782
Views
25
CrossRef citations to date
0
Altmetric
Articles

Recent advancements in self-healing polymeric hydrogels, shape memory, and stretchable materials

ORCID Icon, &
Pages 941-966 | Received 08 Jan 2020, Accepted 07 May 2020, Published online: 04 Jun 2020

References

  • Du, Y.; Li, D.; Liu, L.; Gai, G. Recent Achievements of Self-Healing Graphene/Polymer Compo-Sites. Polymers 2018, 10, 114. DOI: 10.3390/polym10020114.
  • Jagtap, S.; Patil, V.; Suresh, K.; Ram, F.; Mohan, M.; Rajput, S.; Patil, S.; Shukla, P.; Shanmuga-Nathan, K. Functionalized Carbon Nanotube Reinforced Polymer Nanocomposite Microcapsules with Enhanced Stiffness. Colloids Surf, A 2018, 550, 82–89. DOI: 10.1016/j.colsurfa.2018.04.028.
  • Lin, C.; Sheng, D.; Liu, X.; Xu, S.; Ji, F.; Dong, L.; Zhou, Y.; Yang, Y. NIR Induced Self-Healing Electrical Conductivity Polyurethane/Graphene Nanocomposites Based on Diels Alder Reaction. Polymer 2018, 140, 150–157. DOI: 10.1016/j.polymer.2018.02.036.
  • Safaei, F.; Khorasani, S.; Rahnama, H.; Neisiany, R.; Koochaki, M. Single Microcapsules Containing Epoxy Healing Agent Used for Development in the Fabrication of Cost Efficient Self-Healing Epoxy Coating. Prog. Org. Coat. 2018, 114, 40–46. DOI: 10.1016/j.porgcoat.2017.09.019.
  • Norris, C.; Bond, I.; Trask, R. The Role of Embedded Bioinspired Vasculature on Damage formation in Self-Healing Carbon Fibre Reinforced Composites. Compos. Part A: Appl. Sci. Manuf. 2011, 42, 639–648. DOI: 10.1016/j.compositesa.2011.02.003.
  • Blaiszik, J.; Sottos, R.; White, R. Nanocapsules for Self-Healing Materials. Compos. Sci. Technol. 2008, 68, 978–986. DOI: 10.1016/j.compscitech.2007.07.021.
  • Tundidor-Camba, A.; González-Henríquez, C.; Sarabia-Vallejos, M.; Tagle, L.; Hauyón, R.; Sobarzo, P.; González, A.; Ortiz, P.; Maya, E.; Terraza, C. Silylated Oligomeric Poly(Ether-Azomethine)s from Monomers Containing Biphenyl Moieties: Synthesis and Characterization. RSC Adv. 2018, 8, 1296–1312. DOI: 10.1039/C7RA10929F.
  • Kim, S.; Jeon, H.; Shin, S.; Park, S.; Jegal, J.; Hwang, S.; Oh, D.; Park, J. Superior Toughness and Fast Self‐Healing at Room Temperature Engineered by Transparent Elastomers. Adv. Mater. 2018, 30, 1870001. DOI: 10.1002/adma.201870001.
  • Wang, J.; Lv, C.; Li, Z.; Zheng, J. Facile Preparation of Polydimethylsiloxane Elastomer with Self‐Healing Property and Remoldability Based on Diels–Alder Chemistry. Macromol. Mater. Eng. 2018, 303, 1800089. DOI: 10.1002/mame.201800089.
  • Lee, J.; Park, S.; Park, C.-S.; Kwon, O.; Chung, S.; Shim, J.; Lee, C.-S.; Bae, J. Effect of a Surfactant in Microcapsule Synthesis on Self-Healing Behavior of Capsule Embedded Polymeric Films. Polymers 2018, 10, 675. DOI: 10.3390/polym10060675.
  • Sander, M.; Ferreira, C. Synthesis and Characterization of a Conductive and Self-Healing Composite. Syn. Met. 2018, 243, 58–66. DOI: 10.1016/j.synthmet.2018.06.003.
  • Cuvellier, A.; Torre-Muruzabal, A.; Kizildag, N.; Daelemans, L.; Ba, Y.; Clerck, K.; Rahier, H. Coaxial Electrospinning of Epoxy and Amine Monomers in a Pullulan Shell for Self-Healing Nanovascular Systems. Polym. Test. 2018, 69, 146–156. DOI: 10.1016/j.polymertesting.2018.05.023.
  • Cuvellier, A.; Torre-Muruzabal, A.; Van Assche, G.; De Clerck, K.; Rahier, H. Selection of Healing Agents for a Vascular Self-Healing Application. Polym. Test. 2017, 62, 302–310. DOI: 10.1016/j.polymertesting.2017.07.013.
  • Luterbacher, R.; Coope, T.; Trask, R.; Bond, I. Vascular Self-Healing within Carbon Fibre Reinforced Polymer Stringer Run-out Configurations. Compos. Sci. Technol. 2016, 136, 67–75. DOI: 10.1016/j.compscitech.2016.10.007.
  • Dawei, S.; Yong, C.; Ke, C.; Jinglei, Y. Chemically and Thermally Stable Isocyanate Micro-capsules Having Good Self-Healing and Self-Lubricating Performances. Chem. Eng. J. 2018, 346, 289–297.
  • Invernizzi, M.; Turri, S.; Levi, M.; Suriano, R. 4D Printed Thermally Activated Self-Healing and Shape Memory Polycaprolactone-Based Polymers. Eur. Polym. J. 2018, 101, 169–176. DOI: 10.1016/j.eurpolymj.2018.02.023.
  • Ding, Z.; Yuan, L.; Guan, Q.; Gu, A.; Liang, G. A Reconfiguring and Self-Healing Thermoset Epoxy/Chain-Extended Bismaleimide Resin System with Thermally Dynamic Covalent Bonds. Polymer 2018, 147, 170–182. DOI: 10.1016/j.polymer.2018.06.008.
  • Gergely, R.; Cruz Krull, S. A.; Pruitt, P.; Wang, L.; Sottos, J.; White, R. R. Restoration of Impact Damage in Polymers via a Hybrid Microcapsule Microvascular Self-Healing System. Adv. Funct. Mater. 2018, 28, 1616.
  • Araujo, M.; Chatrabhuti, S.; Gurdebeke, S.; Alderete, N.; Tittelboom, K.; Raquez, J.; Cnudde, V.; Vlierberghe, S.; Belie, N.; Gruyaert, E. Poly(Methyl Methacrylate) Capsules as an Alternative to the ‘Proof-of-Concept’ Glass Capsules Used in Self-Healing Concrete. Cem. Concr. Compos. 2018, 89, 260–271. DOI: 10.1016/j.cemconcomp.2018.02.015.
  • Cohades, A.; Hostettler, N.; Pauchard, M.; Plummer, C.; Michaud, V. Stitched Shape Memory Alloy Wires Enhance Damage Recovery in Self-Healing Fibre-Reinforced Polymer Composites. Compos. Sci. Technol. 2018, 161, 22–31. DOI: 10.1016/j.compscitech.2018.03.040.
  • Guo, M.; Li, W.; Han, N.; Wang, J.; Su, J.; Li, J.; Zhang, X. Novel Dual-Component Microencapsulated Hydrophobic Amine and Microencapsulated Isocyanate Used for Self-Healing Anti-corrosion Coating. Polymers 2018, 10, 319. DOI: 10.3390/polym10030319.
  • Kim, R.; Getachew, A.; Park, J.; Kwon, S.; Ryu, H.; Taylor, D.; Bae, J.; Kim, H. Toward Microcapsule-Embedded Self-Healing Membranes. Environ. Sci. Technol. Lett. 2016, 3, 216–221. DOI: 10.1021/acs.estlett.6b00046.
  • Zhang, B.; Zhang, P.; Zhang, H.; Yan, C.; Zheng, Z.; Wu, B.; Yu, Y. A Transparent, Highly Stretchable, Autonomous Self Healingpoly(Dimethyl Siloxane) Elastomer. Macromol. Rapid Commun. 2017, 38, 1700110. DOI: 10.1002/marc.201700110.
  • Shisode, P.; Patil, C.; Mahulikar, P. Preparation and Characterization of Microcapsules Containing Soybean Oil and Their Application in Self-Healing Anti-corrosive Coatings. Polym. -Plast. Technol. Eng. 2018, 57, 1334–1343. DOI: 10.1080/03602559.2017.1381248.
  • Hu, Z.; Shao, Q.; Huang, Y.; Yu, L.; Zhang, D.; Xu, X.; Lin, J.; Liu, H.; Guo, Z. Light Triggered Interfacial Damage Self-Healing of Poly(p-Phenylene Benzobisoxazole) Fiber Composites. Nanotechnology 2018, 29, 185602. DOI: 10.1088/1361-6528/aab010.
  • Wang, W.; Xu, L.; Li, L.; Yang, Y.; An, E. Self-Healing Properties of Protective Coatings Containing Isophorone Diisocyanate Microcapsules on Carbon Steel Surfaces. Corros Sci. 2014, 80, 528–533. DOI: 10.1016/j.corsci.2013.11.050.
  • Ponnusami, S.; Krishnasamy, J.; Turteltaub, S.; Zwaag, S. A Cohesive-Zone Crack Healing Model for Self-Healing Materials. Int. J. Solids Struct. 2018, 134, 249–263. DOI: 10.1016/j.ijsolstr.2017.11.004.
  • Wolf, M.; Salieb-Beugelaar, G.; Hunziker, P. PDMS with Designer Functionalities. Properties, Modifications Strategies, and Applications. Prog. Polym. Sci. 2018, 83, 97–134. DOI: 10.1016/j.progpolymsci.2018.06.001.
  • Neisiany, R.; Lee, J.; Khorasani, S.; Bagheri, R.; Ramakrishna, S. Facile Strategy toward Fabrication of Highly Responsive Self-Healing Carbon/Epoxy Composites via Incorporation of Healing Agents Encapsulated in Poly(Methylmethacrylate) Nanofiber Shell. J. Ind. Eng. Chem. 2018, 59, 456–466. DOI: 10.1016/j.jiec.2017.11.007.
  • Pang, C.; Bond, I. P. ‘Bleeding Composites’—Damage Detection and Self-Repair Using a biomimetic Approach. Compos. Part A: Appl. Sci. Manuf. 2005, 36, 183–188. DOI: 10.1016/S1359-835X(04)00166-6.
  • Li, H.; Cui, Y.; Wang, H.; Zhu, Y.; Wang, B. Preparation and Application of Polysulfone Microcapsules Containing Tung Oil in Self-Healing and Self-Lubricating Epoxy Coating. Colloids Surfaces A: Physicochem. Eng. Asp. 2017, 518, 181–187. DOI: 10.1016/j.colsurfa.2017.01.046.
  • Liu, X.; Sheng, X.; Lee, K.; Kessler, R. Synthesis and Characterization of Melamine-Urea-Formaldehyde Microcapsules Containing ENB-Based Self-Healing Agents. Macromol. Mater. Eng. 2009, 294, 389–395. DOI: 10.1002/mame.200900015.
  • Brown, N.; Kessler, R.; Sottos, R.; White, R. In Situ Poly (Urea-Formaldehyde) Microencapsulation of Dicyclopentadiene. J. Microencapsul. 2003, 20, 719–730. DOI: 10.3109/02652040309178083.
  • Yang, I.; Kim, M.; Yu, C.; Chung, M. Microcapsule-Type Organogel-Based Self-Healing System Having Secondary Damage Preventing Capability. ACS Appl. Mater. Interfaces 2016, 8, 11070–11075. DOI: 10.1021/acsami.6b02118.
  • Jin, H.; Mangun, C. L.; Griffin, A. S.; Moore, J. S.; Sottos, N. R.; White, S. R. Thermally Stable Autonomic Healing in Epoxy Using a Dual-Microcapsule System. Adv. Mater. Weinheim. 2014, 26, 282–287. DOI: 10.1002/adma.201303179.
  • Patrick, F.; Hart, R.; Krull, P.; Moore, D.; Jeffrey, S.; White, R.; Sottos, R. Continuous Self-Healing Life Cycle in Vascularized Structural Composites. Adv. Mater. 2014, 26, 25.
  • Ahner, J.; Pretzel, D.; Enke, M.; Geitner, R.; Zechel, S.; Popp, J.; Schubert, U.; Hager, M. Conjugated Oligomers as Fluorescence Marker for the Determination of the Self-Healing Efficiency in Mussel-Inspired Polymers. Chem. Mater. 2018, 30, 2791–2799. DOI: 10.1021/acs.chemmater.8b00623.
  • Ghosh, S. Self-Healing Materials: Fundamentals, Design Strategies, and Applications (Edited by Swapan Kumar Ghosh). WILEY-VCH Verlag GmbH and Co. KGaA: Weinheim, 2009.
  • Norris, C.; White, J.; McCombe, G.; Chatterjee, P.; Bond, I.; Trask, R. Autonomous Stimulus Triggered Self-Healing in Smart Structural Composites. Smart Mater. Struct. 2012, 21, 094027. DOI: 10.1088/0964-1726/21/9/094027.
  • Pety, S.; Aw, J.; Gendusa, A.; Barnett, P.; Calvert, Q.; Sottos, N.; White, S. Effect of Microchannels on the Crashworthiness of Fiber-Reinforced Composites. Compos. Struct. 2018, 184, 428–436. DOI: 10.1016/j.compstruct.2017.09.105.
  • Lewis, A.; Gratson, M. Direct Writing in Three Dimensions. Mater. Today 2004, 7, 32–39. DOI: 10.1016/S1369-7021(04)00344-X.
  • Zhang, J.; Huo, M.; Li, M.; Li, T.; Li, N.; Zhou, J.; Jiang, J. Shape Memory and Self-Healing Materials from Supramolecular Block Polymers. Polymer 2018, 134, 35–43. DOI: 10.1016/j.polymer.2017.11.043.
  • Na, M.; Gao, F.; Zhang, Y.; Su, G.; Ma, H. Biodegradable Microcapsules Prepared by Self-Healing of Porous Microspheres. ACS Macro Lett. 2012, 1, 697–700. DOI: 10.1021/mz200222d.
  • Gao, L.; He, J.; Hu, J.; Wang, C. Photoresponsive Self-Healing Polymer Composite with Photoabsorbing Hybrid Microcapsules. ACS Appl. Mater. Interfaces 2015, 7, 25546–25552. DOI: 10.1021/acsami.5b09121.
  • Das, A.; Sallat, A.; Böhme, F.; Sarlin, E.; Vuorinen, J.; Vennemann, N.; Heinrich, G.; Stöckelhuber, W. Temperature Scanning Stress Relaxation of an Autonomous Self-Healing Elastomer Containing Non-covalent Reversible Network Junctions. Polymers 2018, 10, 94. DOI: 10.3390/polym10010094.
  • An, S.; Lee, M.; Yarin, A.; Yoon, S. A Review on Corrosion-Protective Extrinsic Self-Healing: Comparison of Microcapsule-Based Systems and Those Based on Core-Shell Vascular Networks. Chem. Eng. J. 2018, 344, 206–220. DOI: 10.1016/j.cej.2018.03.040.
  • Lizhi, X.; Xueli, Z.; Chuanlai, X.; Kotov, A. Water-Rich Biomimetic Composites with Abiotic Self-Organizing Nanofiber Network. Adv. Mater. 2018, 30, 43.
  • Nguyen, A.; Orifici, A. Structural Assessment of Microvascular Self-Healing Laminates Using Progressive Damage Finite Element Analysis. Compos. Part A: Appl. Sci. Manuf. 2012, 43, 1886–1894. DOI: 10.1016/j.compositesa.2012.06.005.
  • Norris, C. J.; Bond, I. P.; Trask, R. S. Interactions between Propagating Cracks and Bioinspired Self-Healing Vascules Embedded in Glass Fibre Reinforced Composites. Compos. Sci. Technol. 2011, 71, 847–853. DOI: 10.1016/j.compscitech.2011.01.027.
  • Norris, C. J.; Bond, I. P.; Trask, R. S. Healing of Low Velocity Impact Damage in Vascularised Composites. Compos. Part A: Appl. Sci. Manuf. 2013, 44, 78–85. DOI: 10.1016/j.compositesa.2012.08.022.
  • Norris, C. J.; Meadway, G. J.; O’Sullivan, M. J.; Bond, I. P.; Trask, R. S. Self-Healing Fibre Reinforced Composites via a Bioinspired Vasculature. Adv. Funct. Mater. 2011, 21, 3624–3633. DOI: 10.1002/adfm.201101100.
  • Olugebefola, S. C.; Aragón, A. M.; Hansen, C. J.; Hamilton, A. R.; Kozola, B. D.; Wu, W.; Geubelle, P. H.; Lewis, J. A.; Sottos, N. R.; White, S. R. Polymer Microvascular Network Composites. J. Compos. Mater. 2010, 44, 2587–2603. DOI: 10.1177/0021998310371537.
  • Park, J. H.; Braun, P. V. Coaxial Electrospinning of Selfhealing Coatings. Adv. Mater. 2009, 21, 1–4.
  • Olugebefola, S. C.; Hamilton, A. R.; Fairfield, D. J.; Sottos, N. R.; White, S. R. Structural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubes. Soft Matter. 2014, 10, 544–548. DOI: 10.1039/c3sm52288a.
  • Blok, L.; Longana, M.; Yu, H.; Woods, B. An Investigation into 3D Printing of Fibre Reinforced Thermoplastic Composites. Addit. Manuf. 2018, 22, 176–186. DOI: 10.1016/j.addma.2018.04.039.
  • Han, L.; Wang, B.; Dai, Y.; Zhang, Y.; Xu, H.; Sui, X.; Zhang, L.; Zhong, Y.; Mao, Z. Dually Self-Reinforced Poly (Caprolactone) Composites Based on Unidirectionally Arranged Fibers. Compos. Sci. Technol. 2018, 165, 331–338. DOI: 10.1016/j.compscitech.2018.07.011.
  • Habault, D.; Zhang, H.; Zhao, Y. Light-Triggered Self-Healing and Shape-Memory Polymers. Chem. Soc. Rev. 2013, 42, 7244–7256. DOI: 10.1039/c3cs35489j.
  • Cong, H.; Wang, P.; Yu, S. Stretchable and Self-Healing Graphene Oxide–Polymer Composite Hydrogels: A Dual-Network Design. Chem. Mater. 2013, 25, 3357–3362. DOI: 10.1021/cm401919c.
  • Zhou, H.; Luo, H.; Zhou, X.; Wang, H.; Yao, Y.; Lin, W.; Yi, G. Healable, Flexible Supercapacitors Based on Shape Memory Polymers. Appl. Sci. 2018, 8, 1732. DOI: 10.3390/app8101732.
  • Guo, H.; Dai, W.; Miao, Y.; Wang, Y.; Ma, D.; Xue, W. Sustained Heparin Release Actuator Achieved from Thermal and Water Activated Shape Memory Hydrogels Containing Main-Chain LC Units. Chem. Eng. J. 2018, 339, 459–467. DOI: 10.1016/j.cej.2018.02.009.
  • Mather, P. T.; Luo, X. F.; Rousseau, I. A. Shape Memory Polymer Research. Annu. Rev. Mater. Res. 2009, 39, 445–471. DOI: 10.1146/annurev-matsci-082908-145419.
  • Rodriguez, E. D.; Luo, X. F.; Mather, P. T. Linear/Network Poly(Epsilon-Caprolactone) Blends Exhibiting Shape Memory Assisted Self-Healing (Smash). ACS Appl. Mater. Interfaces 2011, 3, 152–161. DOI: 10.1021/am101012c.
  • Luo, X. F.; Mather, P. T. Shape Memory Assisted Self-Healing Coating. ACS Macro Lett. 2013, 2, 152–156. DOI: 10.1021/mz400017x.
  • Liu, Y.; Hsu, S. Synthesis and Biomedical Applications of Self-Healing Hydrogels. Front. Chem. 2018, 6, 449. DOI: 10.3389/fchem.2018.00449.
  • Qian, W.; Wei, J.; Bing, X.; Xinhua, L.; Hongbo, W.; Wei, W.; Qigang, W.; Wenguang, L. A Robust, Highly Stretchable Supramolecular Polymer Conductive Hydrogel with Self-Healability and Thermo-processability. Sci. Rep. 2017, 7, 41566. DOI: 10.1038/srep41566.
  • Liao, G.; Hu, J.; Chen, Z.; Zhang, R.; Wang, G.; Kuang, T. Preparation, Properties, and Applications of Graphene-Based Hydrogels. Front. Chem. 2018, 6, 450. DOI: 10.3389/fchem.2018.00450.
  • Jing, X.; Mi, H.; Peng, X.; Turng, L. Biocompatible, Self-Healing, Highly Stretchable Polyacrylic Acid/Reduced Graphene Oxide Nanocomposite Hydrogel Sensors via Mussel-Inspired Chemistry. Carbon 2018, 136, 63–72. DOI: 10.1016/j.carbon.2018.04.065.
  • Jing, X.; Mi, H.; Napiwocki, B.; Peng, X.; Turng, L. Mussel-Inspired Electroactive Chitosan/Graphene Oxide Composite Hydrogel with Rapid Self-Healing and Recovery Behavior for Tissue Engineering. Carbon 2017, 125, 557–570. DOI: 10.1016/j.carbon.2017.09.071.
  • Lee, M.; An, S.; Kim, Y.; Yoon, S.; Yarin, A. Self-Healing Three-Dimensional Bulk Materials Based on Core-Shell Nanofibers. Chem. Eng. J. 2018, 334, 1093–1100. DOI: 10.1016/j.cej.2017.10.034.
  • Kang, J.; Son, D.; Wang, N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, Y.; Katsumata, T.; Mun, J.; Lee, Y.; et al. Tough and Water-Insensitive Self-Healing Elastomer for Robust Electronic Skin. Adv. Mater. 2018, 30, 1706846. DOI: 10.1002/adma.201706846.
  • Idumah, C.; Hassan, A.; Affam, A. A Review of Recent Developments in Flammability of Polymer Nanocomposites. Rev. Chem. Eng. 2015, 31, 149–177.
  • Idumah, C.; Hassan, A. Characterization and Preparation of Conductive Exfoliated Graphene Nanoplatelets Kenaf Fibre Hybrid Polypropylene Composites. Syn. Met. 2016, 212, 91–104. DOI: 10.1016/j.synthmet.2015.12.011.
  • Idumah, C.; Hassan, A. Recently Emerging Trends in Thermal Conductivity of Polymer Nano-composites. Rev. Chem. Eng. 2016, 32, 413–457.
  • Idumah, C.; Hassan, A. Emerging Trends in Flame Retardancy of Biofibers, Biopolymers, Biocomposites, and Bionanocomposites. Rev. Chem. Eng. 2015, 32, 115–148.
  • Idumah, C.; Hassan, A. Emerging Trends in Graphene Carbon Based Polymer Nanocomposites and Applications. Rev. Chem. Eng. 2016, 32, 223–226.
  • Idumah, C.; Hassan, A. Effect of Exfoliated Graphite Nanoplatelets on Thermal and Heat deflection Properties of Kenaf Polypropylene Hybrid Nanocomposites. J. Polym. Eng. 2016, 36, 877–889. DOI: 10.1515/polyeng-2015-0445.
  • Idumah, C.; Hassan, A. Emerging Trends in Eco-compliant, Synergistic, and Hybrid Assembling of Multifunctional Polymeric Bionanocomposites. Rev. Chem. Eng. 2016, 32, 305–361.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Influence of Exfoliated Graphene Nanoplatelets on Flame Retardancy of Kenaf Flour Polypropylene Hybrid Nanocomposites. J. Anal. Appl. Pyrolysis 2017, 123, 65–72. DOI: 10.1016/j.jaap.2017.01.006.
  • Idumah, C.; Hassan, A. Hibiscus Cannabinus Fiber/PP Based Nano-Biocomposites Reinforced with Graphene Nanoplatelets. J. Nat. Fibers 2017, 14, 691–706. DOI: 10.1080/15440478.2016.1277817.
  • Idumah, C.; Hassan, A.; Ogbu, J.; Ndem, J.; Nwuzor, I. Recently Emerging Advancements in Halloysite Nanotubes Polymer Nanocomposites. ComposInterface 2018, 26, 1–74. DOI: 10.1080/09276440.2018.1534475.
  • Idumah, C.; Hassan, A.; Ogbu, J.; Ndem, J.; Oti, W.; Obiana, V. Electrical, Thermal and Flammability Properties of Conductive Filler Kenaf Reinforced Polymer Nanocomposites. J. Thermo-Plast. Compos. Mater. 2018, 089270571880795. DOI: 10.1177/0892705718807957.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Synergistic Effect of Exfoliated Graphene Nanoplatelets and Non-halogen Flame Retardants on Flame Retardancy and Thermal Properties of Kenaf Flour-PP Nanocomposites. J. Therm. Anal. Calorim. 2018, 134, 1681–1018-7833-3. DOI: 10.1007/s10973-018-7833-3.
  • Idumah, C.; Hassan, A.; Ihuoma, D. Recently Emerging Trends in Polymer Nanocomposites Packaging Materials. Polym-Plast. Technol. Eng. 2018, 58, 1–56. DOI: 10.1080/03602559.2018.1542718.
  • Benight, S.; Wang, C.; Tok, J.; Bao, Z. Stretchable and Self-Healing Polymers and Devices for Electronic Skin. Prog. Polym. Sci. 2013, 38, 1961–1977. DOI: 10.1016/j.progpolymsci.2013.08.001.
  • Hou, C.; Huang, T.; Wang, H.; Yu, H.; Zhang, Q.; Li, Y. A Strong and Stretchable Self-Healing Film with Self-Activated Pressure Sensitivity for Potential Artificial Skin Applications. Sci. Rep. 2013, 3, 3138. DOI: 10.1038/srep03138.
  • Valentini, L.; Bon, B.; Pugno, M. Severe Graphene Nanoplatelets Aggregation as Building Block for the Preparation of Negative Temperature Coefficient and Healable Silicone Rubber Composites. Compos. Sci. Technol. 2016, 134, 125–131. DOI: 10.1016/j.compscitech.2016.08.005.
  • Yang, X.; Guo, Y.; Luo, X.; Zheng, N.; Ma, T.; Tan, J.; Li, C.; Zhang, Q.; Gu, J. Self-Healing, Recoverable Epoxy Elastomers and Their Composites with Desirable Thermal Conductivities by Incorporating BN Fillers via In-Situ Polymerization. Compos. Sci. Technol. 2018, 164, 59–64. DOI: 10.1016/j.compscitech.2018.05.038.
  • Zou, Y.; Fang, L.; Chen, T.; Sun, M.; Lu, C.; Xu, Z. Near-Infrared Light and Solar Light Activated Self-Healing Epoxy Coating Having Enhanced Properties Using MXene Flakes as Multifunctional Fillers. Polymers 2018, 10, 474. DOI: 10.3390/polym10050474.
  • Hernández Santana, M.; Huete, M.; Lameda, P.; Araujo, J.; Verdejo, R.; López-Manchado, M. A. Design of a New Generation of Sustainable SBR Compounds with Good Trade-off between Mechanical Properties and Self-Healing Ability. Eur. Polym. J. 2018, 106, 273–283. DOI: 10.1016/j.eurpolymj.2018.07.040.
  • Yang, Y.; Lu, X.; Wang, W. A Tough Polyurethane Elastomer with Self-Healing Ability. Mater. Des. 2017, 127, 30–36. DOI: 10.1016/j.matdes.2017.04.015.
  • Zhang, Q.; Liu, L.; Pan, C.; Li, D.; Gai, G. Thermally Sensitive, Adhesive, Injectable, Multiwalled Carbon Nanotube Covalently Reinforced Polymer Conductors with Self-Healing Capabilities. J. Mater. Chem. C 2018, 6, 1746–1752. DOI: 10.1039/C7TC05432G.
  • Idumah, C. I. Progress in Polymer Nanocomposites for Bone Regeneration and Engineering. Polym. Polym. Compos. 0967391120913658.
  • Idumah, C. I. Recent Advancements in Self-Healing Polymers, Polymer Blends, and Nanocomposites. Polym. Polym. Compos. 0967391120910882.
  • Idumah, C. I.; Odera, S. R. Recent Advancement in Self-Healing Graphene Polymer Nanocomposites, Shape Memory, and Coating Materials. Polym. -Plast. Technol. Mater. 2020, 1–24.
  • Idumah, C. I.; Hassan, A.; Ogbu, J.; Ndem, J. U.; Nwuzor, I. C. Recently Emerging Advancements in Halloysite Nanotubes Polymer Nanocomposites. Compos. Interfaces 2019, 26, 751–824. DOI: 10.1080/09276440.2018.1534475.
  • Idumah, C. I.; Zurina, M.; Ogbu, J.; Ndem, J. U.; Igba, E. C. A Review on Innovations in Polymeric Nanocomposite Packaging Materials and Electrical Sensors for Food and Agriculture. Compos. Interfaces 2020, 27, 1–7. DOI: 10.1080/09276440.2019.1600972.
  • Idumah, C. I.; Hassan, A.; Ihuoma, D. E. Recently Emerging Trends in Polymer Nanocomposites Packaging Materials. Polym.-Plast. Technol. Mater. 2019, 58, 1054–1109. DOI: 10.1080/03602559.2018.1542718.
  • Idumah, C. I. Novel Trends in Self-Healable Polymer Nanocomposites. J. Thermoplast. Compos. Mater., 2019, DOI: 10.1177/0892705719847247.
  • Idumah, C. I.; Ogbu, J. E.; Ndem, J. U.; Obiana, V. Influence of Chemical Modification of Kenaf Fiber on xGNP-PP Nano-Biocomposites. SN Appl. Sci. 2019, 1, 1261. DOI: 10.1007/s42452-019-1319-1.
  • Idumah, C. I.; Nwuzor, I. C. Novel Trends in Plastic Waste Management. SN Appl. Sci. 2019, 1, 1402. DOI: 10.1007/s42452-019-1468-2.
  • Idumah, C. I.; Zurina, M.; Hassan, A.; Norhayani, O.; Shuhadah, I. N. Recently Emerging Trends in Bone Replacement Polymer Nanocomposites. Nanostruct. Polym. Compos. Biomed. Appl. 2019, 139–166. DOI: 10.1016/B978-0-12-816771-7.00008-9.
  • Tran, V. T.; Mredha, M. T. I.; Na, J. Y.; Seon, J.-K.; Cui, J.; Jeon, I. Multifunctional Poly(Disulfide) Hydrogels with Extremely Fast Self-Healing Ability and Degradability. Chem. Eng. J. 2020, 394, 124941. DOI: 10.1016/j.cej.2020.124941.
  • Chen, W.; Bu, Y.; Li, D.; Liu, C.; Chen, G.; Wan, X.; Li, N. High-Strength, Tough, and Self-Healing Hydrogel Based on Carboxymethyl Cellulose. Cellulose 2020, 27, 853–865. DOI: 10.1007/s10570-019-02797-z.
  • Tarashi, S.; Nazockdast, H.; Sodeifian, G. A Comparative Study on Microstructure, Physical-Mechanical Properties, and Self-Healing Performance of Two Differently Synthesized Nanocomposite Double Network Hydrogels Based on κ-Car/PAm/GO. Polymer 2020, 188, 122138. DOI: 10.1016/j.polymer.2019.122138.
  • Lai, F.; Fang, Z.; Cao, L. Self-Healing Flexible and Strong Hydrogel Nanocomposites Based on Polyaniline for Supercapacitors. Ionics 2020, DOI: 10.1007/s11581-020-03438-3.
  • Zhang, X.; Shen, W.; Dou, J.; Meng, Y.; Fang, S.; Liu, R. Enhanced Mechanical Properties and Self‐Healing Behavior of PNIPAM Nanocomposite Hydrogel by Using POSS as a Physical Crosslinker. J. Appl. Polym. Sci. 2020, 137, 48486. DOI: 10.1002/app.48486.
  • Wu, S.; Li, J.; Zhang, G.; Yao, Y.; Li, G.; Sun, R.; Wong, C. Ultrafast Self-Healing Nanocomposites via Infrared Laser and Their Application in Flexible Electronics. ACS Appl. Mater. Interfaces. 2017, 9, 3040–3049. DOI: 10.1021/acsami.6b15476.
  • Han, L.; Lu, X.; Liu, K.; Wang, K.; Fang, L.; Weng, L.-T.; Zhang, H.; Tang, Y.; Ren, F.; Zhao, C.; et al. Mussel-Inspired Adhesive and Tough Hydrogel Based on Nanoclay Confined Dopamine Polymerization. ACS Nano 2017, 11, 2561–2574. DOI: 10.1021/acsnano.6b05318.
  • Chen, Y.; Cheng, W.; Teng, L.; Jin, M.; Lu, B.; Ren, L.; Wang, Y. Graphene Oxide Hybrid Supramolecular Hydrogels with Self-Healable, Bioadhesive and Stimuli-Responsive Properties and Drug Delivery Application. Macromol. Mater. Eng. 2018, 303, 1700660–1700611. DOI: 10.1002/mame.201700660.
  • Hou, C.; Huang, T.; Wang, H.; Yu, H.; Zhang, Q.; Li, Y. A Strong and Stretchable Self-Healing Film with Self-Activated Pressure Sensitivity for Potential Artificial Skin Applications. Sci. Rep. 2013, 3, 21–25.
  • Liu, J.; Song, G.; He, C.; Wang, H. Self-Healing in Tough Graphene Oxide Composite Hydrogels. Macromol. Rapid Commun. 2013, 34, 1002–1007. DOI: 10.1002/marc.201300242.
  • Li, J.; Zhang, G.; Sun, R.; Wong, C. P. A Covalently Crosslinked Reduced Functionalized Graphene Oxide/Polyurethane Composite Based on Diels–Alder Chemistry and Its Potential Application in Healable Flexible Electronics. J. Mater. Chem. C 2017, 5, 220–228. DOI: 10.1039/C6TC04715G.
  • Sabzi, M.; Babaahmadi, M.; Samadi, N.; Mahdavinia, G. R.; Keramati, M.; Nikfarjam, N. Graphene Network Enabled High Speed Electrical Actuation of Shape Memory Nanocomposite Based on Poly(Vinyl Acetate). Polym. Int. 2017, 66, 665–671. DOI: 10.1002/pi.5303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.