1,124
Views
8
CrossRef citations to date
0
Altmetric
Articles

A facile way to synthesize a photocrosslinkable methacrylated chitosan hydrogel for biomedical applications

ORCID Icon, , , &
Pages 730-741 | Received 18 Dec 2019, Accepted 21 Apr 2020, Published online: 12 May 2020

References

  • Khan, S.; Ullah, A.; Ullah, K.; Rehman, N. U. Insight into Hydrogels. Des. Monomers Polym. 2016, 19, 456–478. DOI: 10.1080/15685551.2016.1169380.
  • Zhu, J.; Marchant, R. E. Design Properties of Hydrogel Tissue-Engineering Scaffolds. Expert. Rev. Med. Devic. 2011, 8, 607–626. DOI: 10.1586/erd.11.27.
  • Bhatia, J. K.; Kaith, B. S.; Kalia, S. Polysaccharide Hydrogels: Synthesis, Characterization, and Applications. In Polysaccharide Based Graft Copolymers; Kalia, S.; Sabaa, M. W., Eds.; Berlin Heidelberg: Springer-Verlag, 2013; pp 271–290.
  • Kim, D. H.; Martin, J. T.; Elliott, D. M.; Smith, L. J.; Mauck, R. L. Phenotypic Stability, Matrix Elaboration and Functional Maturation of Nucleus Pulposus Cells Encapsulated in Photocrosslinkable Hyaluronic Acid Hydrogels. Acta Biomater. 2015, 12, 21–29. DOI: 10.1016/j.actbio.2014.10.030.
  • Currao, M.; Malara, A.; Di Buduo, C. A.; Abbonante, V.; Tozzi, L.; Balduini, A. Hyaluronan Based Hydrogels Provide an Improved Model to Study Megakaryocyte–Matrix Interactions. Exp. Cell Res. 2016, 346, 1–8. DOI: 10.1016/j.yexcr.2015.05.014.
  • Pertici, V.; Pin-Barre, C.; Rivera, C.; Pellegrino, C.; Laurin, J.; Gigmes, D.; Trimaille, T. Degradable and Injectable Hydrogel for Drug Delivery in Soft Tissues. Biomacromolecules 2019, 20, 149–163. DOI: 10.1021/acs.biomac.8b01242.
  • Ornell, K. J.; Lozada, D.; Phan, N. V.; Coburn, J. M. Controlling Methacryloyl Substitution of Chondroitin Sulfate: Injectable Hydrogels with Tunable Long-Term Drug Release Profiles. J. Mater. Chem. B 2019, 7, 2151–2161. DOI: 10.1039/C8TB03020K.
  • Taleblou, N.; Sirousazar, M.; Hassan, Z. M.; Khaligh, S. G. Capecitabine-Loaded anti-Cancer Nanocomposite Hydrogel Drug Delivery Systems: In Vitro and In Vivo Efficacy against the 4t1 Murine Breast Cancer Cells. J. Biomat. Sci. Polym. E 2019, 31, 72–92. DOI: 10.1080/09205063.2019.1675225.
  • Shahriari, M. H.; Shokrgozar, M. A.; Bonakdar, S.; Yousefi, F.; Negahdari, B.; Yeganeh, H. In Situ Forming Hydrogels Based on Polyethylene Glycol Itaconate for Tissue Engineering Application. B Mater. Sci. 2019, 42, 193–199. DOI: 10.1007/s12034-019-1833-1.
  • Johari, B.; Ahmadzadehzarajabad, M.; Azami, M.; Kazemi, M.; Soleimani, M.; Kargozar, S.; Hajighasemlou, S.; Farajollahi, M. M.; Samadikuchaksaraei, A. Repair of Rat Critical Size Calvarial Defect Using Osteoblast‐like and Umbilical Vein Endothelial Cells Seeded in Gelatin/Hydroxyapatite Scaffolds. J. Biomed. Mater. Res. 2016, 104, 1770–1778. DOI: 10.1002/jbm.a.35710.
  • Azami, M.; Ai, J.; Ebrahimi-Barough, S.; Farokhi, M.; Fard, S. E. In Vitro Evaluation of Biomimetic Nanocomposite Scaffold Using Endometrial Stem Cell Derived Osteoblast-Like Cells. Tissue Cell 2013, 45, 328–337. DOI: 10.1016/j.tice.2013.05.002.
  • Navaei-Nigjeh, M.; Amoabedini, G.; Noroozi, A.; Azami, M.; Asmani, M. N.; Ebrahimi-Barough, S.; Saberi, H.; Ai, A.; Ai, J. Enhancing Neuronal Growth from Human Endometrial Stem Cells Derived Neuron‐like Cells in Three‐Dimensional Fibrin Gel for Nerve Tissue Engineering. J. Biomed. Mater. Res. 2014, 102, 2533–2543. DOI: 10.1002/jbm.a.34921.
  • Alhaique, F.; Coviello, T.; Matricardi, P. Introduction. In Polysaccharide Hydrogels: Characterization and Biomedical Applications; Matricardi, P.; Alhaique, F.; Coviello, T., Eds.; CRC Press: Boca Raton, FL, 2016; pp 1–37.
  • Bartnikowski, M.; Bartnikowski, N.; Woodruff, M.; Schrobback, K.; Klein, T. Protective Effects of Reactive Functional Groups on Chondrocytes in Photocrosslinkable Hydrogel Systems. Acta Biomater. 2015, 27, 66–76. DOI: 10.1016/j.actbio.2015.08.038.
  • Li, X.; Campbell-Rance, D.; Liu, X.; Zhang, N.; Wen, X. Injectable Hydrogels for Neural Tissue Regeneration. In Injectable Hydrogels for Regenerative Engineering; Nair, L. S., Ed.; World Scientific Publishing: Singapore, 2016; pp 303–353.
  • Zhao, P.; Deng, C.; Xu, H.; Tang, X.; He, H.; Lin, C.; Su, J. Fabrication of Photo-Crosslinked Chitosan-Gelatin Scaffold in Sodium Alginate Hydrogel for Chondrocyte Culture. Bio. Med. Mater. Eng. 2014, 24, 633–641. DOI: 10.3233/BME-130851.
  • Zhu, L.; Bratlie, K. M. Ph Sensitive Methacrylated Chitosan Hydrogels with Tunable Physical and Chemical Properties. Biochem. Eng. J. 2018, 132, 38–46. DOI: 10.1016/j.bej.2017.12.012.
  • Shin, H.; Olsen, B. D.; Khademhosseini, A. The Mechanical Properties and Cytotoxicity of Cell-Laden Double-Network Hydrogels Based on Photocrosslinkable Gelatin and Gellan Gum Biomacromolecules. Biomaterials 2012, 33, 3143–3152. DOI: 10.1016/j.biomaterials.2011.12.050.
  • Croisier, F.; Jérôme, C. Chitosan-Based Biomaterials for Tissue Engineering. Eur. Polym. J. 2013, 49, 780–792. DOI: 10.1016/j.eurpolymj.2012.12.009.
  • Saikia, C.; Gogoi, P.; Maji, T. Chitosan: A Promising Biopolymer in Drug Delivery Applications. J. Mol. Genet. Med. 2015, S4, 006–015. DOI: 10.4172/1747-0862.S4-006.
  • Amsden, B. G.; Sukarto, A.; Knight, D. K.; Shapka, S. N. Methacrylated Glycol Chitosan as a Photopolymerizable Biomaterial. Biomacromolecules 2007, 8, 3758–3766. DOI: 10.1021/bm700691e.
  • Park, H.; Choi, B.; Hu, J.; Lee, M. Injectable Chitosan Hyaluronic Acid Hydrogels for Cartilage Tissue Engineering. Acta Biomater. 2013, 9, 4779–4786. DOI: 10.1016/j.actbio.2012.08.033.
  • Borgogna, M.; Marsich, E.; Donati, I.; Paoletti, S.; Travan, A. Hydrogels. In Polysaccharide Hydrogels: Characterization and Biomedical Applications; Matricardi, P.; Alhaique, F.; Coviello, T., Eds.; CRC Press: Boca Raton, FL, 2016; pp 39–81.
  • Levett, P. A.; Melchels, F. P.; Schrobback, K.; Hutmacher, D. W.; Malda, J.; Klein, T. J. Chondrocyte Redifferentiation and Construct Mechanical Property Development in Single‐Component Photocrosslinkable Hydrogels. J. Biomed. Mater. Res. 2014, 102, 2544–2553. DOI: 10.1002/jbm.a.34924.
  • Gupta, M. S.; Nicoll, S. B. Duration of Tgf-Β3 Exposure Impacts the Chondrogenic Maturation of Human MSCs in Photocrosslinked Carboxymethylcellulose Hydrogels. Ann. Biomed. Eng. 2015, 43, 1145–1157. DOI: 10.1007/s10439-014-1179-1.
  • Li, B.; Wang, L.; Xu, F.; Gang, X.; Demirci, U.; Wei, D.; Li, Y.; Feng, Y.; Jia, D.; Zhou, Y. Hydrosoluble, Uv-Crosslinkable and Injectable Chitosan for Patterned Cell-Laden Microgel and Rapid Transdermal Curing Hydrogel In Vivo. Acta Biomater. 2015, 22, 59–69. DOI: 10.1016/j.actbio.2015.04.026.
  • Bjørge, I. M.; Costa, A. M.; Silva, A. S.; Vidal, J. P.; Nóbrega, J. M.; Mano, J. F. Tuneable Spheroidal Hydrogel Particles for Cell and Drug Encapsulation. Soft Matter 2018, 14, 5622–5627. DOI: 10.1039/C8SM00921J.
  • Fisher, M. B.; Henning, E. A.; Söegaard, N. B.; Dodge, G. R.; Steinberg, D. R.; Mauck, R. L. Maximizing Cartilage Formation and Integration via a Trajectory-Based Tissue Engineering Approach. Biomaterials 2014, 35, 2140–2148. DOI: 10.1016/j.biomaterials.2013.11.031.
  • Kesti, M.; Müller, M.; Becher, J.; Schnabelrauch, M.; D’Este, M.; Eglin, D.; Zenobi-Wong, M. A Versatile Bioink for Three-Dimensional Printing of Cellular Scaffolds Based on Thermally and Photo-Triggered Tandem Gelation. Acta Biomater. 2015, 11, 162–172. DOI: 10.1016/j.actbio.2014.09.033.
  • Wiltsey, C.; Christiani, T.; Williams, J.; Scaramazza, J.; Van Sciver, C.; Toomer, K.; Sheehan, J.; Branda, A.; Nitzl, A.; England, E.; et al. Thermogelling Bioadhesive Scaffolds for Intervertebral Disk Tissue Engineering: Preliminary in Vitro Comparison of Aldehyde-Based versus Alginate Microparticle-Mediated Adhesion. Acta Biomater. 2015, 16, 71–80. DOI: 10.1016/j.actbio.2015.01.025.
  • Kim, S. H.; Chu, C. C. Synthesis and Characterization of Dextran–Methacrylate Hydrogels and Structural Study by SEM. J. Biomed. Mater. Res. 2000, 49, 517–527. DOI: 10.1002/(SICI)1097-4636(20000315)49:4<517::AID-JBM10>3.0.CO;2-8.
  • Yuan, T.; He, L.; Yang, J.; Zhang, L.; Xiao, Y.; Fan, Y.; Zhang, X. Conjugated Icariin Promotes Tissue-Engineered Cartilage Formation in Hyaluronic Acid/Collagen Hydrogel. Process Biochem. 2015, 50, 2242–2250. DOI: 10.1016/j.procbio.2015.09.006.
  • Brinkman, W. T.; Nagapudi, K.; Thomas, B. S.; Chaikof, E. L. Photo-Cross-Linking of Type I Collagen Gels in the Presence of Smooth Muscle Cells: Mechanical Properties, Cell Viability, and Function. Biomacromolecules 2003, 4, 890–895. DOI: 10.1021/bm0257412.
  • Duan, B.; Hockaday, L. A.; Kapetanovic, E.; Kang, K. H.; Butcher, J. T. Stiffness and Adhesivity Control Aortic Valve Interstitial Cell Behavior within Hyaluronic Acid Based Hydrogels. Acta Biomater. 2013, 9, 7640–7650. DOI: 10.1016/j.actbio.2013.04.050.
  • Kilic Bektas, C.; Burcu, A.; Gedikoglu, G.; Telek, H. H.; Ornek, F.; Hasirci, V. Methacrylated Gelatin Hydrogels as Corneal Stroma Substitutes: In Vivo Study. J. Biomat. Sci. Polym. E 2019, 30, 1803–1821. DOI: 10.1080/09205063.2019.1666236.
  • Iemma, F.; Spizzirri, U.; Puoci, F.; Cirillo, G.; Curcio, M.; Parisi, O.; Picci, N. Synthesis and Release Profile Analysis of Thermo-Sensitive Albumin Hydrogels. Colloid Polym. Sci. 2009, 287, 779–787. DOI: 10.1007/s00396-009-2027-y.
  • Shin, H.; Nichol, J. W.; Khademhosseini, A. Cell-Adhesive and Mechanically Tunable Glucose-Based Biodegradable Hydrogels. Acta Biomater. 2011, 7, 106–114. DOI: 10.1016/j.actbio.2010.07.014.
  • Skaalure, S. C.; Dimson, S. O.; Pennington, A. M.; Bryant, S. J. Semi-Interpenetrating Networks of Hyaluronic Acid in Degradable Peg Hydrogels for Cartilage Tissue Engineering. Acta Biomater. 2014, 10, 3409–3420. DOI: 10.1016/j.actbio.2014.04.013.
  • Steinmetz, N. J.; Aisenbrey, E. A.; Westbrook, K. K.; Qi, H. J.; Bryant, S. J. Mechanical Loading Regulates Human MSC Differentiation in a Multi-Layer Hydrogel for Osteochondral Tissue Engineering. Acta Biomater. 2015, 21, 142–153. DOI: 10.1016/j.actbio.2015.04.015.
  • Hjortnaes, J.; Goettsch, C.; Hutcheson, J. D.; Camci-Unal, G.; Lax, L.; Scherer, K.; Body, S.; Schoen, F. J.; Kluin, J.; Khademhosseini, A.; Aikawa, E. Simulation of Early Calcific Aortic Valve Disease in a 3D Platform: A Role for Myofibroblast Differentiation. J. Mol. Cell. Cardiol. 2016, 94, 13–20. DOI: 10.1016/j.yjmcc.2016.03.004.
  • Bozuyuk, U.; Yasa, O.; Yasa, I. C.; Ceylan, H.; Kizilel, S.; Sitti, M. Light-Triggered Drug Release from 3D-Printed Magnetic Chitosan Microswimmers. ACS Nano 2018, 12, 9617–9625. DOI: 10.1021/acsnano.8b05997.
  • Yang, H.; Chen, S.; Liu, L.; Lai, C.; Shi, X. Synthesis, Characterization and Osteogenesis of Phosphorylated Methacrylamide Chitosan Hydrogels. RSC Adv. 2018, 8, 36331–36337. DOI: 10.1039/C8RA05378B.
  • Liu, J.; Xiao, Y.; Wang, X.; Huang, L.; Chen, Y.; Bao, C. Glucose-Sensitive Delivery of Metronidazole by Using a Photo-Crosslinked Chitosan Hydrogel Film to Inhibit Porphyromonas Gingivalis Proliferation. Int. J. Biol. Macromol. 2019, 122, 19–28. DOI: 10.1016/j.ijbiomac.2018.09.202.
  • Kolawole, O. M.; Lau, W. M.; Khutoryanskiy, V. V. Methacrylated Chitosan as a Polymer with Enhanced Mucoadhesive Properties for Transmucosal Drug Delivery. Int. J. Pharm. 2018, 550, 123–129. DOI: 10.1016/j.ijpharm.2018.08.034.
  • Masters, K. S.; Shah, D. N.; Leinwand, L. A.; Anseth, K. S. Crosslinked Hyaluronan Scaffolds as a Biologically Active Carrier for Valvular Interstitial Cells. Biomaterials 2005, 26, 2517–2525. DOI: 10.1016/j.biomaterials.2004.07.018.
  • Levett, P. A.; Melchels, F. P.; Schrobback, K.; Hutmacher, D. W.; Malda, J.; Klein, T. J. A Biomimetic Extracellular Matrix for Cartilage Tissue Engineering Centered on Photocurable Gelatin, Hyaluronic Acid and Chondroitin Sulfate. Acta Biomater. 2014, 10, 214–223. DOI: 10.1016/j.actbio.2013.10.005.
  • Snyder, T. N.; Madhavan, K.; Intrator, M.; Dregalla, R. C.; Park, D. A Fibrin/Hyaluronic Acid Hydrogel for the Delivery of Mesenchymal Stem Cells and Potential for Articular Cartilage Repair. J. Biol. Eng. 2014, 8, 10–20. DOI: 10.1186/1754-1611-8-10.
  • Chung, C.; Beecham, M.; Mauck, R. L.; Burdick, J. A. The Influence of Degradation Characteristics of Hyaluronic Acid Hydrogels on in Vitro Neocartilage Formation by Mesenchymal Stem Cells. Biomaterials 2009, 30, 4287–4296. DOI: 10.1016/j.biomaterials.2009.04.040.
  • Kim, M.; Erickson, I. E.; Choudhury, M.; Pleshko, N.; Mauck, R. L. Transient Exposure to Tgf-Β3 Improves the Functional Chondrogenesis of MSC-Laden Hyaluronic Acid Hydrogels. J. Mech. Behav. Biomed. 2012, 11, 92–101. DOI: 10.1016/j.jmbbm.2012.03.006.
  • Dong, Y.; Xu, C.; Wang, J.; Wang, M.; Wu, Y.; Ruan, Y. Determination of Degree of Substitution for N-Acylated Chitosan Using IR Spectra. Sc. China Ser. B Chem. 2001, 44, 216–224. DOI: 10.1007/BF02879541.
  • Czechowska-Biskup, R.; Jarosińska, D.; Rokita, B.; Ulański, P.; Rosiak, J. M. Determination of Degree of Deacetylation of Chitosan-Comparision of Methods. Prog. Chem. Appl. Chitin. Deriv. 2012, 17, 5–20.
  • Kumirska, J.; Czerwicka, M.; Kaczyński, Z.; Bychowska, A.; Brzozowski, K.; Thöming, J.; Stepnowski, P. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan. Mar. Drugs 2010, 8, 1567–1636. DOI: 10.3390/md8051567.
  • de Alvarenga, E. S. Characterization and Properties of Chitosan. In Biotechnology of Biopolymers; Elnashar, M., Ed.; InTech: Rijeka Croatia, 2011; pp 91–108.
  • ASTM F2260-03(2012)e1. Standard Test Method for Determining Degree of Deacetylation in Chitosan Salts by Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy; ASTM International: West Conshohocken, PA, 2012.
  • Xie, W. J.; Gao, Y. Q. A Simple Theory for the Hofmeister Series. J. Phys. Chem. Lett. 2013, 4, 4247–4252. DOI: 10.1021/jz402072g.
  • Guo, M. Q.; Hu, X.; Wang, C.; Ai, L. Polysaccharides: Structure and Solubility. In Solubility of Polysaccharides; Xu, Z., Ed.; InTech: Rijeka, 2017; pp 7–21.
  • Zhang, Y.; Cremer, P. S. Interactions between Macromolecules and Ions: The Hofmeister Series. Curr. Opin. Chem. Biol. 2006, 10, 658–663. DOI: 10.1016/j.cbpa.2006.09.020.
  • Mohammadpour Dounighi, N.; Eskandari, R.; Avadi, M. R.; Zolfagharian, H.; Mir Mohammad Sadeghi, A.; Rezayat, M. Preparation and in Vitro Characterization of Chitosan Nanoparticles Containing Mesobuthus Eupeus Scorpion Venom as an Antigen Delivery System. J. Venom. Anim. Toxins Incl. Trop. Dis. 2012, 18, 44–52. DOI: 10.1590/S1678-91992012000100006.
  • Shigemasa, Y.; Matsuura, H.; Sashiwa, H.; Saimoto, H. Evaluation of Different Absorbance Ratios from Infrared Spectroscopy for Analyzing the Degree of Deacetylation in Chitin. Int. J. Biol. Macromol. 1996, 18, 237–242. DOI: 10.1016/0141-8130(95)01079-3.
  • Pearson, F.; Marchessault, R.; Liang, C. Infrared Spectra of Crystalline Polysaccharides. V. Chitin. J. Polym. Sci. 1960, 43, 101–116. DOI: 10.1002/pol.1960.1204314109.
  • Brugnerotto, J.; Lizardi, J.; Goycoolea, F.; Argüelles-Monal, W.; Desbrieres, J.; Rinaudo, M. An Infrared Investigation in Relation with Chitin and Chitosan Characterization. Polymer 2001, 42, 3569–3580. DOI: 10.1016/S0032-3861(00)00713-8.
  • Tran, C. D.; Mututuvari, T. M. Cellulose, Chitosan, and Keratin Composite Materials. Controlled Drug Release. Langmuir 2015, 31, 1516–1526. DOI: 10.1021/la5034367.
  • Domszy, J. G.; Roberts, G. A. Evaluation of Infrared Spectroscopic Techniques for Analysing Chitosan. Makromol. Chem. 1985, 186, 1671–1677. DOI: 10.1002/macp.1985.021860815.
  • Kasaai, M. R. A Review of Several Reported Procedures to Determine the Degree of N-Acetylation for Chitin and Chitosan Using Infrared Spectroscopy. Carbohyd. Polym. 2008, 71, 497–508. DOI: 10.1016/j.carbpol.2007.07.009.
  • Darmon, S.; Rudall, K. Infra-Red and X-Ray Studies of Chitin. Discuss. Faraday Soc. 1950, 9, 251–260. DOI: 10.1039/df9500900251.
  • Kufelt, O.; El-Tamer, A.; Sehring, C.; Meißner, M.; Schlie-Wolter, S.; Chichkov, B. N. Water-Soluble Photopolymerizable Chitosan Hydrogels for Biofabrication via Two-Photon Polymerization. Acta Biomater. 2015, 18, 186–195. DOI: 10.1016/j.actbio.2015.02.025.
  • Hu, J.; Hou, Y.; Park, H.; Choi, B.; Hou, S.; Chung, A.; Lee, M. Visible Light Crosslinkable Chitosan Hydrogels for Tissue Engineering. Acta Biomater. 2012, 8, 1730–1738. DOI: 10.1016/j.actbio.2012.01.029.
  • Thankam, F. G.; Muthu, J. Alginate Based Hybrid Copolymer Hydrogels—Influence of Pore Morphology on Cell–Material Interaction. Carbohyd. Polym. 2014, 112, 235–244. DOI: 10.1016/j.carbpol.2014.05.083.
  • Chen, X.; Fan, H.; Deng, X.; Wu, L.; Yi, T.; Gu, L.; Zhou, C.; Fan, Y.; Zhang, X. Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications. Nanomaterials 2018, 8, 960–974. DOI: 10.3390/nano8110960.
  • Kumar, P.; Dehiya, B. S.; Sindhu, A. Comparative Study of Chitosan and Chitosan–Gelatin Scaffold for Tissue Engineering. Int. Nano Lett. 2017, 7, 285–290. DOI: 10.1007/s40089-017-0222-2.
  • Ostrovidov, S.; Seidi, A.; Ahadian, S.; Ramalingam, M.; Khademhosseini, A. Micro‐and Nanoengineering Approaches to Developing Gradient Biomaterials Suitable for Interface Tissue Engineering. In Micro and Nanotechnologies in Engineering Stem Cells and Tissues; Ramalingam, M.; Jabbari, E.; Ramakrishna, S.; Khademhosseini, A., Eds.; IEEE Press: New Jersey, 2013; pp 52–79.
  • Yu, Y.; Hua, S.; Yang, M.; Fu, Z.; Teng, S.; Niu, K.; Zhao, Q.; Yi, C. Fabrication and Characterization of Electrospinning/3D Printing Bone Tissue Engineering Scaffold. RSC Adv. 2016, 6, 110557–110565. DOI: 10.1039/C6RA17718B.
  • Roy, J. C.; Salaün, F.; Giraud, S.; Ferri, A.; Chen, G.; Guan, J. Solubility of Chitin: Solvents, Solution Behaviors and Their Related Mechanisms. In Solubility of Polysaccharides; Xu, Z., Ed.; InTech: Rijeka, 2017; pp 109–127.
  • Smidsrød, O.; Moe, S.; Moe, S. T. Biopolymer Chemistry; Tapir Academic Press: Trondheim, 2008.
  • Mazzini, V.; Craig, V. S. What Is the Fundamental Ion-Specific Series for Anions and Cations? Ion Specificity in Standard Partial Molar Volumes of Electrolytes and Electrostriction in Water and Non-Aqueous Solvents. Chem. Sci. 2017, 8, 7052–7065. DOI: 10.1039/C7SC02691A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.