526
Views
24
CrossRef citations to date
0
Altmetric
Articles

Bioresorbable composite polymeric materials for tissue engineering applications

, , , , , , , & ORCID Icon show all
Pages 926-940 | Received 09 Apr 2020, Accepted 22 Apr 2020, Published online: 27 May 2020

References

  • Ciclo XXII. DOTTORATO DI RICERCA IN Chimica Industriale Porous Polymeric Bioresorbable Scaffolds for Tissue Engineering. 2010.
  • Mather, M. L.; Brion, M.; White, L. J.; Shakesheff, K. M.; Howdle, S. M.; Morgan, S. P.; Crowe, J. A. Time-Lapsed Imaging for in-Process Evaluation of Supercritical Fluid Processing of Tissue Engineering Scaffolds. Biotechnol. Prog. 2009, 25, 1176–1183. DOI: 10.1002/btpr.191.
  • Cima, L. G.; Vacanti, J. P.; Vacanti, C.; Ingber, D.; Mooney, D.; Langer, R. Tissue Engineering by Cell Transplantation Using Degradable Polymer Substrates. J. Biomech. Eng. 1991, 113, 143–151. DOI: 10.1115/1.2891228.
  • O’Brien, F. J. Biomaterials & Scaffolds for Tissue Engineering. Mater. Today. 2011, 14, 88–95. DOI: 10.1016/S1369-7021(11)70058-X.
  • Barry, J. J. A.; Gidda, H. S.; Scotchford, C. A.; Howdle, S. M. Porous Methacrylate Scaffolds: Supercritical Fluid Fabrication and In Vitro Chondrocyte Responses. Biomaterials 2004, 25, 3559–3568. DOI: 10.1016/j.biomaterials.2003.10.023.
  • The National Science Foundation. The Emergence of Tissue Engineering as a Research Field. https://nsf.gov/pubs/2004/nsf0450/emergence.htm (2004).
  • Vacanti, J. P.; Morse, M. A.; Saltzman, W. M.; Domb, A. J.; Perez-Atayde, A.; Langer, R. Selective Cell Transplantation Using Bioabsorbable Artificial Polymers as Matrices. J. Pediatr. Surg. 1988, 23, 3–9. DOI: 10.1016/S0022-3468(88)80529-3.
  • Lavik, E.; Langer, R. Tissue Engineering: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2004, 65, 1–8.
  • Kumar, A.; Mukhtar-Un-Nisar, S.; Zia, A. Tissue Engineering -the Promise of Regenerative Dentistry. Biol. Med. 2011, 3, 108–113.
  • Lal, B.; Viola, J.; Hicks, D.; and Grad, O. Emergence and Evolution of a Shared Concept, in The Emergence of Tissue Engineering as a Research Field. Arlington, VA: National Science Foundation; 2003.
  • Kang, H. W.; Tabata, Y.; Ikada, Y. Fabrication of Porous Gelatin Scaffolds for Tissue Engineering. Biomaterials 1999, 20, 1339–1344. DOI: 10.1016/S0142-9612(99)00036-8.
  • Wang, M. Composite Scaffolds for Bone Tissue Engineering. Am. J. Biochem. Biotechnol. 2006, 2, 80–84. DOI: 10.3844/ajbbsp.2006.80.84.
  • Suh, J. K.; Matthew, H. W. Application of Chitosan-Based Polysaccharide Biomaterials in Cartilage Tissue Engineering: A Review. Biomaterials 2000, 21, 2589–2598. DOI: 10.1016/S0142-9612(00)00126-5.
  • He, W.; Yong, T.; Teo, W. E.; Ma, Z.; Ramakrishna, S. Fabrication and Endothelialization of Collagen-Blended Biodegradable Polymer Nanofibers: Potential Vascular Graft for Blood Vessel Tissue Engineering. Tissue Eng. 2005, 11, 1574–1588. DOI: 10.1089/ten.2005.11.1574.
  • Chaudhari, A. A. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. Int. J. Mol. Sci. 2016, 17(12).
  • Avti, P. K.; Patel, S.C.; Uppal, P.; O Malley, G.; Garlow, J.; Sitharaman, B. Nanobiomaterials for Tissue Engineering. In Tissue Engineering: Principles and Practices. Florida: CRC Press; 2012.
  • Naleway, S. E.; Lear, W.; Kruzic, J. J.; Maughan, C. B. Mechanical Properties of Suture Materials in General and Cutaneous Surgery. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 735–742. DOI: 10.1002/jbm.b.33171.
  • Kronenthal, R. Polymers in Medicine and Surgery; 3Island Press, 1975.
  • Mukherjee, D. P.; Pietrzak, W. S. Bioabsorbable Fixation: Scientific, Technical, and Clinical Concepts. J. Craniofac. Surg. 2011, 22, 679–689. DOI: 10.1097/SCS.0b013e318207432f.
  • Iqbal, N.; Khan, A. S.; Asif, A.; Yar, M.; Haycock, J. W.; Rehman, I. U. Recent Concepts in Biodegradable Polymers for Tissue Engineering Paradigms: A Critical Review. Int. Mater. Rev. 2019, 64, 91–126. DOI: 10.1080/09506608.2018.1460943.
  • Vert, M. Bioresorbable Polymers for Temporary Therapeutic Applications. Angew. Makromol. Chem. 1989, 166, 155–168. DOI: 10.1002/apmc.1989.051660111.
  • Vert, M.; Li, S. M.; Spenlehauer, G.; Guerin, P. Bioresorbability and Biocompatibility of Aliphatic Polyesters. J. Mater. Sci: Mater. Med. 1992, 3, 432–446. DOI: 10.1007/BF00701240.
  • Uhrich, K. E.; Abdelhamid, D. 3 - Biodegradable and Bioerodible Polymers for Medical Applications. In Biosynthetic Polymers for Medical Applications; Poole-Warren, L., Martens, P., Green, R., Eds.; Sawston, UK: Woodhead Publishing, 2016; pp 63–83.
  • Melanie Generali, P. E. D.; Hoerstrup, S. P. Bioresorbable Scaffolds for Cardiovascular Tissue Engineering. Cit. EMJ Int. Cardiol. 2014, 1, 91–99.
  • Akinapelli, A.; Chen, J. P.; Roy, K.; Donnelly, J.; Dawkins, K.; Huibregtse, B.; Hou, D. Current State of Bioabsorbable Polymer-Coated Drug-Eluting Stents. Curr. Cardiol. Rev. 2017, 13, 139–154. DOI: 10.2174/1573403X12666161222155230.
  • Dhaliwal, K.; Dosanjh, P. Biodegradable Polymers and Their Role in Drug Delivery Systems. BJSTR. 2018, 11, 8315–8320. DOI: 10.26717/BJSTR.2018.11.002056.
  • Sheridan, M. H.; Shea, L. D.; Peters, M. C.; Mooney, D. J. Bioabsorbable Polymer Scaffolds for Tissue Engineering Capable of Sustained Growth Factor Delivery. J. Control. Release 2000, 64, 91–102. DOI: 10.1016/S0168-3659(99)00138-8.
  • Alexy, R. D.; Levi, D. S. Materials and Manufacturing Technologies Available for Production of a Pediatric Bioabsorbable Stent. Biomed Res. Int. 2013, 2013, 137985. DOI: 10.1155/2013/137985.
  • Shikinami, Y.; Okuno, M. Bioresorbable Devices Made of Forged Composites of Hydroxyapatite (HA) Particles and Poly l-Lactide (PLLA). Part II: Practical Properties of Miniscrews and Miniplates. Biomaterials 2001, 22, 3197–3211. DOI: 10.1016/S0142-9612(01)00072-2.
  • Ramakrishna, S.; Mayer, J.; Wintermantel, E.; Leong, K. W. Biomedical Applications of Polymer-Composite Materials: A Review. Compos. Sci. Technol. 2001, 61, 1189–1224. DOI: 10.1016/S0266-3538(00)00241-4.
  • Eberhart, R. C.; Su, S.-H.; Nguyen, K. T.; Zilberman, M.; Tang, L.; Nelson, K. D.; Frenkel, P. Bioresorbable Polymeric Stents: Current Status and Future Promise. J. Biomater. Sci. Polym. Ed. 2003, 14, 299–312. DOI: 10.1163/156856203321478838.
  • Chazono, M.; Tanaka, T.; Komaki, H.; Fujii, K. Bone Formation and Bioresorption after Implantation of Injectable Beta-Tricalcium Phosphate Granules-Hyaluronate Complex in Rabbit Bone Defects. J. Biomed. Mater. Res. A. 2004, 70, 542–549.
  • Ignjatovic, N.; Wu, V.; Ajduković, Z.; Mihajilov-Krstev, T.; Uskoković, V.; Uskoković, D. Chitosan-PLGA Polymer Blends as Coatings for Hydroxyapatite Nanoparticles and Their Effect on Antimicrobial Properties, Osteoconductivity and Regeneration of Osseous Tissues. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 60, 357–364. DOI: 10.1016/j.msec.2015.11.061.
  • Santos, Jr. A. R. Bioresorbable Polymers for Tissue Engineering. Tissue Eng. 2011, 18, 225–246.
  • Loan, S.; Buruiana, L. I. Biodegradable Polymers in Tissue Engineering. In Handbook of Composites from Renewable Materials, Thakur, V. K.; Thakur M. K., Kessler M. R., Eds.; John Wiley & Sons: Hoboken, NJ, 2017; pp 145-182.
  • Shikinami, Y.; Okazaki, K.; Saito, M.; Okuno, M.; Hasegawa, S.; Tamura, J.; Fujibayashi, S.; Nakamura, T. Bioactive and Bioresorbable Cellular Cubic-Composite Scaffolds for Use in Bone Reconstruction. J. R. Soc. Interface. 2006, 3, 805–821. DOI: 10.1098/rsif.2006.0144.
  • Wuisman, P. I. J. M.; Smit, T. H. Bioresorbable Polymers: Heading for a New Generation of Spinal Cages. Eur. Spine J. 2006, 15, 133–148. DOI: 10.1007/s00586-005-1003-6.
  • Ulery, B. D.; Nair, L. S.; Laurencin, C. T. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci. B Polym. Phys. 2011, 49, 832–864. DOI: 10.1002/polb.22259.
  • Buchanan, F. J. Degradation Rate of Bioresorbable Materials; Woodhead Publishing: Sawston, 2008.
  • von Burkersroda, F.; Schedl, L.; Gopferich, A. Why Degradable Polymers Undergo Surface Erosion or Bulk Erosion. Biomaterials 2002, 23, 4221–4231. DOI: 10.1016/S0142-9612(02)00170-9.
  • Tamada, J. A.; Langer, R. Erosion Kinetics of Hydrolytically Degradable Polymers. Proc. Natl. Acad. Sci. USA. 1993, 90, 552–556. DOI: 10.1073/pnas.90.2.552.
  • Li, S. M.; Garreau, H.; Vert, M. Structure-Property Relationships in the Case of the Degradation of Massive Aliphatic Poly-(α-Hydroxy Acids) in Aqueous Media. J. Mater. Sci: Mater. Med. 1990, 1, 123–130. DOI: 10.1007/BF00700871.
  • Alexis, F. Factors Affecting the Degradation and Drug-Release Mechanism of Poly(Lactic Acid) and Poly[(Lactic Acid)-co-(Glycolic Acid. Polym. Int. 2005, 54, 36–46. DOI: 10.1002/pi.1697.
  • Wang, J.; Wang, L.; Zhou, Z.; Lai, H.; Xu, P.; Liao, L.; Wei, J. Biodegradable Polymer Membranes Applied in Guided Bone/Tissue Regeneration: A Review. Polymers 2016, 8, 115. DOI: 10.3390/polym8040115.
  • Gupta, P.; Nayak, K. K. Characteristics of Protein-Based Biopolymer and Its Application. Polym. Eng. Sci. 2015, 55, 485–498. DOI: 10.1002/pen.23928.
  • Crini, Gg. Recent Developments in Polysaccharide-Based Materials Used as Adsorbents in Wastewater Treatment. Prog. Polym. Sci. 2005, 30, 38–70. DOI: 10.1016/j.progpolymsci.2004.11.002.
  • Lenz, R. W.; Marchessault, R. H. Bacterial Polyesters: Biosynthesis, Biodegradable Plastics and Biotechnology. Biomacromolecules 2005, 6, 1–8. DOI: 10.1021/bm049700c.
  • Paul, W.; Sharma, C. P. 4 - Natural Bioresorbable Polymers. In Degradation Rate of Bioresorbable Materials; Buchanan, F., Eds.; Woodhead Publishing: Sawston, 2008; pp 67–94.
  • Sampath, U.; Ching, Y.; Chuah, C.; Sabariah, J.; Lin, P.-C. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites. Materials 2016, 9, 991. DOI: 10.3390/ma9120991.
  • Chen, G.-Q.; Wu, Q. The Application of Polyhydroxyalkanoates as Tissue Engineering Materials. Biomaterials 2005, 26, 6565–6578. DOI: 10.1016/j.biomaterials.2005.04.036.
  • Shavandi, A.; Bekhit, A. E.-D. A.; Sun, Z.; Ali, A.; Gould, M. A Novel Squid Pen Chitosan/Hydroxyapatite/β-Tricalcium Phosphate Composite for Bone Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 55, 373–383. DOI: 10.1016/j.msec.2015.05.029.
  • Nerantzaki, M. C.; Koliakou, I. G.; Kaloyianni, M. G.; Terzopoulou, Z. N.; Siska, E. K.; Karakassides, M. A.; Boccaccini, A. R.; Bikiaris, D. N. New N-(2-Carboxybenzyl)Chitosan Composite Scaffolds Containing nanoTiO2 or Bioactive Glass with Enhanced Cell Proliferation for Bone-Tissue Engineering Applications. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 71–81. DOI: 10.1080/00914037.2016.1182913.
  • Lowe, B.; Venkatesan, J.; Anil, S.; Shim, M. S.; Kim, S.-K. Preparation and Characterization of Chitosan-Natural Nano Hydroxyapatite-Fucoidan Nanocomposites for Bone Tissue Engineering. Int. J. Biol. Macromol. 2016, 93, 1479–1487. DOI: 10.1016/j.ijbiomac.2016.02.054.
  • Guan, J.; Sacks, M. S.; Beckman, E. J.; Wagner, W. R. Biodegradable Poly(Ether Ester Urethane)Urea Elastomers Based on Poly(Ether Ester) Triblock Copolymers and Putrescine: Synthesis, Characterization and Cytocompatibility. Biomaterials 2004, 25, 85–96. DOI: 10.1016/S0142-9612(03)00476-9.
  • Cameron, R. E.; Kamvari-Moghaddam, A. 5 - Synthetic Bioresorbable Polymers. In Durability and Reliability of Medical Polymers; Jenkins, M., Stamboulis, A., Eds.; Woodhead Publishing: Sawston, 2012; pp 96–118.
  • Albertsson, A.-C.; Varma, I. K. Aliphatic Polyesters: Synthesis, Properties and Applications, in Degradable Aliphatic Polyesters. Springer Berlin Heidelberg: Berlin, Heidelberg, 2002; pp 1–40.
  • Nair, L. S.; Laurencin, C. T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. DOI: 10.1016/j.progpolymsci.2007.05.017.
  • Xiao, L.; Wang, B.; Yang, G.; Gauthier, M. Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications. In Biomedical Science, Engineering and Technology, Dhanjoo N. Ghista, Ed.; IntechOpen: London, 2012. DOI: 10.5772/23927.
  • Cheng, Y.; Deng, S.; Chen, P.; Ruan, R. Polylactic Acid (PLA) Synthesis and Modifications: A Review. Front. Chem. Chin. 2009, 4, 259–264. DOI: 10.1007/s11458-009-0092-x.
  • Makadia, H. K.; Siegel, S. J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers. (Basel) 2011, 3, 1377–1397. DOI: 10.3390/polym3031377.
  • Baoyong, L.; Jian, Z.; Denglong, C.; Min, L. Evaluation of a New Type of Wound Dressing Made from Recombinant Spider Silk Protein Using Rat Models. Burns 2010, 36, 891–896. DOI: 10.1016/j.burns.2009.12.001.
  • Zuber, A.; Borowczyk, J.; Zimolag, E.; Krok, M.; Madeja, Z.; Pamula, E.; Drukala, J. Poly(L-Lactide-co-Glycolide) Thin Films Can Act as Autologous Cell Carriers for Skin Tissue Engineering. Cell Mol. Biol. Lett. 2014, 19, 297–314.
  • Hollinger, J. Strategies for Regenerating Bone of the Craniofacial Complex. Bone 1993, 14, 575–580. DOI: 10.1016/8756-3282(93)90196-H.
  • Zhang, R.; Ma, P. X. Poly(Alpha-Hydroxyl Acids)/Hydroxyapatite Porous Composites for Bone-Tissue Engineering. I. Preparation and Morphology. J. Biomed. Mater. Res. 1999, 44, 446–455. DOI: 10.1002/(SICI)1097-4636(19990315)44:4 < 446::AID-JBM11 > 3.0.CO;2-F.
  • Jose, M. V.; Thomas, V.; Johnson, K. T.; Dean, D. R.; Nyairo, E. Aligned PLGA/HA Nanofibrous Nanocomposite Scaffolds for Bone Tissue Engineering. Acta Biomater. 2009, 5, 305–315. DOI: 10.1016/j.actbio.2008.07.019.
  • Cieślik, M.; Mertas, A.; Morawska-Chochólł, A.; Sabat, D.; Orlicki, R.; Owczarek, A.; Król, W.; Cieślik, T. The Evaluation of the Possibilities of Using PLGA co-Polymer and Its Composites with Carbon Fibers or Hydroxyapatite in the Bone Tissue Regeneration Process - In Vitro and In Vivo Examinations. Int. J. Mol. Sci. 2009, 10, 3224–3234. DOI: 10.3390/ijms10073224.
  • Armentano, I.; Dottori, M.; Puglia, D.; Kenny, J. M. Effects of Carbon Nanotubes (CNTs) on the Processing and In-Vitro Degradation of Poly(DL-Lactide-co-Glycolide)/CNT Films. J. Mater. Sci. Mater. Med. 2008, 19, 2377–2387. DOI: 10.1007/s10856-007-3276-2.
  • Filipowska, J.; Pawlik, J.; Cholewa-Kowalska, K.; Tylko, G.; Pamula, E.; Niedzwiedzki, L.; Szuta, M.; Laczka, M.; Osyczka, A. M. Incorporation of Sol-Gel Bioactive Glass into PLGA Improves Mechanical Properties and Bioactivity of Composite Scaffolds and Results in Their Osteoinductive Properties. Biomed. Mater. 2014, 9, 1748–6041.
  • Boccaccini, A. R.; Maquet, V. Bioresorbable and Bioactive Polymer/Bioglass® Composites with Tailored Pore Structure for Tissue Engineering Applications. Compos. Sci. Technol. 2003, 63, 2417–2429. DOI: 10.1016/S0266-3538(03)00275-6.
  • Yoon, O. J.; Sohn, I. Y.; Kim, D. J.; Lee, N.-E. Enhancement of Thermomechanical Properties of Poly(D,L-Lactic-co-Glycolic Acid) and Graphene Oxide Composite Films for Scaffolds. Macromol. Res. 2012, 20, 789–794. DOI: 10.1007/s13233-012-0116-0.
  • Lee, J. Y.; Bashur, C. A.; Goldstein, A. S.; Schmidt, C. E. Polypyrrole-Coated Electrospun PLGA Nanofibers for Neural Tissue Applications. Biomaterials 2009, 30, 4325–4335. DOI: 10.1016/j.biomaterials.2009.04.042.
  • Persson, M.; Lorite, G. S.; Kokkonen, H. E.; Cho, S.-W.; Lehenkari, P. P.; Skrifvars, M.; Tuukkanen, J. Effect of Bioactive Extruded PLA/HA Composite Films on Focal Adhesion Formation of Preosteoblastic Cells. Colloids Surf. B Biointerfaces 2014, 121, 409–416. DOI: 10.1016/j.colsurfb.2014.06.029.
  • Kutikov, A. B.; Song, J. An Amphiphilic Degradable Polymer/Hydroxyapatite Composite with Enhanced Handling Characteristics Promotes Osteogenic Gene Expression in Bone Marrow Stromal Cells. Acta Biomater. 2013, 9, 8354–8364. DOI: 10.1016/j.actbio.2013.06.013.
  • Hong, Z.; Zhang, P.; He, C.; Qiu, X.; Liu, A.; Chen, L.; Chen, X.; Jing, X. Nano-Composite of Poly(l-Lactide) and Surface Grafted Hydroxyapatite: Mechanical Properties and Biocompatibility. Biomaterials 2005, 26, 6296–6304. DOI: 10.1016/j.biomaterials.2005.04.018.
  • Mathieu, L. M.; Montjovent, M.-O.; Bourban, P.-E.; Pioletti, D. P.; Månson, J.-A. E. Bioresorbable Composites Prepared by Supercritical Fluid Foaming. J. Biomed. Mater. Res. A 2005, 75, 89–97.
  • Lee, M. R.; Lee, G. W.; Kim, J. E.; Yun, W. B.; Choi, J. Y.; Park, J. J.; Kim, H. R.; Song, B. R.; Park, J. W.; Kang, M. J.; et al. Biocompatibility of a PLA-Based Composite Containing Hydroxyapatite Derived from Waste Bones of Dolphin Neophocaena asiaeorientalis. J. Aust. Ceram. Soc. 2019, 55, 269–279. DOI: 10.1007/s41779-018-0232-1.
  • Rakmae, S.; Ruksakulpiwat, Y.; Sutapun, W.; Suppakarn, N. Physical Properties and Cytotoxicity of Surface-Modified Bovine Bone-Based Hydroxyapatite/Poly(Lactic Acid) Composites. J. Compos. Mater. 2011, 45, 1259–1269. DOI: 10.1177/0021998310377934.
  • Kothapalli, C. R.; Shaw, M. T.; Wei, M. Biodegradable HA-PLA 3-D Porous Scaffolds: Effect of Nano-Sized Filler Content on Scaffold Properties. Acta Biomater. 2005, 1, 653–662. DOI: 10.1016/j.actbio.2005.06.005.
  • Montjovent, M.-O.; Mathieu, L.; Hinz, B.; Applegate, L. L.; Bourban, P.-E.; Zambelli, P.-Y.; Månson, J.-A.; Pioletti, D. P. Biocompatibility of Bioresorbable Poly(L-Lactic Acid) Composite Scaffolds Obtained by Supercritical Gas Foaming with Human Fetal Bone Cells. Tissue Eng. 2005, 11, 1640–1649. DOI: 10.1089/ten.2005.11.1640.
  • Sanchez-Arevalo, F. M.; Munoz-Ramırez, L. D.; Alvarez-Camacho, M.; Rivera-Torres, F.; Maciel-Cerda, A.; Montiel-Campos, R.; Vera-Graziano, R. Macro- and Micromechanical Behaviors of Poly(Lactic Acid)–Hydroxyapatite Electrospun Composite Scaffolds. J. Mater. Sci. 2017, 52, 3353–3367. DOI: 10.1007/s10853-016-0624-y.
  • McManus, A. J.; Doremus, R. H.; Siegel, R. W.; Bizios, R. Evaluation of Cytocompatibility and Bending Modulus of Nanoceramic/Polymer Composites. J. Biomed. Mater. Res. 2005, 72A, 98–106. DOI: 10.1002/jbm.a.30204.
  • Akindoyo, J. O.; Beg, M. D. H.; Ghazali, S.; Heim, H. P.; Feldmann, M. Effects of Surface Modification on Dispersion, Mechanical, Thermal and Dynamic Mechanical Properties of Injection Molded PLA-Hydroxyapatite Composites. Comp. A: Appl. Sci. Manufacturing 2017, 103, 96–105. DOI: 10.1016/j.compositesa.2017.09.013.
  • Yanoso-Scholl, L.; Jacobson, J. A.; Bradica, G.; Lerner, A. L.; O'Keefe, R. J.; Schwarz, E. M.; Zuscik, M. J.; Awad, H. A. Evaluation of Dense Polylactic Acid/Beta-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering. J. Biomed. Mater. Res A 2010, 95, 717–726.
  • Akagi, H.; Ochi, H.; Soeta, S.; Kanno, N.; Yoshihara, M.; Okazaki, K.; Yogo, T.; Harada, Y.; Amasaki, H.; Hara, Y.; et al. A Comparison of the Process of Remodeling of Hydroxyapatite/Poly-D/L-Lactide and Beta-Tricalcium Phosphate in a Loading Site. Biomed. Res. Int. 2015, 2015, 730105–730105.
  • Huang, X. Fabrication and Properties of Carbon Fibers. Materials 2009, 2, 2369–2403. DOI: 10.3390/ma2042369.
  • Wan, Y. Z.; Wang, Y. L.; Xu, X. H.; Li, Q. Y. In Vitro Degradation Behavior of Carbon Fiber-Reinforced PLA Composites and Influence of Interfacial Adhesion Strength. J. Appl. Polym. Sci. 2001, 82, 150–158. DOI: 10.1002/app.1834.
  • Morawska-Chochol, A.; Chłopek, J.; Szaraniec, B.; Domalik-Pyzik, P.; Balacha, E.; Boguń, M.; Kucharski, R. Influence of the Intramedullary Nail Preparation Method on Nail’s Mechanical Properties and Degradation Rate. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 51, 99–106. DOI: 10.1016/j.msec.2015.02.043.
  • Shen, L.; Yang, H.; Ying, J.; Qiao, F.; Peng, M. Preparation and Mechanical Properties of Carbon Fiber Reinforced Hydroxyapatite/Polylactide Biocomposites. J. Mater. Sci. Mater. Med. 2009, 20, 2259–2265. DOI: 10.1007/s10856-009-3785-2.
  • Gerhardt, L.-C.; Jell, G.; Boccaccini, A. Titanium Dioxide (TiO(2)) Nanoparticles Filled Poly(D,L lactid acid) (PDLLA) Matrix Composites for Bone Tissue Engineering. J. Mater. Sci. Mater. Med. 2007, 18, 1287–1298. DOI: 10.1007/s10856-006-0062-5.
  • Roether, J. A.; Boccaccini, A. R.; Hench, L. L.; Maquet, V.; Gautier, S.; Jérôme, R. Development and In Vitro Characterisation of Novel Bioresorbable and Bioactive Composite Materials Based on Polylactide Foams and Bioglass® for Tissue Engineering Applications. Biomaterials 2002, 23, 3871–3878. DOI: 10.1016/S0142-9612(02)00131-X.
  • Oh, S. H.; Park, I. K.; Kim, J. M.; Lee, J. H. In Vitro and In Vivo Characteristics of PCL Scaffolds with Pore Size Gradient Fabricated by a Centrifugation Method. Biomaterials 2007, 28, 1664–1671. DOI: 10.1016/j.biomaterials.2006.11.024.
  • Sousa, Is.; Mendes, A.; Bártolo, P. J. PCL Scaffolds with Collagen Bioactivator for Applications in Tissue Engineering. Proc. Eng. 2013, 59, 279–284. DOI: 10.1016/j.proeng.2013.05.122.
  • Dell'Erba, R.; Groeninckx, G.; Maglio, G.; Malinconico, M.; Migliozzi, A. Immiscible Polymer Blends of Semicrystalline Biocompatible Components: Thermal Properties and Phase Morphology Analysis of PLLA/PCL Blends. Polymer 2001, 42, 7831–7840. DOI: 10.1016/S0032-3861(01)00269-5.
  • Coombes, A. G. A.; Rizzi, S. C.; Williamson, M.; Barralet, J. E.; Downes, S.; Wallace, W. A. Precipitation Casting of Polycaprolactone for Applications in Tissue Engineering and Drug Delivery. Biomaterials 2004, 25, 315–325. DOI: 10.1016/S0142-9612(03)00535-0.
  • Averous, L. Properties of Thermoplastic Blends: Starch–Polycaprolactone. Polymer 2000, 41, 4157–4167. DOI: 10.1016/S0032-3861(99)00636-9.
  • Lebourg, M.; Suay Anton, J.; Gomez Ribelles, J. L. Hybrid Structure in PCL-HAp Scaffold Resulting from Biomimetic Apatite Growth. J. Mater. Sci. Mater. Med. 2010, 21, 33–44. DOI: 10.1007/s10856-009-3838-6.
  • Park, S. H.; Park, S. A.; Kang, Y. G.; Shin, J. W.; Park, Y. S.; Gu, S. R.; Wu, Y. R.; Wei, J.; Shin, J.-W. PCL/β-TCP Composite Scaffolds Exhibit Positive Osteogenic Differentiation with Mechanical Stimulation. Tissue Eng. Regen. Med. 2017, 14, 349–358. DOI: 10.1007/s13770-017-0022-9.
  • Hiep, N. T.; Lee, B. T. Electro-Spinning of PLGA/PCL Blends for Tissue Engineering and Their Biocompatibility. J. Mater. Sci. Mater. Med. 2010, 21, 1969–1978. DOI: 10.1007/s10856-010-4048-y.
  • Gautam, S.; Chou, C.-F.; Dinda, A. K.; Potdar, P. D.; Mishra, N. C. Fabrication and Characterization of PCL/Gelatin/Chitosan Ternary Nanofibrous Composite Scaffold for Tissue Engineering Applications. J. Mater. Sci. 2014, 49, 1076–1089. DOI: 10.1007/s10853-013-7785-8.
  • Gomes, S.; Rodrigues, G.; Martins, G.; Henriques, C.; Silva, J. C. Evaluation of Nanofibrous Scaffolds Obtained from Blends of Chitosan, Gelatin and Polycaprolactone for Skin Tissue Engineering. Int. J. Biol. Macromol. 2017, 102, 1174–1185. DOI: 10.1016/j.ijbiomac.2017.05.004.
  • Gentile, P.; McColgan-Bannon, K.; Gianone, N. C.; Sefat, F.; Dalgarno, K.; Ferreira, A. M. Biosynthetic PCL-graft-Collagen Bulk Material for Tissue Engineering Applications. Materials 2017, 10, 693. DOI: 10.3390/ma10070693.
  • Bužarovska, A. Preparation and Characterization of Poly(ε-Caprolactone)/ZnO Foams for Tissue Engineering Applications. J. Mater. Sci. 2017, 52, 12067–12078. DOI: 10.1007/s10853-017-1342-9.
  • Li, X.; Zhang, S.; Zhang, X.; Xie, S.; Zhao, G.; Zhang, L. Biocompatibility and Physicochemical Characteristics of Poly(Ɛ-Caprolactone)/Poly(Lactide-co-Glycolide)/Nano-Hydroxyapatite Composite Scaffolds for Bone Tissue Engineering. Mater. Des. 2017, 114, 149–160. DOI: 10.1016/j.matdes.2016.10.054.
  • Rodenas-Rochina, J.; Ribelles, J. L.; Lebourg, M. Comparative Study of PCL-HAp and PCL-Bioglass Composite Scaffolds for Bone Tissue Engineering. J. Mater. Sci. Mater. Med. 2013, 24, 1293–1308. DOI: 10.1007/s10856-013-4878-5.
  • Du, Y.; Liu, H.; Yang, Q.; Wang, S.; Wang, J.; Ma, J.; Noh, I.; Mikos, A. G.; Zhang, S. Selective Laser Sintering Scaffold with Hierarchical Architecture and Gradient Composition for Osteochondral Repair in Rabbits. Biomaterials 2017, 137, 37–48. DOI: 10.1016/j.biomaterials.2017.05.021.
  • Kim, Y. B.; Kim, G. Functionally Graded PCL/β-TCP Biocomposites in a Multilayered Structure for Bone Tissue Regeneration. Appl. Phys. A 2012, 108, 949–959. DOI: 10.1007/s00339-012-7004-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.