbiomac.2015.02.041.
  • Liang, C. C.; Park, A. Y.; Guan, J. l., In Vitro Scratch Assay: A Convenient and Inexpensive Method for Analysis of Cell Migration in Vitro. Nat. Protoc. 2007, 2, 329–333. DOI: 10.1038/nprot.2007.30.
  • Goetsch, K. P.; Niesler, C. U. Optimization of the Scratch Assay for in Vitro Skeletal Muscle Wound Healing Analysis. Anal. Biochem. 2011, 411, 158–160. DOI: 10.1016/j.ab.2010.12.012.
  • Gorain, B.; Choudhury, H.; Pandey, M.; Madheswaran, T.; Kesharwani, P.; Tekade, R. K. Drug–Excipient Interaction and Incompatibilities. India: Elsevier Inc., 2018; pp 363–402.
  • Kuş, N.; Bayari, S. H.; Fausto, R. Thermal Decomposition of Allantoin as Probed by Matrix Isolation FTIR Spectroscopy. Tetrahedron 2009, 65, 9719–9727. DOI: 10.1016/j.tet.2009.09.088.
  • Zhong, S.; Li, B.; Ji, Y.; Zeng, C. Multifunctional Coordination Polymer Nanoparticles Based on Allantoin: Single Peak Upconversion Emission, Drug Delivery and Cytotoxicity Study. J. Inorg. Organomet. Polym. 2016, 26, 527–529. DOI: 10.1007/s10904-016-0360-4.
  • Wei, Y.; Nedley, M. P.; Bhaduri, S. B.; Bredzinski, X.; Boddu, S. H. S. Masking the Bitter Taste of Injectable Lidocaine HCl Formulation for Dental Procedures. AAPS PharmSciTech 2015, 16, 455–465. DOI: 10.1208/s12249-014-0239-z.
  • Arakawa, T.; Maluf, N. K. The Effects of Allantoin, Arginine and NaCl on Thermal Melting and Aggregation of Ribonuclease, Bovine Serum Albumin and Lysozyme. Int. J. Biol. Macromol. 2018, 107, 1692–1696. DOI: 10.1016/j.ijbiomac.2017.10.034.
  • Cavatur, R.; Murti Vemuri, N.; Chrzan, Z. Use of Isothermal Microcalorimetry in Pharmaceutical Preformulation Studies Part III. Evaluation of Excipient Compatibility of a New Chemical Entity. J. Therm. Anal. Calorim. 2004, 78, 63–72. DOI: 10.1023/B:JTAN.0000042154.13588.19.
  • Liland, K. B.; Hvidsten, S. Determine the Compatibility between Electrical Insulation Fluids and Solid Materials Using a Micro-Calorimeter. IEEE Trans. Dielect. Electr. Insul. 2016, 23, 901–907. DOI: 10.1109/TDEI.2015.005512.
  • Chung, T. W.; Liu, D. Z.; Wang, S. Y.; Wang, S. S. Enhancement of the Growth of Human Endothelial Cells by Surface Roughness at Nanometer Scale. Biomaterials 2003, 24, 4655–4661. DOI: 10.1016/S0142-9612(03)00361-2.
  • Lewandowska, K.; Sionkowska, A.; Grabska, S. Chitosan Blends Containing Hyaluronic Acid and Collagen. Compatibility Behaviour. J. Mol. Liq. 2015, 212, 879–884. DOI: 10.1016/j.molliq.2015.10.047.
  • Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. (Oxford) 2006, 31, 603–632. DOI: 10.1016/j.progpolymsci.2006.06.001.
  • Soni, B.; Hassan, E. B.; Schilling, M. W.; Mahmoud, B. Transparent Bionanocomposite Films Based on Chitosan and TEMPO-Oxidized Cellulose Nanofibers with Enhanced Mechanical and Barrier Properties. Carbohydr. Polym. 2016, 151, 779–789. DOI: 10.1016/j.carbpol.2016.06.022.
  • Sherman, V. R.; Yang, W.; Meyers, M. A. The Materials Science of Collagen. J. Mech. Behav. Biomed. Mater. 2015, 52, 22–50. DOI: 10.1016/j.jmbbm.2015.05.023.
  • Sionkowska, A.; Wisniewski, M.; Skopinska, J.; Kennedy, C. J.; Wess, T. J. Molecular Interactions in Collagen and Chitosan Blends. Biomaterials 2004, 25, 795–801. DOI: 10.1016/S0142-9612(03)00595-7.
  • Taravel, M. N.; Domard, A. Relation between the Physicochemical Characteristics of Collagen and Its Interactions with Chitosan: I. Biomaterials 1993, 14, 930–938. DOI: 10.1016/0142-9612(93)90135-O.
  • Fernandes, L. L.; Resende, C. X.; Tavares, D. S.; Soares, G. A.; Castro, L. O.; Granjeiro, J. M. Cytocompatibility of Chitosan and Collagen-Chitosan Scaffolds for Tissue Engineering. Polimeros 2011, 21, 1–6. DOI: 10.1590/S0104-14282011005000008.
  • Ungureanu, C.; Ioniţǎ, D.; Berteanu, E.; Tcacenco, L. a.; Zuav, A.; Demetrescu, I. Improving Natural Biopolymeric Membranes Based on Chitosan and Collagen for Biomedical Applications Introducing Silver. J. Braz. Chem. Soc. 2015, 26, 458–465.
  • Ghodbane, S. A.; Dunn, M. G. Physical and Mechanical Properties of Cross-Linked Type I Collagen Scaffolds Derived from Bovine, Porcine, and Ovine Tendons. J. Biomed. Mater. Res. 2016, 104, 2685–2692. DOI: 10.1002/jbm.a.35813.
  • Brett, D. W. A Review of Moisture-Control Dressings in Wound Care. J. Wound Ostomy Cont. Nurs. 2006, 33, S3–S8. DOI: 10.1097/01.WON.0000278581.53694.b6.
  • Szymańska, E.; Winnicka, K. Stability of chitosan – A Challenge for Pharmaceutical and Biomedical Applications. Mar. Drugs 2015, 13, 1819–1846. DOI: 10.3390/md13041819.
  • Deng, C.; Zhang, P.; Vulesevic, B.; Kuraitis, D.; Li, F.; Yang, A. F.; Griffith, M.; Ruel, M.; Suuronen, E. J. A Collagen–Chitosan Hydrogel for Endothelial Differentiation and Angiogenesis. Tissue Eng. A 2010, 16, 3099–3109. DOI: 10.1089/ten.tea.2009.0504.
  • Kim, S. E.; Cho, Y. W.; Kang, E. J.; Kwon, I. C.; Lee, E. B.; Kim, J. H.; Chung, H.; Jeong, S. Y. Three-Dimensional Porous Collagen/Chitosan Complex Sponge for Tissue Engineering. Fibers Polym. 2001, 2, 64–70. DOI: 10.1007/BF02875260.
  • Ti, D.; Hao, H.; Xia, L.; Tong, C.; Liu, J.; Dong, L.; Xu, S.; Zhao, Y.; Liu, H.; Fu, X.; Han, W. Controlled Release of Thymosin Beta 4 Using a Collagen–Chitosan Sponge Scaffold Augments Cutaneous Wound Healing and Increases Angiogenesis in Diabetic Rats with Hindlimb Ischemia. Tissue Eng. A 2015, 21, 541–549. DOI: 10.1089/ten.tea.2013.0750.
  • Vagenende, V.; Ching, T. J.; Chua, R. J.; Jiang, Q. Z.; Gagnon, P. Self-Assembly of Lipopolysaccharide Layers on Allantoin Crystals. Colloids Surf, B 2014, 120, 8–14. DOI: 10.1016/j.colsurfb.2014.04.008.
  • Nishinami, S.; Yoshizawa, S.; Arakawa, T.; Shiraki, K. Allantoin and Hydantoin as New Protein Aggregation Suppressors and Their Mechanisms of Action. Int. J. Biol. Macromol. 2018, 114, 497–503. DOI: 10.1016/j.ijbiomac.2018.03.011.
  • Maida, V.; Ennis, M.; Kuziemsky, C. The Toronto Symptom Assessment System for Wounds: A New Clinical and Research Tool. Adv. Skin Wound Care 2009, 22, 468–474. DOI: 10.1097/01.ASW.0000361383.12737.a9.
  • Gallagher, R. Management of Painful Wounds in Advanced Disease. Can. Fam. Physician 2010, 56, 883–885. e315–7.
  • Savic, V. L.; Nikolic, V. D.; Arsic, I. A.; Stanojevic, L. P.; Najman, S. J.; Stojanovic, S.; Mladenovic-Ranisavljevic, I. I. Comparative Study of the Biological Activity of Allantoin and Aqueous Extract of the Comfrey Root. Phytother. Res. 2015, 29, 1117–1122. DOI: 10.1002/ptr.5356.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.